## 12,13

# Температурные зависимости транспортных свойств пленок, объемных образцов нанокристаллов и монокристаллов триселенида ниобия

© А.И. Романенко<sup>1,2</sup>, В.Е. Федоров<sup>1,3</sup>, С.Б. Артемкина<sup>1,3</sup>, О.Б. Аникеева<sup>1</sup>, П.А. Полтарак<sup>1,3</sup>

<sup>1</sup> Институт неорганической химии им. А.В. Николаева СО РАН,

<sup>2</sup> Национальный исследовательский Томский государственный университет,

Томск, Россия

<sup>3</sup> Национальный исследовательский Новосибирский государственный университет,

Новосибирск, Россия

Новосибирск, Россия

E-mail: air@niic.nsc.ru

(Поступила в Редакцию 12 марта 2015 г.)

Исследованы температурные зависимости транспортных свойств объемных образцов нанокристаллов триселенида ниобия (NbSe<sub>3</sub>) и пленок, полученных из его коллоидных дисперсий. Проведено сравнение полученных результатов с данными для монокристалла NbSe<sub>3</sub>. Для объемных образцов нанокристаллов обнаружены изменения положений максимумов электросопротивления  $\rho(T)$  при 145 и 59 K, связанных с волнами зарядовой плотности (B3П), на величину ~ 1 K по сравнению с наблюдаемыми для монокристаллов NbSe<sub>3</sub>. В пленочных образцах основной вклад в удельное электросопротивление  $\rho(T)$  вносит сопротивление контактов между нанокристаллами, температурная зависимость которого описывается моделью электропроводности, вызванной флуктуациями. В окрестности температур 145 и 59 K наблюдаются вклады в  $\sigma(T) = 1/\rho(T)$  ВЗП на уровне 10%. Однако в отличие от объемных образцов нанокристаллов в пленках эти пики не только смещаются вниз по температуре, но и уширяются примерно в 2 раза. Наблюдаемые изменения связаны с уменьшением поперечных размеров нанокристаллитов в пленках до величин, меньших длины фазовой когерентности ВЗП (~ 1  $\mu$ m).

Работа выполнена при поддержке Российского научного фонда (проект № 14-13-00674).

### 1. Введение

Уменьшение размеров отдельных электропроводящих наночастиц приводит к увеличению вклада поверхностных атомов наночастицы в электронный транспорт, изменению зонной структуры наночастиц и понижению размерности движения носителей тока [1–3]. В триселениде ниобия (NbSe<sub>3</sub>) уменьшение поперечных размеров до величин, меньших длин фазовой когерентности волн зарядовой плотности (ВЗП) (~1 $\mu$ m), ведет к изменению электронного транспорта и размытию пайерлсовских переходов в состояние с ВЗП [1]. В данной работе проведено исследование изменения электронных транспортных свойств нанокристаллов NbSe<sub>3</sub> в случае, когда становятся существенными не только размеры нанокристаллов, но и взаимодействие между ними.

При высокотемпературном синтезе триселенид ниобия обычно кристаллизуется в виде очень тонких нитей с поперечным сечением менее микрометра [4]. Для различных приложений часто требуются массивные образцы или тонкие пленки. Но при переходе от отдельных наночастиц к массивам поликристаллов из этих наночастиц протекание тока в объемном образце будет осуществляться как внутри наночастиц, так и через контакты между ними. Это приводит к дополнительному изменению электронных транспортных свойств массивных образцов, состоящих из большого числа наночастиц. Кроме того, в большинстве наноразмерных электропроводящих частиц на поверхности образуется плохо проводящий слой. Во многих случаях в массивах таких наночастиц электропроводность определяется в основном контактным сопротивлением. Экспериментально установлено, что электронные транспортные свойства (электропроводность, вольт-амперные характеристики, магнетосопротивление и др.) материалов существенно изменяются при уменьшении их размеров до нанометровых [1-3,5-7]. Наши исследования свойств электропроводящих углеродных наночастиц с характерными размерами порядка нескольких нанометров в различных диэлектрических матрицах продемонстрировали изменение не только электропроводности, но и механизмов электронного транспорта [8-10]. На примере многочисленных систем было установлено, что в поликристаллических материалах с большим контактным сопротивлением проводимость осуществляется посредством туннелирования носителей тока между кристаллитами, разделенными плохо проводящими барьерами (контактами между кристаллитами) [11,12]. Если размеры кристаллических островков достаточно большие, температурная зависимость проводимости  $\sigma(T)$  описывается флуктуационной моделью туннелирования — туннельной проводимостью, вызванной флуктуациями (FIT) [13],

$$\sigma(T) = \sigma_1 \exp[-T_t/(T+T_s)], \qquad (1)$$

где температура T<sub>t</sub> соответствует энергии, необходимой для перехода электрона между металлическими кристаллитами (фактически такой переход связан с преодолением энергетической щели  $E_g \sim k_{\rm B} T_t); T_s$  температура, ниже которой проводимость выходит на насыщение. Разделение вкладов электропроводности контактов между кристаллитами и внутри материала представляет собой непростую экспериментальную задачу. Удобным объектом для разделения подобных вкладов оказались образцы триселенида ниобия, который обладает металлической проводимостью. Дело в том, что в результате измерений на монокристаллах NbSe<sub>3</sub> выявлены две ярко выраженные аномалии электросопротивления, связанные с пайерлсовскими переходами в состояние с ВЗП при  $T_{p1} = 145 \,\mathrm{K}$  и  $T_{p2} = 59 \,\mathrm{K}$ , положение которых удобно определять по максимуму (минимуму) производной электропроводности (электросопротивления) [14]. Наличие этих аномалий позволило нам выделить часть электропроводности, связанную с протеканием тока внутри нанокристаллита в пленках.

# 2. Синтез, характеризация и методика измерений электропроводности монокристаллов, объемных образцов поликристаллов и тонких пленок NbSe<sub>3</sub>

Синтез NbSe3 проводился высокотемпературным ампульным методом, описанным в [15]. Порошки ниобия и селена высокой чистоты в соотношении Nb: Se = 1:3.1 помещали в кварцевую ампулу, ампулу откачивали до остаточного давления 10<sup>-2</sup> Тогг и запаивали. Ампула нагревалась до 400°C за 24 h; далее температура увеличивалась до 700°С со скоростью 1°С/тіп. Ампулу выдерживали при этой температуре в течение 7 дней, затем ее охлаждали до комнатной температуры в течение 40 h. Продукт реакции представлял собой хорошо окристаллизованный спек, состоящий из тонких длинных волокон. Ампулу вскрывали и продукты нагревали в условиях динамического вакуума при 350°C для удаления избытка селена. Монокристаллы NbSe3 в виде тонких длинных волокон извлекались из ампулы вручную и использовались для дальнейших измерений. Из плотного кристаллического спека NbSe3 изготавливались бруски для измерения электропроводности объемных образцов нанокристаллов.

Тонкие пленки NbSe<sub>3</sub> получались путем фильтрования коллоидной дисперсии NbSe<sub>3</sub> в ацетонитриле, как это описано в [16]. Коллоидная дисперсия NbSe<sub>3</sub> в ацетонитриле приготавливалась следующим образом: 0.5 g кристаллического NbSe<sub>3</sub> в 250 ml очищенного ацетонитрила

подвергалось воздействию ультразвука в ультразвуковой ванне (120 W, 37 kHz) в течение 36 h (с интервалами по 12 h). Далее осуществлялось центрифугирование в течение 30 min со скоростью 2000 min<sup>-1</sup>. Полученная розово-серая коллоидная дисперсия достаточно устойчивая, содержание наночастиц NbSe<sub>3</sub> около  $10^{-3}$  mol/l. После центрифугирования коллоидную дисперсию NbSe<sub>3</sub> в ацетонитриле фильтровали через мембранный фильтр Whatman anodisc с размером пор  $0.02 \,\mu$ m, промывали чистым ацетонитрилом. Полученную пленку на мембране выдерживали в сушильном шкафу при  $80^{\circ}$ С в течение 2 h.

Порошковые дифрактограммы пленочного и кристаллического образцов совпадают и индицируются в моноклинной пространственной группе *P*21/*m* (рис. 1).

Поперечные размеры нанокристаллов NbSe<sub>3</sub> в полученной пленке были измерены с помощью сканирующего электронного микроскопа (СЭМ) и находились в интервале 20–200 nm (рис. 2).



**Рис. 1.** Порошковые дифрактограммы пленки, полученной из коллоидной дисперсии NbSe<sub>3</sub> в ацетонитриле (*I*), и кристаллического образца, полученого в результате ампульного синтеза (*2*). Использован расчет порошковой дифрактограммы по CSD#76579.



**Рис. 2.** Изображение СЭМ пленки NbSe<sub>3</sub>, полученной из ацетонитрильной коллоидной дисперсии.

Температурные зависимости электросопротивления  $\rho(T)$  образцов измерялись четырехконтактным методом в интервале температур 4.2–300 К. Образцы размером  $1 \times 1 \times 5$  mm вырезались из спека нанокристаллов NbSe<sub>3</sub>, а образцы размером  $1 \times 0.001 \times 5$  mm — из тонких пленок NbSe<sub>3</sub>. Размеры монокристаллов NbSe<sub>3</sub> составляли  $0.003 \times 0.003 \times 3.5$  mm. Электрические контакты к образцам создавались с помощью серебряной пасты.

# 3. Температурная зависимость электросопротивления

Исследования температурной зависимости удельного электросопротивления  $\rho(T)$  на объемных образцах нанокристаллов NbSe<sub>3</sub> (рис. 3) показали, что образцы в спеке нанокристаллов сохраняют металлические свойства, причем положение аномалий, определенных по минимуму производной  $\Delta \rho(T)/\Delta T$  (рис. 4), по температуре ниже, чем для монокристаллических образцов (140.6 и 55.7 К для монокристалла, 138.6 и 54.8 К для нанокристаллов). Относительная величина аномалий (отношение электросопротивления в максимуме к минимальному перед максимумом) немного больше у нанокристаллов (1.19 и 1.79 для монокристалла, 1.21 и 1.83 для нанокристаллов, рис. 3). А величина отношения электросопротивления при комнатной температуре к электросопротивлению при температуре жидкого гелия 4.2 К меньше у нанокристаллов (15 для нанокристаллов и 21 для монокристалла), что вполне ожидаемо, поскольку нанокристаллы более дефектны и в них больше вклад рассеяния электронов проводимости на дефектах. Линейность температурной зависимости электросопротивления выше 150 К вплоть до 250 К как для монокристаллов, так и для нанокристаллов связана, по-видимому, с избыточной плотностью состояний из-за флуктуаций ВЗП, которые распространяются вплоть до 250 К [17,18]. Угол наклона кривых  $\rho(T)$  выше 150 K у объемных образцов нанокристаллов меньше на 7%, чем у монокристалла, что указывает на незначительное изменение концентрации носителей тока *п* в нанокристаллическом образце по сравнению с монокристаллом, в котором  $n = 6.0 \cdot 10^{18} \, {\rm cm}^{-3}$  для дырок и 1.09 · 10<sup>18</sup> ст<sup>-3</sup> для электронов [19]. Уменьшение угла наклона в образце нанокристаллов может быть связано и со снижением вклада флуктуаций ВЗП в полную электропроводность. Полученные результаты указывают на незначительный вклад контактного сопротивления между нанокристаллами в образце по сравнению с электросопротивлением вдоль квазиодномерных нанокристаллов NbSe3, где как раз и реализуется вклад ВЗП, приводящей к аномалиям при  $T_{p1} = 145 \,\mathrm{K}$ и  $T_{p2} = 59 \,\mathrm{K}$  [19]. Смещение пиков аномалий связано с уменьшением поперечного сечения нитей NbSe3 в объемных образцах нанокристаллов до нанометрового размера. Удельное сопротивление объемных образцов нанокристаллов примерно в 8 раз выше, чем у монокристалла. Этот результат связан с тем, что в образце



**Рис. 3.** Температурная зависимость удельного электросопротивления  $\rho(T)$  монокристалла (светлые точки) и прессованного образца (темные точки) NbSe<sub>3</sub>.



**Рис. 4.** Производная по температуре  $\Delta \rho(T)/\Delta T$  удельного электросопротивления  $\rho$  монокристалла (светлые точки) и прессованного образца (темные точки) NbSe<sub>3</sub>.

из спека нанокристаллов линии тока вдоль них являются сильно запутанными, поскольку нанокристаллы образуют пучок с различной ориентацией изогнутых нанокристаллов.

На рис. 5 и 6 приведены данные по температурной зависимости электропроводности  $\sigma(T)$  пленки NbSe<sub>3</sub> и электросопротивления  $\rho(T)$  монокристалла. На рис. 6 сплошными линиями показана зависимость, рассчитанная по формуле (1) со значениями параметров  $T_t = 127$  К при T > 150 К (FIT 1) и  $T_t = 129$  К в интервале 58 < T < 115 К (FIT 2);  $T_s = 37$  К. Из рис. 6 видно, что между аномалиями температурная зависимость электропроводности описывается туннельной проводимостью, вызванной флуктуациями, причем величина энергетической щели  $E_g \sim k_B T_t \sim 0.01$  eV. Из оценки величины аномалий, характерных для триселенида ниобия, можно сделать вывод, что примерно 10% вклада в электропроводность пленочного материала обеспечивается проводимостью нанокристаллитов NbSe<sub>3</sub>. Для



**Рис. 5.** Температурная зависимость электропроводности  $\sigma(T)$  пленки NbSe<sub>3</sub> и удельного электросопротивления  $\rho(T)$  монокристалла NbSe<sub>3</sub>. На вставке показана температурная зависимость удельного электросопротивления  $\rho(T)$  пленки NbSe<sub>3</sub>.



**Рис. 6.** Температурная зависимость электропроводности  $\sigma(T)$  пленки NbSe<sub>3</sub> в координатах зависимости (1):  $\ln \sigma - 1/(T + T_s)$ .



**Рис. 7.** Производная по температуре  $\Delta \sigma(T)/\Delta T$  удельной электропроводности  $\sigma$  монокристалла (светлые точки) и пленки (темные точки) NbSe<sub>3</sub>.

пленок, так же как и для объемных образцов нанокристаллов, наблюдается смещение вниз по температуре максимума производной  $\Delta\sigma(T)/\Delta T$  аномалий при  $T_{p1}$  и  $T_{p2}$  (140.6 и 56.2 К для кристалла, 137.3 и 55.8 К для пленки, рис. 7). Кроме того, в пленках, состоящих из нанокристаллитов меньшего размера, чем в спеке NbSe<sub>3</sub>, наблюдается уширение пиков примерно в 2 раза. Уширение пиков связано с уменьшением размеров нанокристаллов в пленке до размеров, меньших длины фазовой когерентности ВЗП (~ 1 $\mu$ m), что приводит к флуктуационному размытию фазовых переходов при 140 и 55 К [1,2].

### 4. Заключение

Исследованы температурные зависимости удельного электросопротивления  $\rho(T)$  синтезированных пленок и объемных образцов нанокристаллов слоистого халькогенида NbSe3. Проведено сравнение с данными для монокристалла NbSe<sub>3</sub>. Обнаружено, что зависимости  $\rho(T)$ для объемных образцов нанокристаллов практически совпадают по форме с  $\rho(T)$  для монокристалла, что указывает на малый вклад в  $\rho(T)$  контактов между кристаллитами по сравнению с сопротивлением самих нанокристаллитов. Однако удельное сопротивление объемных образцов нанокристаллов почти на порядок больше, чем у монокристалла. Это связано с тем, что нанокристаллы в образце не ориентированы, и линии протекания тока в них произвольны (вплоть до противоположных направлений на отдельных участках изогнутых нанокристаллов). Кроме того, в случае объемных образцов нанокристаллов обнаружены изменения положений максимумов электросопротивления, связанных с волнами зарядовой плотности при T<sub>p1</sub> и T<sub>p2</sub>. В пленках основной вклад в  $\rho(T)$  вносит сопротивление контактов между нанокристаллами. Температурная зависимость электропроводности  $\sigma(T) = 1/\sigma(T)$  пленок описывается моделью электропроводности, вызванной флуктуациями. Величина энергетической щели  $E_g \sim k_{\rm B} T_t \sim 0.01 \, {\rm eV}.$ В окрестности температур 145 и 59К наблюдаются вклады в  $\sigma(T)$  от ВЗП на уровне 10%. Но в отличие от объемных образцов нанокристаллов эти пики не только смещаются вниз по температуре на величину  $\sim 1$  K, но и уширяются примерно в 2 раза. Наблюдаемые изменения связаны с уменьшением поперечных размеров нанокристаллитов в пленках (20-200 nm) до величин, меньших длины фазовой когерентности ВЗП ( $\sim 1 \, \mu m$ ).

### Список литературы

- С.В. Зайцев-Зотов, В.Я. Покровский, П. Монсо. Письма в ЖЭТФ 73, 29 (2001).
- [2] Y.S. Hor, Z.L. Xiao, U. Welp, Y. Ito, J.F. Mitchell, R.E. Cook, W.K. Kwok, G.W. Crabtree. Nano Lett. 5, 397 (2005).
- [3] A.A. Stabile, L. Whittaker, T.L. Wu, P.M. Marley, S. Banerjee, G. Sambandamurthy. Nanotechnology 22, 485 201 (2011).
- [4] P. Monceau. Adv. Mater. 61, 325 (2012).

- [5] A.I. Romanenko, O.B. Anikeeva, V.L. Kuznetsov, A.N. Obrastsov, A.P. Volkov, A.V. Garshev. Solid State Commun. 137, 625 (2006).
- [6] A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev, K.R. Zhdanov, V.L. Kuznetsov, I.N. Mazov, A.N. Usoltseva. Phys. Status Solidi B 246, 2641 (2009).
- [7] J. Chen, G. Zhang, B. Li. Nano Lett. 12, 2826 (2012).
- [8] A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev, K.R. Zhdanov, V.L. Kuznetsov, I.N. Mazov, A.N. Usoltseva, A.V. Ischenko. Diamond Related Mater. 19, 964 (2010).
- [9] I.N. Mazov, V.L. Kuznetsov, S.I. Moseenkov, A.V. Ishchenko, N.A. Rudina, A.I. Romanenko, T.I. Buryakov, O.B. Anikeeva, J. Macutkevic, D. Seliuta, G. Valusis, J. Banys. Nanosci. Nanotechnol. Lett. 3, 18 (2011).
- [10] J. Macutkevich, R. Adomavicius, A. Krotkus, J. Banys, V. Kuznetsov, S. Moseenkov, A. Romanenko, O. Shenderova. J. Appl. Phys. **111**, 103 701 (2012).
- [11] Y. Zhao, W. Li. Thin Solid Films 519, 7987 (2011).
- [12] А.И. Романенко, Д.Н. Дыбцев, В.П. Федин, С.Б. Алиев, К.М. Лимаев. Письма в ЖЭТФ 101, 59 (2015).
- [13] P. Sheng. Phys. Rev. B 21, 2180 (1980).
- [14] P. Monceau, N.P. Ong, A.M. Portis, A. Meerschaut, J. Rouxel. Phys. Rev. Lett. 37, 602 (1976).
- [15] V.E. Fedorov, S.B. Artemkina, N.G. Naumov, E.D. Grayfer, Y.V. Mironov, A.I. Bulavchenko, V.I. Zaikovskii, A.I. Komonov, I.V. Antonova, M.V. Medvedev. J. Mater. Chem. C 2, 5479 (2014).
- [16] S.B. Artemkina, T.Y. Podlipskaya, A.I. Bulavchenko, A.I. Komonov, Y.V. Mironov, V.E. Fedorov. Colloid. Surf. A 461, 30 (2014).
- [17] J.P. Pouget, R. Moret, A. Meerschaut, L. Guemas, J. Rouxel. J. de Phys. C3 44, 1729 (1983).
- [18] Ю.И. Латышев, А.П. Орлов. Письма в ЖЭТФ 94, 517 (2011).
- [19] N.P. Ong. Phys. Rev. B 18, 5272 (1978).