09

Эффективное образование заряженными частицами высокой энергии эксимерных молекул Xe₂I в газовых смесях Xe-C₃F₇I с низким содержанием C₃F₇I

© А.И. Миськевич

Национальный исследовательский ядерный университет "МИФИ", 115409 Москва, Россия e-mail: miskev@mail.ru

(Поступило в Редакцию 20 ноября 2014 г.)

Обнаружена аномально высокая эффективность образования эксимерных молекул Xe₂I* в плотных газовых смесях Xe–C₃F₇I с низким содержанием C₃F₇I при возбуждении импульсным пучком быстрых электронов. Энергия электронов — 150 keV, амплитуда и длительность импульса тока пучка — 5 A и 5 ns. Измерены спектрально-временные характеристики спонтанного излучения эксимерных молекул XeI* и Xe₂I*, определены времена высвечивания верхнего уровня B-X перехода молекулы XeI* ($\lambda_{max} = 253$ nm), верхнего уровня $4^2\Gamma - 1^2\Gamma$ -перехода молекулы Xe₂I* ($\lambda_{max} = 352$ nm) и константы тушения этих уровней компонентами газовой смеси. Исходя из характеристик трековой структуры плазмы, создаваемой заряженными частицами высокой энергии в плотном газе, предложена модель плазмохимических процессов образования эксимерных молекул XeI* ($\lambda_{max} = 253$ nm), Xe₂I* ($\lambda_{max} = 352$ nm) в газовых смесях Xe–C₃F₇Iс низким содержанием донора атомов йода.

Введение

Эксимерные молекулы XeI* и Xe₂I* имеют высокую квантовую эффективность люминесценции, достигающей ~ 20% для B-X-перехода XeI* [1,2], и более — для $4^{2}\Gamma-1^{2}\Gamma$ -перехода молекулы Xe₂I*. Эти молекулы могут быть использованы для эффективного преобразования кинетической энергии заряженных частиц высокой энергии в световое и лазерное излучение ультрафиолетового (253 nm) и видимого диапазонов длин волн (310–420 nm). К сожалению, среди всех эксимерных молекул типа Xe X*, где X — атомы галогенов F, Cl, Br, I, только на переходах молекулы XeI* и Xe₂I* не была получена лазерная генерация.

Структура энергетических уровней молекул Xel^{*} и Xe₂I^{*} схематично показана на рис. 1. Исследования структуры B-X-перехода молекулы XeI^{*} были выполнены в работах [3–5], некоторые параметры молекул XeI^{*} и Xe₂I^{*} приведены в табл. 1. Таблица составлена по данным работ [6–14].

Спектроскопические исследования молекул XeI^{*} и Xe₂I^{*} рассматривались в работах [12–19]. Сильная флуоресценция, возбуждаемая ArF-лазером с длиной волны 193 nm, наблюдалась на B-X-переходе молекулы XeI^{*} в смеси, содержащей 200 Torr Xe с донорами атомов йода — молекулами I₂, CH₂I₂, CH₃I или CF₃I [12]. В спектре присутствовали атомарная линия при 206.2 nm и молекулярные полосы при 253, 325 и 342 nm. Авторы отмечают, что вплоть до $P_{Xe} = 2$ at в спектре отсутствовала полоса при 375 nm молекулы Xe₂I^{*}, наблюдаемая ранее в работе [15]. Были измерены константы тушения *B*-состояния молекулы XeI^{*} атома-ми Xe и молекулами CH₂I₂, CH₃I и CF₃I. Оказалось, что константы тушения для XeI^{*} имеют тот же порядок ве-

личины, что и у других галоидосодержащих эксимерных молекул инертных газов — около 10-9 cm³/s.

Временные характеристики излучения молекулы XeI* (B-X-переход, $\lambda_{max} = 253 \text{ nm})$ при возбуждении импульсным электронным пучком газовой смеси Xe + CF₃I изучались в работе [16]. В смесях с содержанием компонент Xe = 200 Torr, CF₃I = 0.0136-0.456 Torr были измерены времена высвечивания B-X-полосы эксимерной молекулы ($\lambda_{max} = 253 \text{ nm}$) в зависимости от содержания донора CF₃I в смеси. Авторы отмечали, что наилучшие условия образования эксимерных молекул наблюдались при низких значениях содержания донора в смеси. Спектры люминесценции молекулы XeI* рассматривались в работах [17–19] для газовых смесей с содержанием донора атомов йода, превышающих 0.3 Torr.

В работах [20–22] было показано, что эффективность образования двухатомных и трехатомных эксимерных молекул (XeCl^{*}, Xe₂Cl^{*}) сильно зависит от концентрации донора и при очень низких концентрациях донора (~ 50 mTorr) возрастает многократно вследствие уменьшения тушащего эффекта молекулами донора. Подобная информация для йодсодержащих газовых смесей с низким содержанием донора атомов йода в литературе отсутствует.

С целью изучения особенностей образования молекул XeI^{*} и Xe₂I^{*}, в настоящей работе были проведены исследования спектрально-кинетических характеристик люминесценции плотных (Xe + C₃F₇I) газовых смесей с низким содержанием донора C₃F₇I — от 0.026 до 1.0 Тогг при давлениях Xe от 50 до 1140 Тогг. Использование C₃F₇I в качестве донора атомов йода было сделано из-за меньшего поглощения излучения с длинами волн 253, 318 и 352 nm этим веществом по сравнению, например, с обычно используемыми CF₃I [3,23] или I₂. Спектральные измерения проводились в диапазоне длин

Параметр	Литература	
Молекула $XeI(B_{1/2})$:		
Равновесное межьядерное расстояние r_e , Å	3.31-3.62	[6,7]
Энергия диссоциации D_e , eV	4.08	[6,7]
Энергия колебательного кванта, ст ⁻¹	112	[7]
Длина волны $B-X$ -полосы λ_{\max} , nm	254	[11,12]
Полуширина $\Delta \lambda$, nm	4	Настоящая работа
Радиационное время $B-X$ -перехода, ns	14	[11,12]
Люминесцентная эффективность, %	20	Оценка
Расщепление между минимумами потенциальных		
кривых состояний $C_{3/2}$ и $B_{1/2}$ молекулы XeI* ΔT . cm ⁻¹	200	[9]
Молекула $XeI(C_{2/2})$:		[,]
Papuopecuoe Mewi guenuoe paccioguue $r = \hat{A}$	3 57	[6]
P_{e} А P_{e} A $P_{$	2 71	[0]
Энергия диссоциации D_e, ev	219	
Длина волны С — A-полосы λ_{max} , пп	516	
	14.2	// //
Радиационное время $C - A$ -перехода, пs	110	
Молекула $XeI(D_{1/2})$:		
Равновесное межьядерное расстояние r_e , А	3.59	[6]
Энергия диссоциации D_e , eV	3.75	[6]
Длина волны $D-X$ -полосы λ_{\max} , nm	292	[10]
Радиационное время $D-X$ -перехода, ns	9	[10]
Молекула Хе ₂ І*:		
$\lambda_{\rm max}$ -полосы 400—600 nm	475	
λ _{max} -полосы 290-420 nm	352	Настоящая работа
Полуширина полосы $\Delta\lambda$, nm	64.2	
Люминесцентрная эффективность, %	60	// //
Время высвечивания, ns	380	Оценка
-		Настоящая работа
Атом $Xe(^{1}S_{0})$, eV	0	
Потенциал ионизации: $Xe^{+}({}^{2}P_{3/2}^{0})$, eV	12.129	[28]
$Xe^{+}(^{2}P_{1/2}^{0}), eV$	13.439	
Резонансые уровни:		
$Xe(6s[3/2]_1^0), eV$	8.44	[28]
$Xe(6s'[1/2]_{1}^{0}), eV$	9.57	[28]
Метастабильные уровни:		[-~]
$Xe(6x[3/2]^0) eV$	8 31	[28]
$Xe(6s'[1/2]^2), eV$	9.45	[28]
$\mathbf{M}_{0} = \mathbf{M}_{0} + \mathbf{M}_{0} $	$\mathbf{V}_{\mathbf{r}}(1\mathbf{C}))$	[20]
Monekyna Xe_2 (oopasyeres из Xe ($F_{3/2}$) + 2	$Ae(5_0)).$	[20]
Потенциал ооразования, е у	11.16	[29]
Энергия диссоциации D_e , ev	1.03	[29]
Atom $I({}^{2}P_{3/2}^{\circ})$, eV	0	[0]
Потенциал ионизации, eV	10.454	[8]
Энергия сродства электрона к атому иода, eV	3.08	[8]
Энергия уровня $I({}^{2}P_{1/2}^{o})$, eV	0.943	[14]
Константы реакций XeI $(B_{1/2})$, cm ³ /s	S	
$\operatorname{XeI}(B_{1/2}) + \operatorname{Xe} \to$ тушение	$4.1 \cdot 10^{-13}$	
$\operatorname{XeI}(B_{1/2}) + \operatorname{C_3H_7I} ightarrow$ тушение	$1.8 \cdot 10^{-9}$	Настоящая работа
$Xe_2I(\lambda = 352, nm) + C_3H_7I \rightarrow$ тушение	$1.1 \cdot 10^{-9}$	// //
$Xe_2I(\lambda = 352, nm) + Xe \rightarrow$ тушение	$1.6 \cdot 10^{-13}$	// //
$\operatorname{XeI}(B_{1/2}) + \operatorname{I}_2 \rightarrow$ тушение	$3\cdot 10^{-10}$	// //
$\mathbf{V}_{\mathbf{O}}\mathbf{I}(\mathbf{D}_{\mathbf{O}}) + \mathbf{C}\mathbf{I}\mathbf{I}\mathbf{I}$	$3.6 \cdot 10^{-10}$	[14]

Таблица 1. Некоторые параметры эксимерных молекул XeI*, Xe₂I*, атомов Xe и I

Примечание. * — для данных условий накачки.

Рис. 1. Кривые потенциальной энергии молекулы XeI и молекулы Xe₂I.

волн 200—1100 nm, временные сигналы люминесценции записывались на длинах волн 253, 318 и 352 nm, что соответствовало максимумам отдельных полос излучения эксимерных молекул XeI^{*} и Xe₂I^{*}.

Экспериментальная установка

Экспериментальная установка подробно описана в работе [22]. Газовые смеси Xe-C₃F₇I произвольного состава с содержанием донора C₃F₇I — от 0.026 до 1.0 Torr, приготавливались непосредственно в камере из нержавеющей стали цилиндрической формы Ø80 × 100 mm с двумя окнами на торцах из кварцевого стекла. Пучок быстрых электронов вводился в камеру сбоку перпендикулярно оси камеры. На боковой поверхности камеры для этого имелся фланец для присоединения ускорителя электронов. Пучок быстрых электронов с энергией 150 keV вырабатывался импульсной трубкой ИМА-150Э, установленной непосредственно в рабочем объеме камеры. Камера заполнялась ксеноном класса "особо чистый" из металлического баллона после откачки ее до остаточного давления 3 · 10⁻³ Torr без проведения дополнительной очистки газа титановым фильтром. Рабочая смесь Xe + C₃F₇I с низким содержанием молекул C₃F₇I приготавливалась с использованием циркуляционного насоса и мерной трубки.

8 Журнал технической физики, 2015, том 85, вып. 9

Установленная в камере импульсная трубка ИМА-150Э с взрывоэмиссионным катодом формировала расходящийся пучок быстрых электронов с энергией 150 keV, суммарной амплитудой тока пучка 5 A и длительностью импульса тока на полувысоте 5 ns. На оси камеры плотность тока пучка электронов составляла 0.8 A/cm².

Световое излучение выводилось из измерительной камеры через два кварцевых окна, установленных на ее торцах. Одно окно использовалось для измерения спектрального состава светового импульса, а второе — для временных измерений люминесценции. Спектральные измерения были выполнены с помощью спектрометра МАҮА 2000Рго с разрешением 1 nm во всем спектральном диапазоне. Временные измерения производились с помощью монохроматора МДР-23, выделяющего заданный спектральный участок спектра шириной не более 1 nm, фотоумножителя ФЭУ-106 (или ФЭУ-62), работающего в токовом режиме на нагрузку 50 Ω , и быстрого цифрового осциллографа Rigol DS5022ME с разверткой от 20 до 100 ns/cm.

Результаты измерений

Спектры спонтанного излучения $(Xe-C_3F_7I)$ смесей высокого давления при различном содержании Xe и донора C_3F_7I приведены на рис. 2 и 3 (уча-

Рис. 2. Спектры спонтанного излучения (Xe–C₃F₇I)-смесей при возбуждении импульсным пучком электронов с энергией 150 keV в зависимости от содержания C₃F₇I в смеси. Состав смеси: Xe — 1140 Torr, C₃F₇I — 1 Torr (*a*) и 0.075 Torr (*b*).

сток спектра 200-600 nm), обзорный спектр — на рис. 4. Все спектры содержат молекулярные полосы эксимерных молекул XeI* и Xe₂I* с максимумами при $\lambda_{max} = 253$ и $\lambda_{max} = 318$ nm (XeI*), $\lambda_{max} = 352$ (Xe_2I^*) , $\lambda_{max} = 342 \text{ nm} (I_2)$, широкий континуум в области $\Delta \lambda_{\text{max}} = 400-600$ nm, (6p-6s)-линии атомарного Xe в инфракрасной области спектра, и слабую линию $\lambda = 206.1 \, \text{nm}$ атомарного йода. Форма спектра сильно зависит от содержания донора атомов йода (C₃F₇I) в смеси: при уменьшении парциального давления C₃F₇I от 1 до 0.075 Torr интенсивность $4^2\Gamma - 1^2\Gamma$ -полосы молекулы Xe_2I^* ($\lambda_{max} = 352 \text{ nm}$) возросла более чем в 5 раз при незначительном увеличении интенсивности B-X-полосы молекулы XeI* ($\lambda_{max} = 253 \text{ nm}$) (рис. 2). Интенсивности эксимерных полос в (Xe-C₃F₇I) смесях высокого давления зависят также от содержания ксенона: при низких давлениях Хе в спектре преобладают молекулярные полосы В-Х и С-А двухатомных эксимерных молекул XeI* с длинами волн $\lambda_{\max} = 253$ и $\lambda_{\max} = 318$ nm, в то время как при высоком давлении Хе преобладает полоса трехатомной молекулы Xe_2I^* с максимумом при $\lambda_{max} = 352 \, nm$ (рис. 3). Спектральные измерения, выполненные с разрешением 1 nm, показали, что полуширина каждой из этих полос не превышает соответственно $\Delta \lambda = 4 \, \mathrm{nm}$ для B-X-перехода ($\lambda_{\max} = 253 \text{ nm}$), $\Delta \lambda = 14.2 \text{ nm}$ для C–A-перехода ($\lambda_{\max} = 318 \text{ nm}$) XeI* и $\Delta \lambda = 64.2 \text{ nm}$ для полосы $\lambda_{\text{max}} = 352 \,\text{nm}$ молекулы Xe₂I*.

Используемый донор C₃F₇I содержит атомы фтора, и можно предполагать, что в смеси с Хе могут образовываться эксимерные молекулы XeF^{*}, излучающие B-X-полосу с длиной волны $\lambda_{max} = 353$ nm. Тем не менее наблюдаемая в спектрах при высоком давлении Xe полоса при $\lambda_{max} = 352$ nm относится к молекуле Xe₂I^{*} по следующим причинам:

1) полуширина наблюдаемой полосы при $\lambda_{\max} = 352 \text{ nm}$ составляет ~ 64 nm, что значительно превышает полуширину B-X-полосы молекулы XeF*, составляющую не более 2 nm [19],

2) интенсивность полосы увеличивается с ростом давления Хе начиная с 300 Torr, т.е. в области преобладания тройных соударений атомов и молекул, и при давлениях ~ 1 at и выше ее суммарная интенсивность значительно превышает интенсивность B-X-полосы молекулы XeI^{*} ($\lambda_{max} = 253 \text{ nm}$) (рис. 3).

Динамику изменения спектра люминесценции газовой смеси $Xe-C_3F_7I$ в зависимости от состава газовой смеси $Xe-C_3F_7I$ можно проследить по рис. 2 и 3. При малой концентрации ксенона в спектре присутствуют две полосы — $\lambda_{max} = 253$ и $\lambda_{max} = 318$ nm. С увеличением давления ксенона до 300 Torr и выше в спектре в длинноволновой части возникает широкая полоса с максимумом при 352 nm и полоса в области длин волн 400–600 nm (рис. 4). Обе полосы обязаны своему про-исхождению молекуле Xe_2I^* . Увеличение концентрации донора в диапазоне от очень малых значений до 0.15 Torr приводит к общему возрастанию интенсивности этих полос. Дальнейшее увеличение содержания донора в смеси вызывает монотонное тушение этой люминесценции (рис. 2).

Рис. 3. Спектры спонтанного излучения (Xe-C₃F₇I)-смесей различного состава при возбуждении импульсным пучком электронов в зависимости от содержания Xe в смеси при $P_{C_3F_7I} = 0.026$ Torr: $1 - P_{Xe} = 50, 2 - 300, 3 - 760$ Torr.

Рис. 4. Обзорный спектр люминесценции газовой смеси Xe-C₃F₇I высокого давления при возбуждении импульсным пучком быстрых электронов. Состав газовой смеси: Xe — 1140 Torr, C₃F₇I — 0.026 Torr.

Рис. 5. Временны́е осциллограммы импульсов люминесценции на длине волны 253 nm (*I*) и 352 nm (*2*) для $Xe-C_3F_7I$ -смесей, содержащих 1140 Torr Xe и 0.026 Torr C_3F_7I при возбуждении импульсным пучком быстрых электронов с энергией 150 keV и длительностью 5 ns.

На рис. 5 приведены временные осциллограммы импульсов люминесценции на длине волны 253 nm (кривая I) и 352 nm (кривая 2) для Xe–C₃F₇I-смесей, содержащих 1140 Torr Xe + 26 mTorr C₃F₇I. Возбуждение производится импульсным пучком быстрых электронов длительностью 5 ns. Сигнал люминесценции на обеих

длинах волн возникает с задержкой ~ 10 ns относительно импульса накачки и не связан с содержанием ксенона в смеси. (На осциллограмме рис. 5, кривая 1, момент действия импульса накачки проявляется в виде слабого сигнала вблизи момента времени t = 10 ns). Величина задержки определяется временем термализации электронов плазмы, временем прилипания их к молекулам донора $C_{3}F_{7}I$ и временем диффузии положительных (Xe⁺, Xe⁺₂) и отрицательных (I⁻) ионов друг к другу.

Времена высвечивания молекулярных полос при $\lambda_{max} = 253$, 318 и 352 nm сильно зависят от концентрации атомов Xe и молекул донора C_3F_7I в смеси, посколькув тушении верхнего уровня эксимерной молекулы одновременно участвуют атомы Xe и молекулы донора C_3F_7I . Обратное время высвечивания верхнего уровня в этом случае можно записать как

$$1/\tau = 1/\tau_0 + k_1[C_3F_7I] + k_2[Xe].$$
(1)

Здесь τ — измеренное время высвечивания; [C₃F₇I] и [Xe] — концентрации компонент смеси, k_1 и k_2 коэффициенты скоростей реакций тушения, τ_0 — радиационное время жизни верхнего уровня в условиях действующей накачки. На рис. 6–8 приведены для молекул XeI* и Xe₂I* графики $1/\tau = f([C_3F_7I])$ при [Xe] = 1140 Torr (рис. 6) и $1/\tau = f([Xe])$ при [C₃F₇I] = 0.026 Torr (рис. 7). С помощью этих графиков были найдены коэффициенты скоростей реакций тушения верхнего уровня эксимерной молекулы атомами ксенона и молекулами донора C₃F₇I, а также и времена высвечивания. Они оказались равными:

— для XeI^{*} ($\lambda_{\text{max}} = 253 \text{ nm}$) — $k_1 = 1.8 \cdot 10^{-9} \text{ cm}^3/\text{s}$, $k_2 = 4.1 \cdot 10^{-13} \text{ cm}^3/\text{s}$, $\tau_0 = 57 \text{ ns}$; — для Xe₂I^{*} ($\lambda_{\text{max}} = 352 \text{ nm}$) — $k_1 = 1.1 \cdot 10^{-9} \text{ cm}^3/\text{s}$, $k_2 = 1.6 \cdot 10^{-13} \text{ cm}^3/\text{s}$, $\tau_0 = 380 \text{ ns}$.

Из-за малой скорости диффузии положительных и отрицательных ионов образование эксимерных молекул при возбуждении плотной газовой смеси даже коротким импульсом электронов наносекундной длительности происходит в течение длительного промежутка времени. Поэтому значения τ_0 , полученные из графиков (рис. 6–8), будут отличаться от чисто радиационных времен жизни этих молекул из-за продолжительно действующей накачки верхнего уровня.

Обсуждение результатов

В табл. 2 приведены основные плазмохимические реакции образования эксимерных молекул XeI* и Xe₂I* в плотных Xe–C₃F₇I газовых смесях при возбуждении заряженными частицами высокой энергии. Основным каналом образования эксимерных молекул XeI* и Xe₂I* является реакция ион-ионной рекомбинации положительных ионов Xe⁺, Xe₂⁺ с отрицательным ионом I⁻. Процесс начинается с термализации электронов ионизационного каскада, образованных при накачке заряженными частицами. При высоких давлениях газа термализация электронов происходит за несколько наносекунд

N₂	Плазмохимические реакции		Константы процессов
1	${ m Xe}+eta ightarrow { m Xe}^++e_\delta+eta'$		$\omega = E/N(Xe^+) = 1.7I_i = 20.6 \text{ eV}$
	${ m Xe}+eta ightarrow { m Xe}^*+eta$		$N(\mathrm{Xe}^*) = 0.4N(\mathrm{Xe}^+)$
	${ m Xe} + e_\delta ightarrow { m Xe}^+ + 2e$		$E_{\delta} = 0.31I_t = 3.76 \mathrm{eV}$
	${ m Xe} + e_\delta ightarrow { m Xe}^* + e$		
2	$Xe^+ + C_3F_7I^- + Xe \rightarrow Xe_2I^* + C_3F_7$		Данные отсутствуют
3	$Xe^+ + C_3F_7I^- \rightarrow XeI^* + C_3F_7$		$k_3 = 1.0 \cdot 10^{-6}$
4	${ m Xe^+}+2{ m Xe} ightarrow{ m Xe_2^+}+{ m Xe}$		$k_4 = (1.8 - 3.5) \cdot 10^{-31}$
5	$Xe_2^+ + C_3F_7I^- \rightarrow Xe_2I^* + C_3F_7$		$k_5 = 1.6 \cdot 10^{-6}$
6	${ m Xe}_2^+ + e ightarrow { m Xe}^* + { m Xe}$		$k_6 = 8.1 \cdot 10^{-5} (\text{Te}/300)^{-0.6}$
7	$\mathrm{C_3F_7I} + e ightarrow \mathrm{C_3F_7I^-}$		$k_7 = 7 \cdot 10^{-8}$
8	${ m Xe}^* ightarrow { m Xe} + { m I}$	$(\lambda_{\rm max}=253{ m nm})$	$ au_8 = 57 \mathrm{ns}$ (настоящая работа)
9	$Xe_2I^* \rightarrow 2Xe + I$	$(\lambda_{\rm max} = 352{\rm nm})$	$ au_9 = 380\mathrm{ns}(\mathrm{настоящая}\mathrm{paботa})$
10	$XeI^* + C_3F_7I \rightarrow$ тушение	$(\lambda_{\rm max}=253{ m nm})$	$k_{10} = 1.8 \cdot 10^{-9}$ (настоящая работа)
11	$Xe_2I^* + C_3F_7I \rightarrow$ тушение	$(\lambda_{\rm max}=352{ m nm})$	$k_{11} = 1.1 \cdot 10^{-9}$ (настоящая работа)
12	$XeI^* + Xe \rightarrow$ тушение	$(\lambda_{\rm max}=253{ m nm})$	$k_{12} = 4.1 \cdot 10^{-13}$ (настоящая работа)
13	$Xe_2I^* + Xe ightarrow$ тушение	$(\lambda_{\rm max}=352{ m nm})$	$k_{13} = 1.6 \cdot 10^{-13}$ (настоящая работа)
14	$Xe^* + 2Xe \rightarrow Xe_2^* + Xe$		$k_{14} = (2.5 - 8.5) \cdot 10^{-32}$

Таблица 2. Основные плазмохимические реакции образования эксимерных молекул XeI* и Xe₂I* в плотных Xe-C₃F₇I газовых смесях при возбуждении заряженными частицами высокой энергии

Примечание. ω — энергия образования одной пары ионов в Xe, eV; $N(Xe^+)$, $N(Xe^+)$ — концентрация ионов Xe⁺ и метастабильных атомов Xe⁺, cm⁻³; β и e_{δ} — первичная заряженная частица высокой энергии и дельта-электрон; I_i — потенциал ионизации Xe, eV; E и E_{δ} — энергия заряженной частицы и δ -электронов ионизационного каскада, eV.

с последующим за ней диссоциативным прилипанием низкоэнергетических электронов к молекулам C₃F₇I:

$$e + C_3 F_7 I \rightarrow C_3 F_7 I^- \rightarrow C_3 F_7 + I^-.$$

Эта реакция дает основной вклад в образование отрицательных атомарных ионов йода. При низких давлениях ксенона в камере (область 0-300 Torr) образование эксимерных молекул XeI* и Xe₂I* происходит за счет следующих процессов:

$$Xe^+ + I^- + Xe \rightarrow XeI^* + Xe,$$
 (3)

$$XeI^* + Xe + Xe \rightarrow Xe_2I^* + Xe.$$
 (4)

Приэтом излучаются молекулярные полосы

$$\begin{aligned} \text{XeI}^* &\to \text{Xe} + \text{I} + h\nu \text{ (переход } B - X, \ \lambda_{\text{max}} &= 253 \text{ nm} \text{),} \end{aligned}$$

$$\begin{aligned} \text{(5)} \\ \text{XeI}^* &\to \text{Xe} + \text{I} + h\nu \text{ (переход } C - A, \ \lambda_{\text{max}} &= 318 \text{ nm} \text{),} \end{aligned}$$

$$\lambda e I^* \to X e + I + h \nu \text{ (nepexon } C - A, \ \lambda_{\text{max}} = 318 \text{ nm}\text{)},$$
(6)

Xe₂I^{*} → 2Xe + I +
$$h\nu$$
 (переход 4² Γ -1² Γ , $\lambda_{max} = 352$ nm). (7)

Дополнительным каналом образования молекул XeI* является реакция

$$\operatorname{Xe}^{M} + \operatorname{C}_{3}\operatorname{F}_{7}\operatorname{I} \to \operatorname{XeI}^{*}(B, C) + \operatorname{C}_{3}\operatorname{F}_{7}.$$
 (8)

Следует отметить, что вклад реакции (4) образования молекул Xe_2I^* при высоких давлениях Xe невелик. Это связано с тем, что увеличение давления Xe в камере свыше 300 Torr вызывает эффективное тушение ионов Xe⁺ и превращение их за счет реакции конверсии в молекулярные ионы Xe⁺₇:

$$Xe^+ + 2Xe \rightarrow Xe_2^+ + Xe, \ k = (2.5 - 8.5) \cdot 10^{-32} \text{ cm}^6/\text{s} \ [24].$$
(9)

Эта реакция снижает эффективность образования молекул XeI* вследствие уменьшения числа атомарных ионов Xe⁺. При $P_{\rm Xe} \ge 300$ Тогг скорость реакции (9) составляет $\sim (3-9) \cdot 10^6 \, {\rm s}^{-1}$, и образование молекул

Рис. 6. Обратное время высвечивания B-X-полосы молекулы XeI* ($\lambda_{max} = 253 \text{ nm}$) и полосы молекулы Xe₂I* ($\lambda_{max} = 352 \text{ nm}$) в Xe – C₃F₇I-газовой смеси в зависимости от парциального давления донора C₃F₇I. Давление Xe — 1140 Torr, возбуждение производится импульсным пучком быстрых электронов с энергией 150 keV и длительностью 5 ns.

Журнал технической физики, 2015, том 85, вып. 9

Рис. 7. Обратное время высвечивания B-X-полосы молекулы XeI^{*} ($\lambda_{max} = 253 \text{ nm}$) в зависимости от давления Xe в Xe-C₃F₇I-газовой смеси. Парциальное давление донора C₃F₇I — 0.026 Torr. Возбуждение смеси производится импульсным пучком быстрых электронов с энергией 150 keV и длительностью 5 ns.

Рис. 8. Обратное время высвечивания полосы молекулы Xe_2I^* ($\lambda_{max} = 352 \text{ nm}$) в зависимости от парциального давления донора C_3F_7I в $Xe-C_3F_7I$ -газовой смеси при давлении Xe 1140 и 150 Torr. Возбуждение смеси производится импульсным пучком быстрых электронов с энергией 150 keV и длительностью 5 ns.

 Xe_2I^* происходит преимущественно за счет реакции

 $Xe_2^+ + I^- + Xe \rightarrow Xe_2I^* + Xe, \eqno(10)$

Населенность N(t) верхнего уровня эксимерной молекулы в произвольный момент времени t описывается уравнением

$$dN(t)/dt = R(t) - N(t)A - k_1[Xe]N(t) - k_2[C_3F_7I]N(t).$$
(11)

Здесь R(t) — скорость накачки верхнего уровня (реакции (3) и (10)), А — коэффициент Эйнштейна для рабочего перехода, k₁ и k₂ — коэффициенты скоростей реакций столкновительного тушения эксимерных молекул XeI* и Xe₂I* атомами Xe (табл. 2, реакции 12, 13) и молекулами С₃F₇I (табл. 2, реакции 10, 11). Измеренные значения времен высвечивания $\tau_0 = 57$ и 380 ns для полос эксимерных молекул XeI* ($\lambda_{max} = 253 \, nm$) и Xe₂I* $(\lambda_{\text{max}} = 352 \,\text{nm})$ превышают радиационные времена этих молекул. Например, для XeI* ($\lambda_{max} = 253 \text{ nm}$), согласно [24], радиационное время равно 11 ns. (Для молекулы Xe_2I^* ($\lambda_{max} = 352 \text{ nm}$) такие данные отсутствуют). Эти различия обусловлены влиянием процесса накачки верхнего уровня эксимерных молекул в реакциях (3) и (10) из-за медленной диффузии положительных и отрицательных ионов.

Кинетическая модель образования эксимерных молекул Xel* и Xe₂l* при накачке плотных газовых смесей заряженными частицами высокой энергии

При торможении заряженной частицы высокой энергии в плотном газе кинетическая энергия частицы выделяется в узкой области пространства вдоль траектории движения в виде образования цепочки ионизированных и возбужденных атомов газа и электронов. Эту область принято называть треком заряженной частицы. В пределах объема трека происходят все основные плазмохимические процессы преобразования кинетической энергии заряженной частицы высокой энергии. Состав образующейся трековой плазмы (концентрация и температура электронов в треке, концентрация положительных ионов) зависит от суммарного давления и состава газовой среды и при умеренных накачках слабо зависит от удельного энерговклада в газ. Характерная величина концентрации электронов в треке — $10^{13}-10^{14}\,\mathrm{cm}^{-3}$ [26]. Изменения характеристик трековой плазмы наступают при высоких энерговкладах в газ, когда треки частиц начинают перекрываться между собой.

Наличие в газовой смеси электроотрицательных газов (например, CCl₄, SF₆, C₃F₇I) приводит к возникновению в треке частицы практически безэлектронной плазмы вследствие диссоциативного прилипания электронов к донору — электроотрицательному газу. (При атмосферном давлении газовой смеси процесс образования отрицательных ионов галогенов занимает всего несколько наносекунд при парциальном давлении электроотрицательного донора 0.03 Torr [25]).

Основным каналом образования эксимерных молекул XeI* и Xe₂I*и других (например, XeCl*, Xe₂Cl*), является реакция ион-ионной рекомбинации положительных ионов Xe^+ и Xe_2^+ с отрицательными ионами I^- (и соответственно Cl⁻ для молекул XeCl^{*}, Xe₂Cl^{*}). Для получения максимального световыхода (B-X)-, (C-A)-полос молекул XeI* (или XeCl*) и полос трехатомных молекул Xe₂I* (или Xe₂Cl*) оптимальная концентрация галогеносодержащего донора в смеси должна быть сравнима с концентрацией электронов в треке ядерной частицы. Повышенная концентрация донора в смеси (более 100 mTorr) не приводит к увеличению числа отрицательных ионов I⁻ (или Cl⁻) из-за отсутствия свободных электронов в треке, но вызывает сильное столкновительное тушение эксимерных полос молекулами донора (коэффициент скорости реакций тушения $\sim 2 \cdot 10^9 \, \mathrm{cm}^3/\mathrm{s}$).

Трек не является стабильным образованием. Исследования пространственно-временной эволюции треков тяжелых заряженных частиц в чистых газах (Не, Хе) на ранней стадии их образования и до времен $\sim 10^{-8}\, s$ были выполнены в работах [25,27]. При отсутствии в плазме электронов ион-ионная рекомбинация должна осуществляться за счет взаимной диффузии ионов различного знака в пределах объема трека. Коэффициент рекомбинации положительных и отрицательных ионов при условии равномерного распределения ионизации по всему объему имеет величину $\sim 10^{-6} - 2 \cdot 10^{-6} \, {\rm cm}^3/{\rm s}.$ При высоких давлениях газовой среды коэффициент диффузии мал, и это должно проявляться в замедлении нарастания переднего фронта импульса люминесценции и во временной задержке появления светового импульса эксимерных молекул (см., например, рис. 5 для XeI* и Xe₂I*).

Экспериментальные данные показывают, что для получения максимального световыхода В-Х-и С-А-полос молекул XeCl*, XeI* требуется пониженное содержание атомов Хе в смеси (по сравнению с оптимальным составом смеси для $4^2\Gamma - 1^2\Gamma$ -полос молекул Xe₂Cl^{*} или Xe₂I*) и низкое содержание донора атомов галогена в смеси — (~ 0.025-0.075 Torr). Это связано с действием реакции (9) конверсии атомарных ионов Xe⁺ в молекулярные ионы Xe_2^+ и реакций тушения Xe и C_3F_7I (табл. 2 реакции 10-13). Для увеличения энерговклада для эффективного получения XeCl*- или XeI*-молекул необходимо вводить дополнительно буферный газ (Ar или Kr) высокого давления, в то время как для эффективного получения Xe_2Cl^* или Xe_2I^* молекул требуется повышенное содержание Хе (~ нескольких атмосфер) и буферный газ не требуется.

Заключение

Проведенные измерения люминесценции плотных $(Xe-C_3F_7I)$ газовых смесей различного состава показали, что основным каналом образования молекул XeI* и Xe₂I* является реакция ион-ионной рекомбинации

положительных ионов Xe⁺ и Xe₂⁺ с отрицательными ионами I⁻. Для получения максимального световыхода (B-X)-, (C-A)-полос молекулы XeI* $(\lambda_{\max} = 253,$ 318 nm) и полосы при $\lambda_{max} = 352 \, nm$ молекулы $Xe_2 I^*$ оптимальная концентрация донора С₃F₇I в смеси должна быть сравнима с начальной концентрацией электронов в треке ядерной частицы. Повышенная концентрация C₃F₇I в смеси (более 100 mTorr) не приводит к увеличению числа отрицательных ионов I⁻ из-за отсутствия свободных электронов в треке, но вызывает сильное столкновительное тушение эксимерных полос молекулами С₃F₇I (коэффициент скорости реакций тушения $\sim 2.109 \, \text{cm}^3/\text{s}$). Времена высвечивания полос $\lambda_{max} = 253$ и $\lambda_{max} = 352 \, nm$ при возбуждении плотной Xe-C₃F₇I газовой смеси импульсным пучком быстрых электронов в условиях послесвечения соответственно равны 57 (XeI*), 380 ns (Xe₂I*). При высоких давлениях Xe-C₃F₇I газовой смеси в области длин волн 400-600 nm обнаружена ранее не наблюдавшаяся полоса, связанная, по-видимому, с эксимерной молекулой Xe₂I* (рис. 4).

Потенциальные лазерные среды, предназначенные для работы на B-X ($\lambda_{max} = 253 \text{ nm}$)- и C-A ($\lambda_{max} = 318 \text{ nm}$)-переходах XeI*, должны содержать пониженное количество атомов Xe по сравнению со средами, предназначенными для работы на переходах молекулы Xe₂I* ($\lambda_{max} = 352 \text{ nm}$). Для увеличения энерговклада для XeI*-лазера в этом случае необходимо добавлять буферный газ (Ar или Kr) высокого давления, в то время как для Xe₂I*-лазера буферный газ не потребуется, поскольку состав газовой смеси предполагает наличие Xe высокого давления.

Настоящая работа была выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант № 12-02-00382а, финансовой поддержке правительства Калужской области и Российского фонда фундаментальных исследований (проект № 14-42-03075).

Автор выражает свою глубокую благодарность Го Цзиньбо (КНР) за помощь в проведении экспериментальных работ и Б.П. Меркулову (ОАО "Плазма", Рязань) за полезные консультации по работе импульсного ускорителя электронов.

Список литературы

- [1] Prelas M.A., Boody F.P., Miley G.H., Kunze J.F. // Laser and Particle Beams. 1988. Vol. 6. P. 25–62.
- [2] Zhang J.-I., Boyd I.W. // J. Appl. Phys. 1998. Vol. 84. N 3. P. 1174–1178.
- [3] Radzykewycz D.T., Tellinghuisen J.J. // J. Chem. Phys. 1996. Vol. 105. P. 1330.
- [4] Hoffman G.J. // Chem. Phys. 2009. Vol. 361. P. 68.
- [5] Hay P.J., Dunning T.H., jr. // J. Chem. Phys. 1978. Vol. 69. P. 2209.
- [6] Таблицы физических величин. Справочник / Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. 1006 с.

- [7] Tellinghuisen J.J. // J. Chem. Phys. 1976. Vol. 65. P. 4473.
- [8] Радциг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике. М.: Атомиздат, 1980. 344 с.
- [9] Kolts J.H., Setser D.W.J. // J. Chem. Phys. 1978. Vol. 82. P. 1776.
- [10] Cohen J.S., Schneider B.J. // J. Chem. Phys. 1974. Vol. 61. P. 3230.
- [11] Rice J.K., Hays A.K., Woodworth J.R. // Appl. Phys. Lett. 1977. Vol. 31. P. 31.
- [12] Hemmati H., Collins G.J. // J. Appl. Phys. 1980. Vol. 51. P. 2961.
- [13] Tittel F.K. et al. // J. Quantum Electron. 1981. Vol. 17. P. 2268.
- [14] Eden J.G., Waynant R.W. // J. Chem. Phys. 1978. Vol. 68. P. 2850.
- [15] Bray C.A., Ewing J.J. // J. Chem. Phys. 1975. Vol. 63. P. 4640.
- [16] Grieser F., Shimamori H.T. // J. Physical Chemistry. 1980. Vol. 84. N 3. P. 247–250.
- [17] Velazco J.E., Setser D.W. // J. Chem. Phys. 1975. Vol. 62. P. 1990.
- [18] Ewing J.J., Bray C.A. // Phys. Rev. A. 1975. Vol. A-12. P. 129.
- [19] Tittel F.K., Marowsky G., Wilson W.L., jr., Smayling M.C. // IEEE J. Quantum Electronics, 1981. Vol. QE-17. P. 2268.
- [20] Миськевич А.И., Го Цзиньбо // Квант. электрон. 2013. Т. 43. С. 489.
- [21] Миськевич А.И., Го Цзиньбо // Письма в ЖТФ. 2013. Т. 39. Вып. 8. С. 33.
- [22] *Миськевич А.И., Го Цзиньбо //* Квант. электрон. 2013. Т. 43. С. 1003.
- [23] Де Мария А., Улти К. Газовые лазеры / Под ред. Н.Н. Соболева. М.: Мир, 1968. 206 с.
- [24] Брау Ч. Эксимерные лазеры / Под ред. Ч. Роудза. М.: Мир, 1981. 118 с.
- [25] Будник А.П., Вакуловский А.С., Соколов Ю.В. Матер. II Междунар. конф. "Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накачкой. 26–30 сент. 1994 г., г. Арзамас-16". Т. 1. Арзамас-16: ВНИИЭФ, 1995. С. 90–96.
- [26] Райзер Ю.П. Физика газового разряда. М.: Наука. Главная редакция физ.-мат. лит-ры, 1987. 591 с.
- [27] Будник А.П., Добровольская И.В. Материалы II Междунар. конф. "Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накачкой. 26–30 сент. 1994 г., Арзамас-16". Т. 1. Арзамас-16: ВНИИЭФ, 1995. С. 97–102.
- [28] Стриганов А.Р., Свентицкий Н.С. Таблицы спектральных линий нейтральных и ионизованных атомов. М.: Атомиздат, 1966. 899 с.
- [29] *Хыобер К.П., Герцберг Г.* Константы двухатомных молекул. Т. 2. М.: Мир, 1984. 366 с.