07

Влияние динамической диффузии газообразных сред воздуха, азота и гелия на микротвердость ионных кристаллов с ювенильными поверхностями

© О.В. Клявин, В.Ю. Федоров, Ю.М. Чернов, В.В. Шпейзман

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: klyavin@mail.ioffe.ru, shpeizm.v@mail.ioffe.ru

(Поступила в Редакцию 2 марта 2015 г.)

Исследованы зависимости от нагрузки микротвердости поверхностного слоя ионных монокристаллов NaCl и LiF с ювенильными и выдержанными длительное время на воздухе поверхностями в газовых средах воздуха, азота и гелия. Обнаружено изменение знака производной микротвердости как функции нагрузки для кристаллов LiF, индентированных в гелии и после их старения на воздухе, а также более слабое влияние среды азота и воздуха на указанные зависимости в сравнении с кристаллами NaCl. После старения поверхности кристаллов NaCl на воздухе обнаружено изменение знака производной микротвердости в средах азота и воздуха, а также хорошо выраженное изменение микротвердости в зависимости от времени старения образцов на воздухе по сравнению с более слабым влиянием среды для кристаллов LiF. Полученные анализируются на основе явления дислокационно-динамической диффузии частиц внешней среды в кристаллические материалы в процессе их пластической деформации по зарождающимся и движущимся дислокациям. Это явление влияет на величину микротвердости через изменение интенсивности процесса размножения дислокаций при получении розеток укола в различных газовых средах. Проведенные исследования микротвердости ювенильной поверхности кристаллов NaCl и LiF в различных газовых средах позволили впервые обнаружить "в чистом виде" различный характер дислокационно-динамической диффузии этих сред.

1. Введение

Интерес к изучению механических свойств поверхностных слоев щелочно-галоидных кристаллов не ослабевает уже несколько десятилетий. В последнее время особое внимание уделяется вопросам влияния на микротвердость поверхностных слоев кристаллов внешних воздействий: облучения в реакторе [1], ультрафиолетового [2] и *β*-облучения [3], внешней среды. Влияние различного типа газообразных сред (азот, воздух, гелий) на микротвердость поверхностного слоя ионных кристаллов впервые было исследовано на основе явления дислокационно-динамической диффузии [4,5] в работе [6]. Это явление связано с динамическим проникновением частиц внешней среды (атомов или молекул) в поверхностный слой деформируемых материалов через активные центры — ядра зарождающихся и движущихся дислокаций. Оно позволяет управлять прочностью поверхностного слоя кристаллических материалов через процесс размножения дислокаций, интенсивность которого усиливается или ослабляется в зависимости от типа примесей, проникающих в ядра движущихся дислокаций при формировании розеток укола.

В [6] была исследована микротвердость в среде воздуха, азота и гелия кристаллов NaCl и LiF, которые длительное время находились на воздухе и их поверхность подвергалась действию хемосорбции компонент воздуха. В настоящей работе сделана попытка выделить влияние адсорбированного слоя на поверхности кристаллов на характер зависимости микротвердости от нагрузки и получить указанные зависимости на ювенильных поверхностях при индентировании в различных средах. Исследована также кинетика изменения микротвердости при выдержке кристаллов на воздухе после индентирования в различных средах.

2. Экспериментальные методики

Исследовались стандартные отожженные монокристаллы NaCl и LiF, общее содержание примесей в которых не превышало 5 · 10⁻³ wt.%. Образцы выкалывались из блоков монокристаллов по плоскостям типа (100) и имели размеры $10 \times 10 \times 20$ mm. Перед началом измерений образец раскалывался на воздухе по длине. Свежесколотая (ювенильная) поверхность образцов индентировалась сразу после их раскола в различных средах. Зависимости микротвердости Н от нагрузки Р регистировались также после различного времени выдержки поверхности образцов на воздухе (до 16 суток) для различного типа кристаллов. Измерения зависимостей Н от *P* проводились в диапазоне P = 2-50 g на приборе ПМТ-3 с пирамидой Виккерса. Диагональ отпечатка была параллельна направлению [100], обеспечивающему отсутствие искажений, в отличие от отпечатков с диагональю [110]. Время выдержки индентора под нагрузкой составляло 5 s, а время его опускания 10 s. Значения Н были получены в среде воздуха и гелия, как для ювенильной поверхности образцов, так и для выдержанной различное время на воздухе, а также при чередовании указанных сред в различных вариантах. Для испытания образцов на микротвердость в азоте и гелии использовался стеклянный кожух, который помещался на основание микротвердомера и герметизировался. Он продувался азотом или гелием в течение двух минут. Это обеспечивало чистоту объема кожуха по исследуемым газам не хуже 99.9%. Ошибка измерений величин H составляла $\pm 10\%$, а число измерений для каждой нагрузки равнялось 10.

3. Результаты исследований

3.1. Монокристаллы NaCl. Обнаружено четко выраженное изменение характера кривых H(P) при индентировании на воздухе в зависимости от времени выдержки (t = 0-7 суток) ювенильной поверхности образцов на воздухе (рис. 1). При малых нагрузках (до ~ 5g) микротвердость возрастает для образцов с выдержкой на воздухе до 2 суток, причем минимальные значения Н наблюдаются для ювенильной поверхности (кривая 1). При длительном времени выдержки образцов на воздухе (t = 7 суток, кривая 4) величина H значительно увеличивается, а ее производная меняет знак. Максимальное различие между величинами Н достигается при $P = 2 \, \text{g}$, при этом микротвердость образца после 7 суток выдержки на воздухе превышает микротвердость ювенильной поверхности почти вдвое (ср. кривые 1, 4). При $P \ge 10 \, \text{g}$ зависимости P(H) для разных образцов сближаются, и Н не изменяется с нагрузкой.

Далее были получены зависимости H(P) для образцов, индентированных в среде азота, с различным последующим временем их выдержки на воздухе (рис. 2). Азот вызывает гораздо более сильное снижение микротвердости ювенильной поверхности образцов по сравнению

Рис. 1. Зависимости микротвердости монокристаллов NaCl от нагрузки на воздухе: ювенильная поверхность (1), после выдержки образцов на воздухе в течение 1 (2), 2 (3) и 7 (4) суток.

Рис. 2. Зависимости микротвердости монокристаллов NaCl от нагрузки в азоте: ювенильная поверхность (1), после выдержки образцов на воздухе в течение 3 (2), 9 (3) h и 1 (4), 7 (5) суток.

со средой воздуха (ср. кривые *I* на рис. *1*, *2*). Влияние выдержки поверхности образцов на воздухе обнаруживается уже при t = 3 h. При t = 9 h производная dH(P)/dP меняет свой знак, а значения микротвердости при больших временах выдержки образцов (t = 1 и 7 суток) резко повышаются и перестают изменяться. Максимальная величина микротвердости в среде азота достигается при P = 2 g и t = 1 суткам и при дальнейшей выдержке не изменяется. Оно более чем в пять раз превышает микротвердость ювенильной поверхности, в то время как для среды воздуха макротвердость меняется лишь в два раза (см. выше).

На рис. 3 приведены зависимости H(P) в азоте и в гелии на ювенильной поверхности образцов при чередовании указанных сред в порядке $\text{He}-N_2$ - $\text{He}-N_2$ (рис. 3, *a*) и N₂-He-N₂-He (рис. 3, b). Как видно, чередование обеих сред, как в прямом, так и в обратном порядке оказывает четкое, но различное влияние на характер кривых H(P). В среде гелия значения H для ювенильной поверхности образцов значительно повышаются при малых нагрузках на индентор, а в среде азота, наоборот, резко уменьшаются (ср. кривые 1 на рис. 3, a и 3, b). На последующих кривых H(P) для обеих сред (кривые 2-4 на рис. 3, a и 3, b) обнаруживаются немонотонности в виде максимумов при малых нагрузках ($P < 10 \, \text{g}$). Причем влияние чередования этих сред в порядке N_2 -He- N_2 -He на зависимости H(P) не совпадает с их влиянием при чередовании в обратном порядке. Этот факт указывает на явное влияние изменения последовательности сред индентирования (N2-He и N₂-He) на вид кривых H(P), которое сохраняется при каждом последующем обратном переходе к первой (кривые 3 на рис. 3, а и 3, b) или второй (кривые 4 на рис. 3, а и 3, b) среде. При этом в среде гелия (кривые 1, 3 на рис. 3, а и 2, 4 на 3, b) максимум всегда располагается выше, чем в азоте. Среда азота

Рис. 3. Зависимости микротвердости монокристаллов NaCl от нагрузки для ювенильной поверхности при чередовании сред индентирования в порядке: He (1)-N₂(2)-He (3)-N₂(4) (a); и N₂(1)-He (2)-N₂(3)-He (4) (b).

Рис. 4. Зависимости микротвердости монокристаллов NaCl от нагрузки в различных газовых средах для ювенильных (1, 2, 3) и выдержанных 7 суток на воздухе (4, 5, 6) поверхностей образцов при индентировании в среде N₂ (1, 5), на воздухе (2, 4) и в He (3, 6).

приводит к падению величины *H*. Это означает, что молекулы азота адсорбируются на ювенильной поверхности образца в значительном количестве и проникают в образец при индентировании его поверхностного слоя по движущимся дислокациям вблизи укола, замедляя процесс размножения дислокаций, что приводит к резкому снижению микротвердости. Атомы гелия, наоборот, интенсифицируют процесс размножения дислокаций в слое Дебая-Хюккеля и повышают микротвердость.

Результирующий график влияния процесса выдержки на воздухе ювенильной поверхности образцов NaCl на вид зависимостей H(P) в среде воздуха, азота и гелия приведен на рис. 4. Переход от ювенильной к выдержанной на воздухе поверхности наиболее сильно сказывается на величине микротвердости, измеренной в среде азота: при P = 2g она возрастает в пять раз, в то время как при тех же условиях на воздухе только в три раза. При этом в среде воздуха характер зависимостей H(P) сохраняется таким же, как и для среды азота (ср. кривые 1 и 2 с кривыми 4 и 5), но после выдержки образцов на воздухе у кривых H(P) меняется знак производной при малых нагрузках. В среде гелия кривые H(P) сохраняют свой ход (см. кривые 3, 6), а значения Н практически не зависят от времени выдержки образцов на воздухе.

3.2. Монокристаллы LiF. Длительная выдержка ювенильной поверхности образцов на воздухе (t = 1и 6 суток) приводит к небольшому повышению величины H при малых нагрузках. Так, при P = 2 g и выдержке на воздухе t = 6 суткам микротвердость возрастает всего на 15% (рис. 5). Однако в среде азота этот процесс (t = 2 и 6 суток) приводит к понижению величин H: при P = 2 g микротвердость падает в 1.5 раза (с 2140 МРа до 1400 МРа для t = 6 суткам, рис. 6, a). При больших нагрузках (P > 5 g) значения микротвердость на растает всего на 15% и после выдержки на

Рис. 5. Зависимости микротвердости монокристаллов LiF от нагрузки в среде воздуха: ювенильная поверхность (1), после выдержки образцов на воздухе в течение 1 (2) и 6 (3) суток.

Физико-механические характеристики кристаллов NaCl и LiF

Тип кристалла	Параметр решетки <i>a</i> , nm	Энергия решетки на пару ионов <i>E</i> , eV	Растворимость в воде S , wt.%	Предел упругости τ_s , MPa	Свободный объем, nm ³	Модуль сдвига <i>G</i> , GPa
LiF	0.403	10.56	0.27	11.2	0.27	55.1
NaCl	0.565	7.93	35.6	3.0	0.71	12.6

воздухе сближаются. В среде гелия (рис. 6, *b*) длительная выдержка ювенильной поверхности образцов на воздухе приводит к падению микротвердости при P = 2 g: в 1.5 раза (с 2200 до 1550 MPa) при выдержке на воздухе в течение 8 суток и в 2.5 раза (до 900 MPa) при выдержке 16 суток. При повышении нагрузки микротвердость ювенильной поверхности и с выдержкой 8 суток падает и стабилизируется при P = 10 g на уровне $H \sim 1150$ MPa; для образца с выдержкой на воздухе

Рис. 6. Зависимости микротвердости монокристаллов LiF от нагрузки в среде азота (a) и гелия (b): ювенильная поверхность (1); после выдержки образцов на воздухе в течение 2 суток в случае азота и 8 суток в случае гелия (2); после выдержки образцов на воздухе в течение 6 суток в случае азота и 16 суток в случае гелия (3).

t = 16 суток микротвердость возрастает примерно до той же величины.

Были также получены зависимости H(P) на ювенильной поверхности образцов в среде азота и гелия при их чередовании в порядке N₂-He-N₂ и He-N₂-He. Различия в микротвердости при этих режимах появляются при P < 5 g и носят противоположный характер. Чередование сред He-N₂-He приводит к росту значений H при P = 2 g в последовательности 2200–1950–2400 MPa, а для сред N₂-He-N₂ к изменению величин H в порядке 2140–2200–1500 MPa.

Приведенные выше результаты показывают, что и для NaCl, и для LiF среда (гелий, азот, воздух) влияет на микротвердость, как образцов с ювенильной поверхностью, так и образцов после их выдержки на воздухе в течение различного времени. Причем для обоих типов кристаллов обнаружено значительное, но различное влияние среды азота и гелия на микротвердость их ювенильной поверхности в сравнении с выдержанной различное время на воздухе (ср. рис. 1–4 и 5,6).

4. Обсуждение результатов

Анализ полученных данных проведем с учетом следующих факторов, которые могут влиять на величины микротвердости монокристаллов NaCl и LiF и на характер их изменения в исследованных газовых средах: величины параметра решетки, энергии решетки на пару ионов, величины свободного объема, предела упругости кристаллов, их гигроскопичности (растворимости в воде), модуля сдвига и наличия слоя Дебая—Хюккеля [7–9] (см. таблицу).

В [6] были приведены зависимости H(P) в среде воздуха, азота и гелия для кристаллов NaCl и LiF, которые длительное время находились на воздухе. Полученные в [6] в условиях совместного влияния типа среды и адсорбированного поверхностного слоя компонентов воздуха зависимости H(P) в этих кристаллах качественно совпадают с таковыми в настоящей работе. Однако наличие ювенильной поверхности кристаллов позволяет выделить влияние указанного слоя на характер кривых H(P) в зависимости от типа среды в чистом виде. Приведенные выше данные необходимы для анализа закономерностей проникновения в кристалл частиц внешней среды по механизму дислокационнодинамической диффузии (ДДД). Двойной электрически заряженный слой Дебая-Хюккеля в гранецентрированных кубических ионных (ГЦКИ) монокристаллах возникает при их раскалывании за счет частичного испарения одного сорта атомов с поверхности, а также по причине различной растворимости точечных дефектов различного знака в тонком поверхностной слое (порядка 2-3 параметров решетки). Этот заряд экранируется вблизи поверхности кристалла точечными энергетически заряженными дефектами с максимальной для данного кристалла подвижностью. Глубина проникновения (радиус Дебая-Хюккеля) есть величина $\lambda = \varepsilon \varepsilon_0 kT/2e^2 c_\infty$, где *є* — диэлектрическая проницаемость внешней среды, ε_0 — электрическая постоянная, c_∞ — концентрация свободных точечных дефектов вдали от поверхности, е — электрический заряд иона, k — постоянная Больцмана, Т — температура. Оценки Дебаевского радиуса экранирования дают значение $\lambda \sim 10^{-2} \, \mu$ m. Однако в ГЦКИ кристаллах с примесями часть вакансий находится в комплексах типа примесь-катионная вакансия, что приводит к уменьшению c_{∞} , а следовательно, к возрастанию величины λ . Оценки дают $\lambda \sim 1 \, \mu$ m.

Из-за большой величины λ следует ожидать изменения дислокационной структуры в этом слое, так как концентрация вакансий в нем существенно выше объемной. Кроме того, двойной электрический слой образует барьер, который необходимо преодолеть дислокациям при их зарождении и движении вблизи поверхности кристалла. Изменение этого барьера за счет контакта поверхности кристалла с окружающей средой приводит к изменению ее электрического заряда, а следовательно, подвижности и характера размножения дислокаций в поверхностном слое, что обусловливает изменение его прочности и пластичности.

4.1. Монокристаллы NaCl. Оценки толщины слоя, возникающего при выдержке ювенильной поверхности образцов на воздухе методом эллипсометрии [10,11] показали, что за 2h образуется слой $\sim 0.3\,\mu{
m m}$. Если такая скорость роста сохраняется, то за 24 h толщина слоя достигает $\sim 3.6\,\mu{\rm m},$ а за 7 суток ~ 25 µm. Глубина дислокационной зоны пластичности розетки укола в NaCl при P = 2-5 g оказалась в пять раз больше (7-15 µm), чем глубина внедрения индентора, равная 1/7 диагонали отпечатка (1.3-3 µm). Таким образом, при длительной выдержке на воздухе поверхности образца NaCl дислокационная структура розетки укола полностью формируется в слое, образованном за время его выдержки на воздухе. Методом эллипсометрии показано, что кинетика осаждения воздушной среды на поверхность кристалла NaCl обусловлена не химической адсорбцией молекул H₂O с показателем преломления осаждаемого слоя $\Delta n < 0$, а адсорбцией других компонентов среды, образующих соединения типа Na₂CO₃, NaNO₃, Na₂CO₃ · H₂O, NaNO₂ с показателем преломления $\Delta n > 0$. Этот слой имеет более высокую прочность по сравнению с объемной прочностью кристалла, так как его показатель преломления выше объемного. В процессе выдержки поверхности образца на воздухе толщина этого слоя интенсивно повышается, кривая H(P) постепенно выполаживается и изменяет знак своей производной (рис. 1). В среде азота зависимость H(P) для ювенильной поверхности образца идет гораздо ниже, чем на воздухе, и не выполаживается (ср. кривые 1 на рис. 1, 2). Это связано с тем, что на воздухе его химические компоненты интенсивно гидратируются на ювенильной поверхности и тем самым затрудняют проникновение молекул азота в дислокационную структуру розеток укола при их формировании. Этот процесс приводит к интенсивному размножению в них дислокаций. В результате величина Н для ювенильной поверхности на воздухе повышается до 170 МРа по сравнению с 65 МРа в среде азота (ср. кривые 1 на рис. 1, 2). Причина резкого понижения микротвердости в азоте заключается в следующем. Монокристалл NaCl имеет большой параметр решетки, радиус иона и свободный объем (см. таблицу). Эти характеристики решетки NaCl обеспечивают захват молекул азота по механизму ДДД ядрами зарождающихся и движущихся дислокаций как солитонов Френкеля-Конторовой [12]. При этом дислокации, заполненные молекулами азота, тормозятся примесными комплексами, имеющимися в кристаллической решетке, без их дополнительного размножения. Постоянство величин Н для обеих сред при нагрузке *P* > 5–10 g после длительного времени выдержки образцов на воздухе означает, что наросший примесный поверхностный слой не вносит вклада в величины Н, так как измеряется фактически постоянная объемная твердость кристаллов. При наличии этого слоя зарождение и взаимодействие дислокаций в нем происходит за счет его высокой дефектности и другого химического состава, по сравнению с объемом кристалла. Это приводит, как показано выше, к резкому повышению процесса размножения дислокаций и, как следствие, к значительному росту величин Н при малых нагрузках. По виду кривых H(P) можно оценить глубину проникновения всех сред в поверхностный слой образцов, считая, что эта глубина определяет наличие зависимостей Н от Р, а зона пластичности розетки укола в пять раз больше глубины внедрения индентора в кристалл согласно [11,13]. Для ювенильной поверхности образцов эта глубина в порядке чередования сред воздух-азот-гелий равна 15-50-7.5 µm, а после выдержки в течение 7 суток на воздухе — 25-15-7.5 µm. Этот результат соответствует различной интенсивности (глубине) проникновения всех сред в указанных условиях проведения эксперимента. Зависимость H(P) для ювенильной поверхности кристаллов NaCl при различном чередовании сред азота и гелия (рис. 3, а, b) показали, что влияние изменения типа сред $(N_2-He, He-N_2)$ сохраняется при каждом последующем обратном переходе к первичной, взятой вначале среде. При этом в среде гелия максимум располагается выше, чем в азоте, благодаря усилению процесса размножения дислокаций в гелии по сравнению с азотом.

4.2. Монокристаллы LiF. Влияние сред гелия и азота оказалось различным для обоих типов кристаллов по причине значительного различия их физико-

механических свойств (см. таблицу). Кристаллы LiF имеют меньший параметр решетки, гораздо меньший свободный объем, большую энергию решетки на пару ионов, очень низкую растворимость в воде и более высокую прочность, по сравнению с кристаллами NaCl. Эти характеристики кристаллической решетки не позволяют молекулам азота (радиус $R = 0.32 \,\mathrm{nm}$) эффективно проникать в кристалл по движущимся дислокациям. Однако атомы гелия благодаря очень малым размерам $(R = 0.21 \, \text{nm})$ и химическому взаимодействию с катионами лития [14] интенсивно проникают через ювенильную поверхность образцов в электрически заряженный слой Дебая-Хюккеля за счет интенсивного размножения в нем дислокаций и увеличивают величину Н (рис. 6, b). В среде гелия длительная выдержка образцов на воздухе приводит к повышению величин Н и изменение зависимости H(P) меняет знак (рис. 6, b). Компоненты воздушной среды нейтрализуют электрически заряженный слой Дебая-Хюккеля, и процесс размножения в розетке укола резко ослабляется, что приводит к падению величины Н при малых нагрузках. Атомы гелия, в отличие от молекул азота, захватываются и переносятся движущимися дислокациями при образовании розеток укола. При этом наполнение дислокаций атомами гелия происходит без их размножения. Это приводит к более резкому падению микротвердости образца в среде гелия по сравнению со средой азота. В среде азота при выдержке образцов на воздухе (рис. 6, a) падение величин Н происходит без изменения знака производной зависимости H(P), так как молекулы азота не проникают в движущиеся дислокации, но понижают прочность слоя Дебая-Хюккеля благодаря интенсивной компенсации его электрического заряда. Они более прочно связываются с ювенильной поверхностью образцов LiF, по сравнению с воздушной средой, что обусловливает ослабление процесса размножения дислокаций в розетке укола. Закономерности динамической диффузии при пластической деформации были изучены в зависимости от степени деформации и типа движущихся дислокаций в ионных кристаллах в среде жидкого гелия [15-17], а также в различных кристаллических материалах в жидком гелии [18,19] и в жидком азоте [20,21]. Измерено количество атомов гелия в деформированных материалах и получены кривые его выделения при нагреве.

5. Заключение

Исследование микротвердости монокристаллов NaCl и LiF с ювенильными поверхностями в среде азота, воздуха и гелия позволило впервые обнаружить в чистом виде различный характер динамического проникновения в кристалл этих сред по механизму ДДД. Показано, что тип газовой среды по-разному влияет на зависимости микротвердости от нагрузки для исследованных кристаллов. Длительная выдержка ювенильной поверхности кристаллов на воздухе приводит к изменению характера зависимостей H(P) в исследованных газовых средах, связанному с образованием на поверхности кристаллов гидратированного слоя компонентов воздушной среды, что влияет на интенсивность процесса размножения дислокаций.

Список литературы

- [1] З.Г. Саралидзе, М.В. Галусташвили, Д.Г. Дрияев. ФТТ **41**, *11*, 1999 (1999).
- [2] А.В. Чиванов, Л.Г. Карыев, Г.В. Новиков. Вестн. ТГУ 18, 4, 1789 (2013).
- [3] В.А. Федоров, Г.В. Новиков. Вестн. ТГУ 18, 4, 1784 (2013).
- [4] О.В. Клявин. Физика пластичности кристаллов при гелиевых температурах. Наука, М. (1987).
- [5] O.V. Klyavin, N.P. Likhodedov, A.N. Orlov. Surf. Sci. 33, 259 (1990).
- [6] О.В. Клявин. ФТТ **38**, *4*, 1171 (1986).
- [7] А.Б. Зуев, М.Г. Токмашев, М.С. Сидоров. Физика и химия обработки материалов 2, 32 (1971).
- [8] А.Б. Зуев. Поверхность. Физика, химия, механика 1, 56 (1983).
- [9] А.А. Воробьев. Механические и тепловые свойства щелочно-галоидных монокристаллов. Высш. шк., М. (1968). 210 с.
- [10] Г.И. Швец, О.В. Клявин, М.И. Абаев. Поверхность, физика, химия, механика 7, 91 (1982).
- [11] О.В. Клявин, Г.И. Швец. ФТТ 24, 9, 2682 (1982).
- [12] О.В. Клявин, Г.И. Швец. ФТТ 30, 4, 1034 (1988).
- [13] Е.В. Калашников, О.В. Клявин, И.Г. Титаренко. ФТТ **83**, *4*, 31 (2013).
- [14] А.Я. Купряжкин, А.Ю. Куркин. ФТТ 35, 11, 3013 (1993).
- [15] О.В. Клявин, Б.А. Мамырин, Л.В. Хабарин, Ю.М. Чернов, В.С. Юденич. ФТТ 24, 7, 2001 (1982).
- [16] Ю.А. Акулов, И.Н. Зимкин, О.В. Клявин, Б.А. Мамырин, Д.Л. Руттер, Л.В. Хабарин, Ю.М. Чернов, В.С. Юденич. ФТТ **30**, *5*, 1537 (1990).
- [17] О.В. Клявин, Ю.М. Чернов, И.Н. Правдина, И.И. Рыкова. ФТТ **20**, *10*, 3100 (1978).
- [18] О.В. Клявин, Б.А. Мамырин, Л.В. Хабарин, Ю.М. Чернов. ФТТ 47, 5, 837 (2005).
- [19] О.В. Клявин, В.И. Николаев, Б.И. Смирнов, Л.В. Хабарин, Ю.М. Чернов, В.В. Шпейзман. ФТТ 50, 8, 1402 (2008).
- [20] О.В. Клявин, В.И. Николаев, Б.И. Смирнов, В.И. Николаев, Ю.М. Чернов, В.В. Шпейзман. Изв. РАН. Сер. физ. 73, 10, 1503 (2009).
- [21] О.В. Клявин, В.И. Николаев, О.Ф. Поздняков, Б.И. Смирнов, Ю.М. Чернов, В.В. Шпейзман. ФТТ 52, 12, 2336 (2010).