05

Влияние легирования титаном на структуру, фазовый состав и термоупругие мартенситные превращения в тройных сплавах Ni–Mn–Ti

© Е.С. Белослудцева,¹ Н.Н. Куранова,¹ Н.И. Коуров,¹ В.Г. Пушин,^{1,2} А.Н. Уксусников¹

¹ Институт физики металлов им. М.Н. Михеева УрО РАН,

620137 Екатеринбург, Россия

² Уральский федеральный университет им. первого Президента России Б.Н. Ельцина,

620002 Екатеринбург, Россия

e-mail: pushin@imp.uran.ru

(Поступило в Редакцию 12 декабря 2014 г.)

Изучалось поведение и свойства сплавов состава Ni₅₀Mn_{50-y}Ti_y (y = 5, 10, 15, 25, 30) в широком интервале температур. Исследование проводилось методами измерений электросопротивления, просвечивающей и сканирующей электронной микроскопии, дифракции электронов и рентгеновских лучей. Обнаружено, что температура мартенситного превращения легированных сплавов может стать значительно ниже температурного интервала превращения бинарных сплавов Ni₅₀Mn₅₀ и Ni₄₉Mn₅₁. В исследуемых образцах помимо тетрагонального $L1_0$ -мартенсита выявлена сложная многослойная 10*M* кристаллическая решетка. Установлено, что мартенсит имеет преимущественную морфологию в виде иерархии пакетов тонких когерентных пластин нано- и субмикрокристаллических кристаллов с плоскими границами габитусов в случае тетрагонального $L1_0$ - и 10*M*-мартенсита, близкими $\{011\}_{B2}$, попарно двойникованных по одной из 24 систем двойникующего сдвига $\{011\}\langle 10\bar{1}\rangle_{B2}$.

Введение

В сплавах Ni₅₀Mn₅₀ и Ni₄₉Mn₅₁ мартенситное превращение происходит при высоких температурах, что предъявляет особые требования к научному оборудованию при исследовании структуры и свойств этих сплавов в температурной области превращения. Нами ранее были подробно изучены тонкая структура и физические свойства данных сплавов и сделан вывод о термоупругом механизме мартенситного превращения, установлены критические температуры термоупругого мартенситного превращения в них: $M_s = 970$ K, $M_f = 920$ K, $A_s = 970$ K, $A_f = 1020$ K, $M_s = 940 \text{ K}, M_f = 930 \text{ K}, A_s = 990 \text{ K}, A_f = 1000 \text{ K}$ coответственно [1,2]. Как известно, высокотемпературное структурное фазовое превращение $B2 \rightarrow L1_0$ наблюдали во многих бинарных и многокомпонентных интерметаллических сплавах на основе никеля и титана: Ni-Mn, Ni-Al, Ni-Mn-Al, Ni-Al-Co, Ti-Rh, Ti-Ir, Ti-Rh-Ni, Ti-Ir-Ni и др. [3-10]. Можно было предположить, что данное превращение в сплавах на основе указанных интерметаллических соединений также имеет характер термоупругого мартенситного перехода и это должно обусловливать в них эффекты памяти формы [11,12]. В настоящей работе изучены структура и фазовые превращения в квазибинарных сплавах Ni₅₀Mn_{50-v}Ti_v, исследовано влияние легирования титаном на особенности структуры и возможность термоупругих мартенситных превращений, их критические точки при прямых (M_s, M_f) и обратных (A_s, A_f) переходах.

Материал и методики экспериментов

Сплавы выплавляли методом электродуговой плавки в атмосфере очищенного аргона (таблица). Для гомогенизации их подвергали многократным переплавам (не менее трех раз) с последующим длительным отжигом в вакууме при температуре 1173 К. Исходными компонентами для изучаемых материалов служили высокочистые металлы (чистотой 99.99%). Слитки разрезали на электроискровом станке на пластины, которые затем вновь подвергали гомогенизирующему отжигу в состоянии $\beta(B2)$ -фазы с последующей закалкой в воду или путем замедленного охлаждения (~ 100 K/h) от температуры 1073 или 1173 К.

Рентгеноструктурный анализ проводили на аппарате ДРОН-3М в медном излучении CuK_{α} , монохроматизированном графитовым монокристаллом. Образцы исследовали после закалки при комнатной температуре, а также в высокотемпературной вакуумируемой камере ГПВТ-2000 при нагреве до температуры аустенитного состояния сплава и последующем охлаждении. Температуры начала и конца прямого и обратного мартенситного превращений устанавливали по появлению или исчезновению отражений мартенситной фазы и исчезновению или появлению отражений *B*2-аустенитной фазы соответственно. Электросопротивление $\rho(T)$ сплава измеряли потенциометрическим методом по схеме двойного моста в интервале температур от 100 до 1170 К.

Электронно-микроскопические исследования на просвет в режимах светлого и темного полей выполняли на просвечивающих электронных микроскопах JEM-200CX

$Ni_{50}Mn_{50-y}Ti_y$	Температура превращения, К				Величина гистерезиса Д, К					
y, at.%	M_s	M_f	A_s	A_f	$M_s - M_f$	$A_s - M_s$	$A_f - A_s$	$A_f - M_f$	$A_f - M_s$	$A_s - M_f$
0 5 10 15 25	970 820 510 260	920 780 435 160	970 830 460 195 -	1020 880 530 280 -	50 40 75 100 -	$0 \\ 10 \\ -50 \\ -65 \\ -$	50 50 70 85 	100 100 95 120 -	50 60 20 20 -	50 50 25 35 -
30	-	_	_	_	_	_	_	_	_	_

Химические составы сплавов, критические температуры и значения гистерезиса мартенситного превращения

и СМ-30. Для идентификации фаз применяли метод микродифракции от выбранного участка. Структуру массивных образцов, аттестацию химического состава изучали на сканирующем электронном микроскопе Quanta-200 Pegasus, оборудованном системой EDS, а также системой EBSD-анализа, благодаря которой были построены карты разориентировок кристаллитов образцов. Использовали оборудование отдела электронной микроскопии ЦКП "Испытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН.

2. Результаты исследования и их обсуждение

2.1. Резистометрия

При изучении фазовых переходов важную информацию о температуре и характере превращений дают исследования температурных зависимостей физических свойств. Метод электросопротивления $\rho(T)$ часто используется для изучения фазовых структурных превращений в сплавах на основе интерметаллидов [1,2]. Выполненные нами ранее измерения $\rho(T)$ показали, что мартенситное превращение в сплавах Ni₅₀Mn₅₀ и Ni₄₉Mn₅₁ происходит в интервале температур (920–1020) К и сопровождается ростом $\rho(T)$. Рис. 1 также наглядно демонстрирует по сравнению с бинарным стехиометрическим сплавом изменение не только положения критических точек сдвигового фазового перехода, но и характера хода и наклона кривой электросопротивления в зависимости от концентрации титана в тройных сплавах Ni-Mn-Ti. Видно, что переход сопровождался узким температурным гистерезисом (менее 50 К), который указывает на то, что превращение носит термоупругий мартенситный характер. Важно отметить, что ход зависимости $\rho(T)$ в первом термоцикле практически не изменился и после десяти термоциклов мартенситного превращения. Обращает на себя внимание изменение температур превращения и наклона "петель" гистерезиса при близких значениях его ширины при увеличении содержания титана. В отличие от стехиометрического сплава Ni₅₀Mn₅₀ в сплавах с 5,10 и 15 at.% Ті после завершения превращения (ниже точки M_f) наблюдался небольшой прирост электросопротивления с понижением температуры, что свидетельствует о понижении симметрии кристаллической решетки мартенситной фазы и росте упругих напряжений. Данный факт косвенно доказывает наличие сложной структуры кристаллических решеток мартенситных фаз. Сплавы с 25 и 30 аt.% титана не испытывают мартенситного превращения вплоть до 100 К. Значения критических температур M_s , M_f , A_s , A_f и различных характеристик гистерезиса, определенные для изученных сплавов, приведены в таблице.

Анализ гистерезисных явлений при мартенситном превращении позволяет сделать вполне определенные

Рис. 1. Температурная зависимость электросопротивления сплавов $Ni_{50}Mn_{50-y}Ti_y$ (y = 0, 5, 10, 15, 25, 30) от состава.

выводы о его механизме, нетермоупругом или термоупругом [11].

Так, для нетермоупругого превращения, например в сплавах железо-никель, температуры прямых и обратных превращений очень отличаются, а температурный гистерезис достигает ~ 400 K, тогда как в Au-Cd он очень мал: ~ 15 К [11]. Данный факт свидетельствует о существенных различиях величины движущей силы и природы превращения в них, собственно и определяя термоупругий эффект равновесия его термического (химического) и упругого факторов. При этом, в частности, существуют два типа кривых петель гистерезиса: когда $A_s > M_s$, или, напротив, $A_s < M_s$ и соответственно, выделяют переходы первого и второго типов. Во втором случае действие упругой энергии, запасенной сплавом, в мартенситном состоянии при обратном превращении в аустенит наряду с химическим стимулом особенно ярко себя демонстрирует, обеспечивая начало обратного термоупругого перехода даже раньше, при более низких температурах, чем прямого [11]. Из анализа данных в таблице следует, что термоупругое мартенситное превращение в бинарных сплавах и тройных с содержанием титана 5 at.% относится к первому типу (хотя $M_s \approx A_s$), а в сплавах с содержанием титана 10 и 15 at.% — ко второму типу ($A_s < M_s$). Кроме того, можно отметить, что прямое и обратное мартенситные превращения, судя по характеристикам гистерезиса, во всех сплавах отличаются практически симметричным гистерезисом, т.е. $(M_s - M_f)$ близки $(A_f - A_s)$, ширина гистерезиса $(A_f - M_s, A_s - M_f)$ даже уменьшается с понижением температур переходов, хотя температурный интервал перехода $(A_f - M_f)$ несколько возрастает в криогенной области.

2.2. Рентгеноструктурный фазовый анализ

По данным рентгеноструктурного анализа был определен фазовый состав всех исследованных сплавов. Установлено, что в зависимости от легирования изменялся тип кристаллической решетки. Так, например, сплавы Ni₅₀Mn₅₀ и Ni₅₀Mn₄₀Ti₁₀ (рис. 2) при комнатной температуре находились в мартенситном состоянии. Вид дифрактограмм указывал на наличие тетрагональной (рис. 2, a) и более сложной многослойной решетки (рис. 2, b). В соответствии с расшифровкой рентгенограмм был определен тип кристаллической решетки, который соответствует для сплава Ni₅₀Mn₅₀ тетрагональному $L1_0$ (2M) с параметрами a = 3.74 nm, c = 3.52 nm, а для сплавов с 5 и 10 at.% орторомбическому 10*M* с параметрами, близкими: a = 0.44 nm, $b = 0.27 \,\mathrm{nm}, \, c = 2.11 \,\mathrm{nm}.$ Вид кривой электросопротивления, как и рентгеноструктурный анализ показали, что сплав Ni₅₀Mn₃₅Ti₁₅ при комнатной температуре находился в состоянии В2-аустенита с параметром решетки a = 0.2976 nm (рис. 1, 3). В нем мартенситный переход реализуется ниже комнатной температуры. По

Рис. 2. Рентгенограммы закаленных сплавов: $a - \text{Ni}_{50}\text{Mn}_{50}$, $b - \text{Ni}_{50}\text{Mn}_{40}\text{Ti}_{10}$, $c - \text{Ni}_{50}\text{Mn}_{35}\text{Ti}_{15}$.

Рис. 3. Фазовая диаграмма критических температур мартенситных превращений квазибинарных сплавов системы NiMn-NiTi.

результатам комплексных исследований электросопротивления и рентгенофазового анализа была построена полная фазовая диаграмма термоупругих мартенситных превращений, определяющая зависимость критических температур от химического состава и электронной концентрации сплава (рис. 3, см. таблицу).

3. Микроскопия

Электронно-микроскопические исследования проводили при комнатной температуре на тех же образцах, которые были исследованы методом рентгенофазового анализа. На рис. 4 представлены электронно-микроскопические изображения структур сплавов Ni₅₀Mn₅₀, Ni50Mn45Ti5, Ni50Mn40Ti10, полученные на сканирующем электронном микроскопе в режиме обратнорассеянных вторичных электронов. Видно, что структура мартенсита характеризуется пакетно-пластинчатым строением. В более мелкодисперсных зернах (размером до 5µm) присутствовал, как правило, один пакет. В более крупных зернах пакеты стыковались по межпакетным границам, которые также не являлись плоскими, хотя их разделяют когерентно сопряженные тетрагональные с-домены (рис. 4, а, b). Рис. 5 демонстрирует изображение зеренной структуры В2-аустенита закаленного сплава Ni50Mn35Ti15, полученное методом EBSD-анализа. Каждое аустенитное зерно обладает собственной независимой произвольной ориентировкой. Структура также отличается разнозернистостью. Размеры зерен достигают десятков микрон. Светлопольные и темнопольные изображения, полученные на просвет, и соответствующие микроэлектронограммы спла-

Рис. 4. Электронно-микроскопические изображения структур сплавов: $a - \text{Ni}_{50}\text{Mn}_{50}$, $b - \text{Ni}_{50}\text{Mn}_{45}\text{Ti}_{5}$, $c - \text{Ni}_{50}\text{Mn}_{40}\text{Ti}_{10}$, полученные в режиме обратнорассеянных вторичных электронов.

Рис. 5. Изображение зеренной структуры $Ni_{50}Mn_{35}Ti_{15}$, полученое методом EBSD.

Рис. 6. Светлопольное (a) и темнопольное (b) изображения структуры и микроэлектронограммы (c, d) сплава Ni₅₀Mn₄₅Ti₅. Стрелками показаны экстрарефлексы на 1/5 между основными отражениями.

вов Ni₅₀Mn₄₅Ti₅ и Ni₅₀Mn₄₀Ti₁₀ приведены на рис. 6, 7. Структура представлена пакетами пластинчатых тонкодвойникованных кристаллов. Экстрарефлексы, расположенные эквидистантно на расстоянии 1/5 между основными отражениями, свидетельствуют о многослойности решетки (рис. 6, *d*, 7, *c*). На рис. 8 приведены электронно-микроскопические изображения аустенитной фазы сплава Ni₅₀Mn₃₅Ti₁₅ и микроэлектронограммы, полученные на просвет. В согласии с измерениями методом электросопротивления критических температур мартенситного превращения, точка M_f сплава Ni₅₀Mn₃₅Ti₁₅ определяется ниже комнатной (рис. 1, см. таблицу), сплав находится в двухфазном аустенитномартенситном состоянии, о чем свидетельствуют изображения и микроэлектронограммы на рис. 8.

Совместный следовой анализ микрофотографий и дифракций электронов позволил установить, что мартенсит состоит из пакетов попарно двойникованных

Рис. 7. Светлопольное (a) и темнопольное (b) изображения структуры и микроэлектронограмма (c) сплава Ni₅₀Mn₄₀Ti₁₀.

Рис. 8. Светлопольное (a) и темнопольное (b) изображения структуры и микроэлектронограммы (c, d) сплава Ni₅₀Mn₃₅Ti₁₅; ось зоны: $c - [110]_{B2}$, $d - [111]_{B2}$.

параллельных пластин с плоскими границами габитусов, близкими $\{110\}_{B2}$ и тонкими вторичными двойниками внутри них, свидетельствуя о действии одной из 24 эквивалентных систем "мягкого" сдвига $\{011\}\langle 01\bar{1}\rangle_{B2}$ [1,2,11,12], как и в менее легированных титаном сплавах и в бинарном сплаве.

Наличие в мартенситной структуре сплавов иерархии пакетов кристаллов двойников может быть следствием действия многозародышевого механизма превращения и результатом последующего аккомодационного адаптивного двойникования, прогрессирующего по мере охлаждения мартенсита. Считается, что основной причиной образования хорошо организованной иерархии когерентных кристаллов-двойников в сплавах Ni-Mn являются упругие напряжения, возникающие и обычно накапливаемые в процессе термоупругих мартенситных превращений. О термоупругом механизме перехода также свидетельствует практическое отсутствие дислокаций в кристаллах $L1_0$ -мартенсита сплавов, в отличие от нетермоупругого мартенсита, характеризуемого высокой плотностью дислокаций [11].

Заключение

В результате данного исследования была впервые определена и построена полная фазовая диаграмма мартенситных превращений. Измерены температуры мартенситных переходов и установлены типы кристаллических решеток мартенситных фаз в широком диапазоне составов, вычислены параметры их структуры $L1_0$ и 10*M*.

Обнаружено, что высокообратимый термоупругий характер мартенситного превращения в сплаве воспроизводился при многократном термоциклировании. Электронно-микроскопически было показано, что мартенсит имеет преимущественную морфологию в виде иерархии пакетов тонких пластинчатых и внутренне двойникованных когерентных кристаллов с плоскими границами габитусов, близкими $\{110\}_{B2}$. Системы двойникующего сдвига мартенсита близки к мягкой моде $\{011\}\langle 01\bar{1}\rangle_{B2}$.

Поскольку температура мартенситного превращения данной группы сплавов изменяется в очень широком диапазоне, для применения в определенном интервале температур эксплуатации может быть подобран сплав требуемого химического состава.

Работа выполнена при поддержке молодежного проекта ФАНО (№ 14-2-НП-30), РФФИ (№ 14-02-00379) и Президиума РАН (№ 12-П-2-1060).

Список литературы

- [1] Пушин В.Г., Белослудцева Е.С., Казанцев В.А., Коуров Н.И. // Материаловедение. 2012. № 11. С. 3–10.
- [2] Пушин В.Г., Куранова Н.Н., Марченкова Е.Б., Белослудцева Е.С., Казанцев В.А., Коуров Н.И. // ЖТФ. 2013. Т. 83. Вып. 6. С. 104–113.
- [3] Диаграммы состояний двойных металлических систем / Справочник под ред. М.П. Лякишева. М.: Машиностроение, 1999. Т. 3. Кн. 1. С. 359–361.
- [4] Adachi K., Wayman C.M. // Met. Trans. A. 1985. Vol. 16.
 P. 1567–1579.
- [5] Kren E., Nagy E., Nagy I., Pal L., Szabo P. // J. Physics and Chemistry of Solids. 1968. Vol. 29. P. 101–108.
- [6] Adachi K., Wayman C.M. // Met. Trans. A. 1985. Vol. 16.
 P. 1581–1597.
- [7] Литвинов В.С., Богачев И.Н., Архангельская А.А., Панцырева Е.Г. // ФММ. 1973. Т. 36. № 2. С. 388–393.

- [8] Пушин В.Г., Павлова С.П., Юрченко Л.И. // ФММ. 1989. Т. 67. № 1. С. 164–174.
- [9] Пушин В.Г., Юрченко Л.И., Соколова А.Ю., Иванова Л.Ю. // ФММ. 1994. Т. 78. № 6. С. 104–113.
- [10] Пушин В.Г., Кондратьев В.В. // ФММ. 1994. Т. 78. № 5. С. 40–61.
- [11] Ооцука К., Симидзу К., Судзуки Ю. и др. // Сплавы в эффектом памяти формы / Под ред. Фунакубо Х.: пер. с японского. М.: Металлургия, 1990. 224 с.
- [12] Лободюк В.А., Коваль Ю.Н., Пушин В.Г. // ФММ. 2011. Т. 111. № 2. С. 169–194.