Характеризация автоэмиссионных катодов на основе пленок графена на SiC

© Р.В. Конакова*, О.Б. Охрименко*[¶], А.М Светличный⁺, О.А. Агеев⁺, Е.Ю. Волков⁺, А.С. Коломийцев⁺, И.Л. Житяев⁺, О.Б. Спиридонов[°]

* Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03028 Киев, Украина

⁺ Южный федеральный университет, Институт нанотехнологий, электроники и приборостроения 347900 Таганрог, Россия

° Южный лазерный инновационно-технологический центр,

347900 Таганрог, Россия

(Получена 4 февраля 2015 г. Принята к печати 19 февраля 2015 г.)

Проведена оценка свойств острийного автоэмиссионного катода, представляющего собой структуру, выполненную в виде острия из карбида кремния, покрытого тонкой пленкой графена. Для острийного катода с графеновым покрытием построены вольт-амперные характеристики в координатах Фаулера–Нордгейма, по наклону которых были рассчитаны величины работы выхода φ из острийного катода. Показана возможность формирования на острийной поверхности сильно легированного n^+ -SiC методом сублимации низкопороговых автоэмиссионных катодов с низкими пороговыми величинами электрического поля и тока автоэлектронной эмиссии.

1. Введение

В последние годы интенсивно проводятся исследования автоэлектронной эмиссии катодов, изготовленных из углеродных материалов: фуллеренов, наноалмазов, нанотрубок, стеклоуглерода, графеноподобных материалов и графеновых пленок. Это обусловлено тем, что на базе углеродных автоэмиссионных катодов возможно создание ряда СВЧ приборов, автоэмиссионных дисплеев, микро- и наносенсоров, компьютеров нового поколения [1]. Из всех перечисленных материалов наиболее перспективными для создания автоэлектронных эмиссионных структур микро- и наноэлектроники (острийных катодов) считаются углеродные нанотрубки и графеновые пленки.

Это связано с тем, что графен обладает высокой подвижностью носителей заряда, проводимостью, теплопроводностью, прочностью, радиационной и термической стойкостью [2]. Однако графеновые пленки, несмотря на большой интерес к их использованию в качестве покрытий для острийных катодов, все еще недостаточно исследованы. Это в основном связано со сложностями технологических процессов создания самих пленок графена и автоэмиссионных структур нанометровых размеров на их основе. Весьма существенным фактором является также выбор подложки, на которой формируется пленка графена. Наиболее удачным сочетанием возможностей технологии и получаемых структурных и оптических свойств графена, как показали авторы [3,4], является формирование пленок графена на поверхности SiC методом сублимации. В работе [5] этим методом были получены пленки графена на проводящих и полуизолирующих подложках 6H-SiC и установлены режимы термоотжига, позволяющие создавать наименее напряженные слои графена на SiC.

Целью настоящей работы является создание и исследование макетов автоэмиссионных катодов на основе пленки графена на сильно легированной подложке n^+ -6H-SiC, полученной методом сублимационной эпитаксии [3–5].

Методические аспекты изготовления образцов и измерений

Пленки графена были получены по методике, описанной в [3–5]. В качестве подложки использовались образцы 6*H*-SiC, легированные азотом до концентрации ~ $5 \cdot 10^{18}$ см⁻³. С целью удаления с поверхности SiC оксида кремния образцы отжигались в течение 2 ч при температуре 900°С. Затем следовал отжиг при T = 1250°C в вакууме в течение 20 мин.

Наличие графена на поверхности SiC, степень его совершенства и толщина пленки оценивались по спектрам комбинационного рассеяния света (КРС). Результаты этих исследований опубликованы нами ранее в [5]. Было показано, что отжиг при температуре 1250°С способствует формированию пленки графена с размерами кластеров, образующих пленку, ~ 10 нм.

Морфология поверхности пленок графена исследовалась на высоковакуумном (~ 10^{-7} Па) модуле СЗМ (Нанофаб НТК-9 фирмы NT-MDT). На рис. 1 приведены АСМ изображения поверхности подложек 6*H*-SiC после отжига при *T* = 900 и 1250°C. Видно, что после отжига при *T* = 1250°C на поверхности SiC сформировалась типичная для пленок графена ступенчатая структура [4,6,7].

Изготовление макетов острийных эмиссионных катодов проводилось с использованием фокусированных

[¶] E-mail: olga@isp.kiev.ua

Рис. 1. АСМ изображения подложек 6*H*-SiC после отжига.

Рис. 2. РЭМ изображения полученного автоэмиссионного катода.

ионных пучков с помощью комплекса Nova Nanolab 600 [8] при следующих режимах ионно-лучевого воздействия: ускоряющее напряжение 30 кэВ, ионный ток луча 30 nA-3 нА. Катоды были изготовлены с радиусом закругления вершины острия 20, 30 и 40 нм. Для устранения возможного загрязнения графена в процессе травления галлием и частицами карбида кремния графен выращивался на острие эмиттера после изготовления катода с заданными размерами. При помощи растрового электронного микроскопа (РЭМ), входящего в состав комплекса, были получены изображения изготовленных эмиссионных структур. На рис. 2 показан общий вид изготовленного автоэмиссионного катода с радиусом закругления 40 нм.

3. Экспериментальные результаты

Вольт-амперные характеристики (ВАХ) острийных структур измерялись на сканирующей зондовой нанолаборатории Ntegra Vita при фиксированных значениях межэлектродного расстояния 1, 3 и 5 нм. На рис. 3 приведена ВАХ системы автоэмиссионный катод—зонд с радиусом закругления вершины катода r = 40 нм при межэлектродных расстояниях 1, 3 и 5 нм.

Из рис. З видно, что эмиссия электронов наблюдается при малых напряжениях. Коэффициент усиления поля при межэлектродном расстоянии 1 нм составил 1.01 · 10⁹В/м, при 3 нм — 3.43 · 10⁸ В/м, при 5 нм — 2.09 · 10⁸ В/м. Были рассчитаны площади эмитирующей поверхности и плотности автоэмиссионного тока. Оказалось, что в зависимости от приложенного напряжения площадь эмитирующей поверхности может достигать значений $6 \cdot 10^{-15} \,\mathrm{m}^2$ при $U = 10 \,\mathrm{B}$, при этом зависимость S = f(U) (рис. 4, *a*) практически линейная. С ростом напряжения плотность автоэмиссионного тока увеличивается до значений порядка 4 · 10⁶ A/м² при межэлектродном расстоянии 1 нм. На рис. 4, *b*, кривые 1, 2 при напряжении более 8В наблюдается ограничение роста плотности автоэмиссионного тока. Это связано с особенностями экспериментальной установки. Максимальный ток ограничен 20 нА.

Для анализа характеристик автоэмиссионного макета были построены ВАХ в координатах Фаулера-Норд-гейма:

$$\ln\left(\frac{J}{E^2}\right) = f\left(\frac{1}{E}\right),\,$$

где J — плотность тока, E — напряженность электрического поля. ВАХ, построенные в координатах Фаулера-Нордгейма, имеют линейный вид (рис. 5), что характерно для автоэлектронной эмиссии. По наклону

Рис. 3. Вольт-амперные характеристики системы автоэмиссионный катод-зонд: *1* — при межэлектродном расстоянии 1 нм, *2* — при межэлектродном расстоянии 3 нм, *3* — при межэлектродном расстоянии 5 нм.

Работа выхода электрона φ из острийного катода с радиусом закругления 40 нм при различных межэлектродных расстояниях

Параметр	Значение		
Межэлектродное расстояние, нм	1	3	5
Работа выхода, эВ	0.31	0.6	0.9

ВАХ, приведенных на рис. 5, были рассчитаны величины работы выхода φ из острийного катода. Значения работы выхода для острийного автокатода с радиусом закругления 40 нм приведены в таблице.

Оценка работы выхода для радиусов закругления вершин катода 20 и 30 нм при межэлектродных расстояниях 1, 3 и 5 нм дала величину такого же порядка. Отметим, что работа выхода из графена в зависимости от количества монослоев, по данным [9], составляет 4.3-4.6 эВ. Минимальная величин φ в [9] приведена для одного монослоя, максимальная — для 10 монослоев,

Рис. 4. Зависимость площади эмитирующей поверхности (a) и плотности автоэмиссионного тока (b) от напряжения в системе автоэмиссионный катод-зонд: 1 — при межэлектродном расстоянии 1 нм, 2 — при межэлектродном расстоянии 3 нм, 3 — при межэлектродном расстоянии 5 нм.

Рис. 5. Экспериментальная вольт-амперная характеристика (рис. 3) в координатах Фаулера–Нордгейма: *1* — при меж-электродном расстоянии 1 нм, *2* — при межэлектродном расстоянии 3 нм, *3* — при межэлектродном расстоянии 5 нм.

что совпадает с соответствующей величиной для кристаллического графита [9] и близка по величине к φ карбида кремния. Наблюдаемые нами величины φ более близки к работе выхода графеноподобных структур, полученных на углеродных нанотрубках, [1] или углеродных нанокластерах [10,11]. В работе [1] φ составляет 1 эВ, в [11] — в пределах 0.05–0.3 эВ.

Действительно, если считать, что источником автоэмиссии, как в [10,11], являются нанокластеры, то размеры графеновых нанокластеров ~ 10 нм, определенные на основании данных КРС, в нашей предыдущей работе [5] позволяют предположить, что наблюдаемая в данной работе сравнительно низкополевая автоэмиссия обусловлена именно нанокластерами графена, расположенными на острийном катоде.

4. Заключение

Показано, что на основе пленок графена, полученных на острийной поверхности сильно легированного n^+ -SiC методом сублимации, возможно формирование низкопороговых автоэмиссионных катодов. Наблюдаемые пороговые величины электрического поля и тока автоэлектронной эмиссии оказались существенно ниже, чем для обычных острийных катодов. Низкопороговая полевая эмиссия может быть объяснена в предположении наличия на поверхности острийного катода нанокластеров графена. Подтверждением этого предположения является сравнительно низкая работа выхода электронов из покрытых графеном острийных катодов. Получены зависимости площади эмитирующей поверхности и плотности автоэмиссионного тока от напряжения между катодом и анодом. Установлено, что повышение напряжения приводит к увеличению как площади, с которой происходит эмиссия, так и плотности тока. Уменьшение межэлектродного расстояния привело к снижению величины работы выхода, что позволило получить большие значения тока эмиссии, плотности автоэмиссионного тока и площади эмитирующей поверхности. Результаты исследований необходимо учитывать при разработках устройств автоэмиссионной микро- и наноэлектроники.

Результаты работы были получены с использованием оборудования Центра коллективного пользования и научно-образовательного центра "Нанотехнологии" Южного федерального университета. Исследование выполнено в рамках проектной части государственного задания в сфере научной деятельности (задание № 16.1154.2014/К) и оборудования Института физики полупроводников им. В.Е. Лашкарева НАН Украины (договор о научно-техническом сотрудничестве между ИФП НАНУ им. В.Е. Лашкарева и НОЦ НТЮФУ на 2012–2014 гг).

Список литературы

- [1] Ю.В. Гуляев. Вестник РАН, 73 (5), 389 (2003).
- [2] M. Acik, Y.J. Chabal. Jpn. J. Appl. Phys., 50, 070101 (2011).
- [3] А.А. Лебедев, И.С. Конусова, А.В. Лаврентьев, С.П. Лебедев, И.В. Макаренко, В.Н. Петров, А.Н. Титков. ФТТ, 51, 783 (2009).
- [4] А.А. Лебедев, И.С. Котоусова, А.В. Лаврентьев. ФТТ, 52 (4), 799 (2010).
- [5] Р.В. Конакова, А.Ф. Коломыс, О.Б. Охрименко, В.В. Стрельчук, Е.Ю. Волков, М.Н. Григорьев, А.М. Светличный, О.Б. Спиридонов. ФТП, 47 (6), 802 (2013).
- [6] G.M. Rutter, N.P. Guisinger, J.N. Crain. Phys. Rev. B, 76, 235 416 (2007).
- [7] J. Kedzierski, P. Hsu, P. Healey. IEEE Trans. Electron Dev., 55 (8), 2078 (2008).
- [8] O.A. Ageev, A.S. Kolomiytsev, B.G. Konoplev, Semiconductors, 45 (13), 1709 (2011).
- [9] H. Hibino, H. Kageshima, M. Nagase. J. Phys. D: Appl. Phys., 43, 374005 (2010).
- [10] Г.Н. Фурсей, В.И. Петрик, Д.В. Новиков. ЖТФ, **79** (7), 122 (2009).
- [11] Г.Н. Фурсей, М.А. Поляков, А.А. Кантонистов, А.М. Яфясов, Б.С. Павлов, В.Б. Божевольнов. ЖТФ, 83 (6), 71 (2013).

Редактор Т.А. Полянская

Characterization of the field emission cathodes based on the graphene films on SiC

R.V. Konakova*, O.B. Okhrimenko*, A.M. Svetlichnyi⁺, O.A. Ageev⁺, E.Yu. Volkov⁺, A.S. Kolomiytsev⁺, I.L. Jityaev⁺, O.B. Spiridonov[°]

* Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine
+ Taganrog Institute of Technology, Southern Federal University, 347928 Taganrog, Russia
• Southern Laser Technology Center, 347928 Taganrog, Russia

Abstract The evaluation of the properties of a point fieldemission cathode, which is a structure in the form of a tip of the silicon carbide coated with a thin film of graphene. For a point cathode coated with graphene constructed current-voltage characteristics in the Fowler-Nordheim coordinates, the slope of which have been calculated values of the work function φ of a point cathode. The possibility of the formation of a point on the surface of the heavily doped n^+ SiC sublimation low threshold field emission cathodes with low threshold values of the electric field and the field emission current was demonstrated.