12

Анизотропия деформационных искажений в нанокристаллических порошках VC_{0.875}

© А.И. Гусев¹, А.С. Курлов¹, А.А. Ремпель^{1,2}

¹ Институт химии твердого тела УрО РАН, Екатеринбург, Россия ² Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 24 марта 2015 г.)

Методом рентгеновской дифракции экспериментально изучена анизотропия деформационных искажений нанокристаллических порошков карбида ванадия VC_{0.875}. Показано, что учет анизотропии микродеформаций и негомогенного уширения позволяет достичь более точного описания экспериментальных данных по уширению дифракционных отражений. Установлено, что деформационные искажения вносят основной вклад в уширение дифракционных отражений нанопорошков VC_{0.875}, полученных высокоэнергетическим размолом.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 14-23-00025) в ИХТТ УрО РАН.

1. Введение

Карбид ванадия — один из самых используемых кубических карбидов переходных металлов. Он применяется как ингибитор роста зерен для получения наноструктурированных твердых сплавов на основе карбида вольфрама WC. При спекании наноструктурированных твердых сплавов WC–Со с добавками нанокристаллического порошка VC_{0.875} нужно учитывать пространственное распределение (анизотропию) микродеформаций, чтобы обеспечить однородность спеченных твердых сплавов [1,2]. Согласно [2], аномально быстрый рост зерен в твердых сплавах наблюдается, когда нанокристаллические порошки получены с помощью размола и деформационные искажения в них велики. Отжиг микродеформаций и микронапряжений зависит от их величины и анизотропии.

Карбид ванадия VC_{0.875} используют также как важный элемент структуры легированных сталей. Механические свойства таких сталей зависят от формы дисперсных карбидных выделений. Согласно [3,4], при легировании чугунов и сталей карбидом ванадия наноразмерные дисперсные карбидные частицы выделяются в виде упорядоченных фаз V_8C_7 или V_6C_5 . Размер дисперсных выделений зависит от величины микродеформаций в них.

Дифракция рентгеновского или нейтронного излучения — один из основных методов изучения размера частиц и микродеформаций в наноструктурированных веществах. В дифракционном эксперименте размер *D* частиц и величину микродеформаций ε оценивают по уширению дифракционных отражений.

Наиболее известными причинами уширения дифракционных отражений являются малый размер *D* зерен (кристаллитов, частиц) и микродеформации ε кристаллической решетки, обусловленные ее искажениями и смещениями атомов из-за наличия дислокаций. Менее известной причиной уширения дифракционных отражений является негомогенность [5,6], т.е. неоднородность состава вещества по объему образца. Негомогенность возможна в нестехиометрических соединениях MX_{v} $(MX_v \Box_{1-v})$, где \Box — структурная вакансия) и твердых растворах (сплавах) $A_{v}B_{1-v}$. При наличии негомогенности состав нестехиометрического соединения $MX_{v}\Box_{1-v}$ или твердого раствора A_yB_{1-y} меняется в интервале $y \pm \Delta y$, где $\Delta y > 0$ есть негомогенность. Частицы (зерна) негомогенного вещества имеют разный состав и различаются параметрами кристаллической решетки или, что то же самое, величиной межплоскостного расстояния $d \pm \Delta d$. В этом случае любое отражение является суперпозицией отражений от частиц (зерен) с разными межплоскостными расстояниями и поэтому уширено.

Теоретический анализ влияния малого размера зерен, анизотропии микродеформаций и негомогенности выполнен ранее в работе [7] на примере нестехиометрического карбида тантала.

В настоящей работе впервые экспериментально изучена анизотропия микродеформаций в нанокристаллических порошках кубического (пр. гр. $Fm\bar{3}m$) карбида ванадия VC_{0.875}, полученных высокоэнергетическим размолом крупнозернистого порошка.

Образцы и экспериментальные методы

Твердофазный синтез исходного крупнозернистого порошка нестехиометрического карбида ванадия VC_{0.875} описан в работе [8]. Размол крупнозернистого порошка VC_{0.875} осуществлялся в планетарной шаровой мельнице PM-200 Retsch с угловой скоростью вращения $\omega = 8.333 \, \text{rps}$ (500 rpm). Продолжительность размола исходного крупнозернистого порошка составляла 10 и 15 h. Методика размола подробно описана в работах [9–14].

Согласно [12,13], при использовании планетарной шаровой мельницы PM-200 Retsch энергия размола E_{mill} имеет вид

$$E_{\rm mill} = \kappa \omega^3 t, \tag{1}$$

где $\kappa \approx 0.00135 \text{ kg} \cdot \text{m}^2$ — постоянный коэффициент, характерный для данной мельницы. При таком значении κ и угловой скорости вращения мельницы $\omega = 8.333 \text{ грs}$ величина $\kappa \omega^3 = 0.781 \text{ J} \cdot \text{s}^{-1}$ и $E_{\text{mill}} \approx 0.781 t$ J. Таким образом, энергия размола E_{mill} при продолжительности размола 10 и 15 h равна 28.12 и 42.17 kJ соответственно.

Методом Брунауэра–Эммета–Теллера (ВЕТ) на анализаторе удельной поверхности Gemini VII 2390t Surface Area Analyzer измерялась удельная поверхность $S_{\rm sp}$ исходного порошка карбида ванадия и порошков после размола. В приближении одинакового размера и шарообразной формы всех частиц по величине удельной поверхности $S_{\rm sp}$ оценивался средний размер частиц $D = 6/\rho S_{\rm sp}$ ($\rho = 5.36 \,{\rm g} \cdot {\rm cm}^{-3}$ — плотность карбида VC_{0.875}).

Кристаллическая структура карбида ванадия определялась методом рентгеновской дифракции (XRD) на дифрактометре Shimadzu XRD-7000 методом Брэгга-Брентано в интервале углов 2θ от 10 до 140° с пошаговым сканированием $\Delta(2\theta) = 0.03^{\circ}$ и временем экспозиции 2 s в точке в излучении Cu $K_{\alpha_{1,2}}$. Средний размер $\langle D \rangle$ областей когерентного рассеяния и величина микродеформаций ε в размолотых порошках определялись по уширению дифракционных отражений. В первом приближении размер областей когерентного рассеяния рассматривался как средний размер частиц порошка.

Уширение $\beta(2\theta)$ дифракционного отражения определялось как $\beta(2\theta) = [(FWHM_{exp})^2 - (FWHM_R)^2]^{1/2}$, где FWHM_{exp} — полная ширина экспериментального дифракционного отражения на половине высоты, FWHM_R — инструментальная функция углового разрешения дифрактометра. Функция разрешения FWHM_R(2θ) = $(u tg^2 \theta + v tg \theta + w)^{1/2}$ рентгеновского дифрактометра Shimadzu XRD-7000 была найдена в специальном дифракционном эксперименте на стандартном образце кубического гексаборида лантана LaB₆ (NIST Standart Reference Powder 660a). Функция разрешения FWHM_R(2θ), измеренная в градусах, имеет параметры u = 0.005791, v = -0.004627 и w = 0.010201.

3. Анизотропия микродеформаций в нанопорошках VC_{0.875}

Количественный анализ профиля дифракционных отражений изученных порошков VC_{0.875} показал, что они описываются функцией псевдо-Фойгта с большим (до 90% и более) вкладом функции Лоренца. Согласно [7], в этом случае физическое уширение отражения

является суммой размерного, деформационного и негомогенного уширений, т. е.

$$\beta(2\theta) = \beta_s(2\theta) + \beta_d(2\theta) + \beta_h(2\theta).$$
(2)

Размерное уширение $\beta_s(2\theta)$ определяется через средний размер D малых частиц как

$$\beta_s(2\theta) = \frac{\lambda}{D\cos\theta} \text{ [rad]},$$
 (3)

где λ — длина волны излучения.

Деформационное уширение $\beta_d(2\theta)$, обусловленное искажениями кристаллической решетки, равно

$$\beta_d(2\theta) = 4\varepsilon_{hkl} \operatorname{tg} \theta \ [\text{rad}],\tag{4}$$

где $\varepsilon_{hkl} = \sigma/E_{hkl} = k_{\rho}C_{hkl}^{1/2}$ — эффективная микродеформация, учитывающая анизотропию деформации кристалла; σ — не зависящая от направления полная ширина на половине высоты функции распределения напряжений; E_{hkl} — зависящий от направления [hkl] модуль Юнга; k_{ρ} — постоянная для данного образца величина, зависящая от плотности дислокаций и вектора Бюргерса, т. е. от изменения межплоскостного расстояния и атомных смещений. Коэффициент C_{hkl} учитывает наличие краевых и винтовых дислокаций в деформированном кристалле. Согласно [15], для кубических кристаллов коэффициент C_{hkl} равен

$$C_{hkl} = f_E C_{hkl,E} + (1 - f_E) C_{hkl,S}$$

= $[f_E A_E + (1 - f_E) A_S] + [f_E B_E + (1 - f_E) B_S] H$
= $A + BH$, (5)

где f_E и $f_S = 1 - f_E$ — относительное содержание краевых и винтовых дислокаций, $A_{E,S}$ и $B_{E,S}$ — плотности краевых и винтовых дислокаций, A и B — постоянные для данного образца величины, зависящие от плотности и относительного содержания краевых и винтовых дислокаций, $H = (h^2k^2 + k^2l^2 + h^2l^2)/(h^2 + k^2 + l^2)^2$ — дислокационный фактор анизотропии.

дислокационный фактор анизотропии. С учетом $\varepsilon_{hkl} = k_{\rho} C_{hkl}^{1/2}$ и (5) выражение (4) приобретает вид

$$\beta_d(2\theta) = 4k_\rho C_{hkl}^{1/2} \operatorname{tg} \theta \equiv 4k_\rho (A + BH)^{1/2} \operatorname{tg} \theta.$$
 (6)

Согласно [7], усредненная по объему кристалла величина микродеформаций ε_{aver} равна

$$\varepsilon_{\text{aver}} = \left(\sum \varepsilon_{hkl} P_{hkl}\right) / \sum P_{hkl},\tag{7}$$

где *P*_{hkl} — фактор повторяемости.

Негомогенное уширение $\beta_{hL}(2\theta)$ кубических кристаллов в случае, когда профиль дифракционных отражений описывается распределением Лоренца (Коши), имеет вид [7]

$$\beta_{hL}(2\theta) = \frac{4|a'(y)|_{y=y_0}}{a(y)} \Delta y \operatorname{tg} \theta$$
$$= k_{hL} \Delta y \operatorname{tg} \theta \operatorname{[rad]}, \tag{8}$$

t	ant	a'(y) = da/dy	ku		$S_{\rm sp} \pm 0.20,$ $m^2 \cdot g^{-1}$	$D \pm 5, \mathrm{nm}$			$arepsilon_{ m aver} \pm 0.03,\%$	
<i>i</i> , h	nm	u(y) = uu/uy,	rad	Δy		BET	XRD		۶*	۶**
			100				D^*	D^{**}	Ũ	- C
0	0.41652	0.0217	0.2084	0.010	1.11	1010	_	-	-	-
10	0.4155	0.0217	0.2084	0.010	28.23	40	41	44	0.63	0.53
15	0.4157	0.0217	0.2084	0.010	33.31	34	20	18	0.69	0.60

Таблица 1. Влияние продолжительности t разлома на период решетки a_{B1} , негомогенность Δy , величину удельной поверхности S_{sp} , средний размер D частиц и среднюю величину микродеформаций ε в порошках карбида ванадия VC_{0.875}

*Определено без учета анизотропии микронапряжений.

**Определено с учетом анизотропии микронапряжений ε_{hkl} .

где $a'(y) \equiv da_{B1}(y)/dy$ — производная от концентрационной зависимости периода решетки a_{B1} нестехиометрического соединения MX_y по составу y, $k_{hL} = 4|a'(y)|/a_{B1}(y)$, $\Delta y > 0$ — негомогенность.

В работе [7] с учетом трех отмеченных вкладов в уширение получено следующее выражение для приведенного углового уширения $\beta^*(2\theta) = [\beta(2\theta)\cos\theta]/\lambda$:

$$\beta^*(2\theta) = 1/D + 2k_\rho (A + BH)^{1/2} s + (k_{hL}/2)\Delta y s, \quad (9)$$

где $s = (2 \sin \theta)/\lambda$ — вектор рассеяния, $k_{\rho}(A + BH)^{1/2} = \varepsilon_{hkl}, (k_{hL}/2)\Delta ys = \beta_{hL}^*(2\theta).$

В рентгеновском эксперименте с использованием Си $K_{\alpha_{1,2}}$ -излучения степень негомогенности Δy соединения MX_y оценивают по расстоянию $\Delta (2\theta(\alpha_1, \alpha_2))$ между дублетами α_1 и α_2 первого расщепленного отражения [5,6]. Согласно [7], максимальная величина негомогенности Δy равна

$$\Delta y_{\max} = \left\{ \left[\Delta \left(2\theta(\alpha_1, \alpha_2) \right) \right]^2 - \left[FWHM_R(2\theta) \right]^2 \right\}^{1/2} / (k_{hL} \operatorname{tg} \theta).$$
(10)

В реальном рентгеновском дифракционном эксперименте на кубическом кристалле с разверткой спектра по углу отражения при постоянной длине волны удается зафиксировать до 10–12 отражений. При небольшом числе экспериментальных точек их количественное описание функцией (9) с пятью независимыми параметрами (1/D, k_{ρ} , A, B, Δy) дает неустойчивое решение и приводит или к очень большой (> 0.1), или к отрицательной величине Δy . Это физически неверно. Поэтому при расчете микродеформаций в угловое уширение вводят поправку на негомогенное уширение с учетом величин Δy , найденных в соответствии с (10). В этом случае рассматривается функция

$$\begin{aligned} \left[\beta^*(2\theta) - \beta^*_{h\text{L}}(2\theta)\right] &= 1/D + 2\varepsilon_{hkl}s\\ &\equiv 1/D + 2k_\rho (A + BH)^{1/2}s, \quad (11) \end{aligned}$$

которая минимизируется по четырем параметрам: 1/D, k_{ρ} , A и B.

Согласно дифракционным данным, исходный порошок VC_{0.875} является однофазным и имеет кубическую (пр. гр. $Fm\bar{3}m$) структуру типа B1 (рис. 1). По данным ВЕТ средний размер частиц в исходном крупнозернистом порошке VC_{0.875} составляет ~ 1 μ m (табл. 1). Степень гомогенности исходного крупнозернистого порошка VC_{0.875} достаточно высока, на что указывает расщепление Cu $K_{\alpha_{1,2}}$ -дублетов. Для исходного карбида VC_{0.875} расщепление наблюдается уже для отражения (220) (рис. 1). Количественная оценка негомогенности карбида VC_{0.875} по расщеплению отражения (220) в соответствии с формулой (10) дала величину $\Delta y = 0.010$. Таким образом, состав карбида определен с точностью VC_{0.875±0.010}.

Влияние размола на изменение профиля дифракционных отражений порошков карбида VC_{0.875} показано

Рис. 1. Рентгенограммы исходного крупнозернистого порошка карбида ванадия $VC_{0.875}$ и нанокристаллических порошков, полученных из него размолом в течение 10 и 15 h. Дифракционные отражения карбида ванадия $VC_{0.875}$ отмечены короткими штрихами. Положение отражений примесного гексагонального карбида вольфрама WC в нанопорошках показано вертикальными штриховыми линиями. Рентгенограммы записаны в излучении $CuK_{\alpha_{1,2}}$.

[hkl]	Н	$VC_{0.875}, t_{mill} = 10 \text{ h}, D = 44 \text{ nm}$					VC _{0.875} , $t_{\rm mill} = 15$ h, $D = 18$ nm					
		s, nm^{-1}	$\beta^*(2\theta)$	$\beta_s^*(2\theta)$	$\beta_d^*(2\theta)$	$eta_h^*(2 heta)$	s, nm^{-1}	$\beta^*(2\theta)$	$\beta_s^*(2\theta)$	$\beta_d^*(2\theta)$	$eta_h^*(2 heta)$	
111	0.3333	4.1624	0.0811	0.0227	0.0540	0.0043	4.1599	0.1118	0.0547	0.0529	0.0043	
002	0	4.8080	0.0522	0.0227	0.0245	0.0050	4.8071	0.1141	0.0547	0.0544	0.0050	
022	0.250	6.8027	0.1082	0.0227	0.0784	0.0071	6.8044	0.1460	0.0547	0.0842	0.0071	
113	0.1570	7.9765	0.1080	0.0227	0.0769	0.0083	7.9773	0.1586	0.0547	0.0957	0.0083	
222	0.3333	8.3255	0.1394	0.0227	0.1081	0.0087	8.3322	0.1692	0.0547	0.1059	0.0087	
004	0	9.6244	0.0817	0.0227	0.0490	0.0100	9.6386	0.1738	0.0547	0.1091	0.0100	
133	0.2742	10.4961	0.1592	0.0227	0.1256	0.0109	10.5014	0.1966	0.0547	0.1310	0.0109	
024	0.160	10.7474	0.1383	0.0227	0.1044	0.0112	10.7466	0.1949	0.0547	0.1291	0.0112	
224	0.250	11.7899	0.1708	0.0227	0.1359	0.0123	11.7998	0.2130	0.0547	0.1461	0.0123	

Таблица 2. Вклады размерного $\beta_s^*(2\theta)$, деформационного $\beta_d^*(2\theta)$ и негомогенного $\beta_h^*(2\theta)$ уширений в приведенное физическое уширение $\beta^*(2\theta)$ для различных кристаллографических направлений [*hkl*] нанопорошков VC_{0.875}, полученных размолом в течение 10 и 15 h

на рис. 1. Увеличение продолжительности t и энергии E_{mill} размола сопровождается значительным уширением дифракционных отражений.

Рентгеновская дифракция нанокристаллических порошков, полученных размолом, обнаружила в них примесную фазу гексагонального (пр. гр. $P\bar{6}m2$) карбида вольфрама WC в количестве ~ 3.0 wt.%. Появление примеси WC обусловлено тем, что при размоле происходит натирание материала мелющих шаров и футеровки стаканов, изготовленных из твердого сплава WC — 6 wt.% Со.

В соответствии с уравнениями (2) и (9) физическое уширение дифракционного отражения является супер-

позицией размерного, деформационного и негомогенного уширений. Размерное уширение $\beta_s^*(2\theta)$ не зависит от вектора рассеяния *s*, а деформационное $\beta_d^*(2\theta)$ и негомогенное $\beta_h^*(2\theta)$ уширения являются функциями вектора рассеяния *s*. Количественные вклады от трех видов уширения в приведенное физическое уширение нанопорошков VC_{0.875} для разных кристаллографических направлений [*hkl*] приведены в табл. 2. Видно, что основной вклад в уширение дифракционных отражений вносит деформационное уширение. Действительно, для любого дифракционного отражения вклад деформационного уширения в наблюдаемое физическое уширение превышает 50%. Ясно, что учет анизотропии микроде-

Рис. 2. Распределение микродеформаций ε_{hkl} по неэквивалентным направлениям [hkl] в нанопорошках VC_{0.875}, полученных размолом в течение 10 (*a*) и 15 h (*b*) с энергией E_{mill} , равной ~ 28 и ~ 42 kJ соответственно. Радиус сферы пропорционален величине ε_{aver} , длина векторов в направлениях [hkl] пропорциональна величине микродеформаций ε_{hkl} .

[hkl]	$\varepsilon_{hkl}, \%$					
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[10 h	15 h				
111	0.649	0.626				
002	0.254	0.556				
022	0.576	0.609				
113	0.482	0.590				
222	0.649	0.626				
004	0.254	0.556				
133	0.598	0.614				
024	0.486	0.591				
224	0.576	0.609				
Средняя	0.528	0.601				

Таблица 3. Величина микродеформаций ε_{hkl} в разных кристаллографических направлениях [hkl] нанопорошков VC_{0.875}, полученных размолом в течение 10 и 15 h

формаций при анализе данных рентгеновской дифракции весьма важен.

Выполненный расчет показал, что для нанопорошков VC_{0.875} наименьшая величина микродеформаций ε_{hkl} наблюдается в направлении (200) и эквивалентных ему направлениях, а наибольшая микродеформация ε_{hkl} наблюдается в направлении (111). На рис. 2 показано

Рис. 3. Приведенное уширение $\beta^*(2\theta)$ дифракционных отражений нанопорошка VC_{0.875}, полученного размолом в течение 15 h: *а* — зависимость приведенного уширения от вектора рассеяния *s* без учета анизотропии микродеформаций, *b* — зависимость приведенного уширения с поправкой на негомогенность [$\beta^*(2\theta) - \beta_h^*(2\theta)$] от $s(A + BH)^{1/2}$ с учетом анизотропии микродеформаций ε_{hkl} .

Рис. 4. Данные сканирующей электронной микроскопии для нанокристаллического порошка карбида ванадия VC_{0.875}, полученного размолом в течение 10 h.

распределение микродеформаций *є_{hkl}* по неэквивалентным направлениям [hkl] в нанопорошках VC_{0.875}, полученных в течение 10 и 15h размола с энергией $E_{\text{mill}} = 28.12$ и 42.17 kJ соответственно. Радиус сфер пропорционален микродеформации ε_{aver} , усредненной по всем кристаллографическим направлениям, длина векторов пропорциональна величине ε_{hkl} . Как видно, в обоих нанопорошках микродеформации ε_{111} , ε_{220} , ε_{331} и ε_{422} в направлениях [111], [220], [331] и [422] превышают усредненную микродеформацию ε_{aver} , равную 0.53 и 0.60% для энергии размола 28.12 и 42.17 kJ соответственно. Микродеформация ε_{200} меньше, чем ε_{aver} , а микродеформации ε_{311} и ε_{420} почти совпадают с усредненной микродеформацией *ε*aver. Численные величины микродеформаций ε_{hkl} в разных кристаллографических направлениях [hkl] нанопорошков VC_{0.875}, полученных размолом в течение 10 и 15 h, приведены в табл. 3.

Экспериментальные зависимости приведенного уширения $\beta^*(2\theta)$ дифракционных отражений нанопорошка VC_{0.875}, полученного размолом в течение 15 h, показаны на рис. 3. Хорошо видно, что экспериментальные точки зависимости $\beta^*(2\theta)$ от вектора рассеяния *s*, построенной без учета анизотропии микродеформаций, разбросаны относительно аппроксимирующей линейной зависимости $\beta^*(s)$ (рис. 3, *a*). Аппроксимация тех же экспериментальных данных функцией (11) — как зависимости от $s(A + BH)^{1/2}$ (рис. 3, b) — с введением поправки на негомогенное уширение $\beta_h^*(2\theta)$ и с учетом анизотропии микродеформаций дает более хорошее согласие эксперимента с аппроксимирующей линейной зависимостью.

Результаты электронно-микроскопического исследования нанокристаллического порошка карбида ванадия, полученного размолом в течение 10 h, показаны на рис. 4. При увеличении от 20 до 30 тысяч раз видно, что в размолотом порошке карбида ванадия наночастицы объединены в рыхлые агломераты размером от ~ 100 до ~ 250 nm.

Величина Emil при продолжительности размола 10 и 15h составляет 28.12 и 42.17 kJ. Удельная энергия размола $E_{\rm sp-mill}^{\rm mas}$, нормированная на единицу массы порошка VC_{0.875}, равна 2.81 и $4.22 \text{ kJ} \cdot \text{g}^{-1}$ соответственно. Удельная энергия размола $E_{\rm sp-mill}^{\rm mol}$, отнесенная на 1 mol карбида VC_{0.875}, равна ~ 173 и $\sim 260 \, \text{kJ} \cdot \text{mol}^{-1}$. В работах [11-13] показано, что измельчение твердых веществ связано с разрывом межатомных связей, энергию которых можно представить через энергию атомизации Eat. Энергия атомизации карбида ванадия VC0.875 равна $1250 \text{ kJ} \cdot \text{mol}^{-1}$ [14,16]. Сравнение величин $E_{\text{sp-mill}}^{\text{mol}}$ и E_{at} показывает, что максимальная удельная энергия размола, достигнутая в данной работе, в 5 раз меньше энергии атомизации и недостаточна для разрыва всех межатомных связей и полного разрушения карбида ванадия как соединения. Увеличение продолжительности размола до 20h и более и соответствующий рост энергии размола E_{mill} не приводят к существенному уменьшению размера частиц порошков, так как дополнительно вводимая энергия расходуется уже на уплотнение нанопорошков, а не на их размол.

4. Заключение

Впервые исследована анизотропия микродеформаций в нанокристаллических порошках кубического карбида ванадия VC_{0.875}. Нанопорошки VC_{0.875} со средним размером частиц от ~ 20 до ~ 40 nm получены высокоэнергетическим размолом крупнозернистого порошка.

Учет анизотропии микродеформаций ε_{hkl} в изученных нанопорошках VC_{0.875} показал, что значения микродеформаций ε_{111} , ε_{220} , ε_{331} и ε_{422} в направлениях [111], [220], [331] и [422] превышают микродеформацию ε_{aver} , усредненную по объему, а микродеформация ε_{200} меньше, чем ε_{aver} .

Список литературы

- Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn. Int. J. Refract. Met. Hard Mater. 27, 2, 288 (2009).
- [2] J. Poetschke, V. Richter, T. Gestrich, A. Michaelis. Int. J. Refract. Met. Hard Mater. 43, 2, 309 (2014).
- [3] R. Kesri, S. Hamar-Thibault. Acta Met. 36, 1, 149 (1988).
- [4] G.L. Dunlop, D.A. Porter. Scand. J. Metallurgy 6, 1, 19 (1977).

- [5] А.А. Ремпель, А.И. Гусев. ФТТ **42**, 7, 1243 (2000).
- [6] A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and order in strongly nonstoichiometric compounds: transition metal carbides, nitrides and oxides. Springer, Berlin–Heidelberg– N.Y.–London (2001). 607 p.
- [7] А.И. Гусев, А.С. Курлов, А.М. Бельков, Т.Д. Белькова. ФТТ 57, 6, 1149 (2015).
- [8] A.S. Kurlov, A.I. Gusev, A.A. Rempel. Mendeleev Commun. 24, 6, 338 (2014).
- [9] A.S. Kurlov, A.I. Gusev. Tungsten carbides: structure, properties and application in hard-metals. Springer, Cham-Heidelberg-N.Y.-Dordrecht-London (2013). 256 p.
- [10] А.С. Курлов, А.И. Гусев. Физика и химия карбидов вольфрама. Физматлит, М. (2013). 272 с.
- [11] A.I. Gusev, A.S. Kurlov. Nanotechnology 19, 26, 265 302 (2008).
- [12] А.С. Курлов, А.И. Гусев. ЖТФ 81, 7, 76 (2011).
- [13] A.S. Kurlov, A.I. Gusev. J. Alloys Comp. 582, 108 (2014).
- [14] A.S. Kurlov, A.I. Gusev. Int. J. Refract. Met. Hard Mater. 46, 125 (2014).
- [15] P. Scardi, M. Ortolani, M. Leoni. Mater. Sci. Forum 651, 155 (2010).
- [16] А.С. Курлов, А.И. Гусев. ФТТ 55, 12, 2398 (2013).