Особенности электропроводности TllnSe₂ при фото- и рентгеновском возбуждениях

© Р.С. Мадатов*+¶, А.И. Наджафов*, Ю.М. Мустафаев*, М.Р. Газанфаров*, И.М. Мовсумова•

* Институт радиационных проблем Национальной академии наук Азербайджана,

Az-1143 Баку, Азербайджан

⁺ Национальная авиационная академия Азербайджана,

• Гянджинский государственный университет,

Az-2000 Гянджа, Азербайджан

(Получена 3 марта 2015 г. Принята к печати 9 марта 2015 г.)

Исследованы вольт-амперные характеристики кристаллов TIInSe₂ при фото- и рентгеновских возбуждениях. Вычислены параметры ловушки, которые равны $N_t = 5 \cdot 10^{16}$ см⁻³, $n_t = 4.5 \cdot 10^{12}$ см⁻³ и $\Delta E_t = 0.42$ эВ при 300 К. Вычисленные значения N_t и n_t после рентгеновского возбуждения оказались $3 \cdot 10^{16}$ см⁻³ и $3.2 \cdot 10^{12}$ см⁻³ соответственно. Исследованы зависимости коэффициентов рентгенопроводимости от интенсивностей облучения для монокристаллов TIInSe₂ при различных ускоряющих напряжениях V_a и определено, что величина коэффициента рентгенопроводимости K_{σ} экспоненциально уменьшается с ростом ускоряющего напряжения V_a и дозы облучения.

1. Введение

Среди слоисто-цепочечных полупроводников типа $A^{\rm III}B^{\rm III}C_2^{\rm VI}~(A$ — TI; B— Ga, In; C— S, Se, Te) наиболее чувствительными к рентгеновскому излучению являются монокристаллы TIInSe2 [1–3]. Согласно данным электронографического и рентгенографического анализов [4,5], TIInSe2 является структурно-координационным аналогом бинарного соединения TISe, в котором ионы TI³⁺ замещены ионами In³⁺.

Проводимость этих кристаллов обусловлена ковалентной связью атомов In с атомами Se, расположенными вокруг индия по вершинам тетраэдра [6]. В работе [7] приведены результаты влияния γ -радиации на электропроводность нелегированных монокристаллов TIInSe₂. Экспериментально установлено, что малая величина темнового тока в кристаллах TIInSe₂ [4,8] обусловлена собственными дефектами решетки. Сведения о природе этих дефектов и влияние дефектов упаковки на электрические свойства в нелегированных кристаллах, а также взаимодействие этих дефектов с радиационными дефектами до настоящего времени исследованы недостаточно.

Задачей настоящей работы было проведение комплексных экспериментальных исследований проводимости в кристаллах TIInSe₂ с целью выяснения влияния структурных дефектов на проводимость в исследованных кристаллах при фото- и рентгеновском возбуждениях.

2. Эксперимент

Монокристаллы TlInSe₂ выращивались методом направленной кристаллизации, описанным в работе [5]. Они имели тетрагональную структуру (параметры решетки: a = 8.061 Å, c = 6.822 Å) и обладали *р*-типом проводимости с концентрацией дырок $2.5 \cdot 10^{11}$ см³

 $(\rho \sim 10^7 - 10^8 \,\mathrm{Om} \cdot \mathrm{cm})$. Поверхности кристаллов TlInSe₂ были зеркально-гладкими, что позволило использовать их для исследований без какой-либо дополнительной обработки. Исследованные образцы имели размеры 2 × 2 × 1 мм. Омические контакты к кристаллам наносились вплавлением индия к противоположным поверхностям пластин. Площадь электродов составляла 0.2-0.3 мм, а расстояние между ними равнялось ~ 150-200 мкм. Были исследованы вольт-амперные (ВАХ) в режиме фотопроводимости и рентгендозиметрические характеристики при различных электрических полях в интервале 10²-10⁴ В/см и температурах 120-320 К. Облучение рентгеновскими лучами осуществлялось на установке УРС55 с использованием трубки типа БСВ2. Интенсивность рентгеновского излучения регулировалась при измерении посредством изменения тока в трубке при каждом заданном значении ускоряющего потенциала на ней. Значения доз рентгеновского излучения измерены дозиметром типа ДРГЗ-02. При выбранных режимах работы (E = 50 кэВ и I = 20 мA) мощность дозы излучения составляла $5 \cdot 10^{12}$ см⁻² · с⁻¹. Для фотовозбуждения образцов использовали лампы накаливания мощностью 400 Вт $(\lambda = 1.2 \text{ мкм}).$

3. Результаты и их обсуждение

На рис. 1 приведены ВАХ для специально не легированных кристаллов TlInSe₂ при фото- и рентгеновских возбуждениях. Из рисунка видно, что при температурах 100 и 300 К на ВАХ образцов, не подвергнутных фото- и рентгеновскому возбуждениям, наблюдается три участка: омический, квадратичный и область более резкого роста тока (кривые 1 и 4). При фотовозбуждении образцов (кривые 3 и 5) квадратичная область постепенно перекрывается омическими участками. Как

Az-1045 Баку, Азербайджан

[¶] E-mail: msrahim@mail.ru

Рис. 1. ВАХ нелегированного TIInSe₂ при фото- и рентгеновском возбуждении и при различных температурах, К: 300 (1) и 100 (4) — темновые ВАХ; 300 (3) и 100 (5) — при фотовозбуждении; 300 (2) и 100 (6) — при рентгеновском возбуждении.

видно из рисунка, с уменьшением температуры интервал напряжений, на котором выполняется закон Ома, расширяется. Это, по-видимому, связано с уменьшением концентрации равновесных носителей по мере спада температуры. Расширение омического участка в ВАХ при фотовозбуждении обусловлено увеличением концентрации свободных носителей заряда, так как фотоионизация локальных уровней преобладает над термической ионизацией.

ВАХ нелегированных монокристаллов TlInSe₂ при рентгеновском возбуждении и разных температурах представлены на рис. 1 (кривые 2 и 6). Как видно из рис. 1, в отличие от фотовозбуждения при рентгеновском возбуждении в ВАХ наблюдается три участка. Кроме того, при изменении температуры образца от 300 до 100 К величина рентгенопроводимости незначительно падает, а величина фотопроводимости увеличивается. Анализ полученных экспериментальных и расчетных результатов проводился в рамках теории Мотта. Согласно данным работы [9] были вычислены параметры ловушки, с учетом μ и ε , и они оказались равными: $N_t = 5 \cdot 10^{16} \text{ см}^{-3}, \ n_t = 4.5 \cdot 10^{12} \text{ см}^{-3}$ и $\Delta E_t = 0.42$ эВ при комнатной температуре. Вычисленные значения N_t и n_t после рентгеновского возбуждения оказались $3 \cdot 10^{16}$ см⁻³ и $3.2 \cdot 10^{12}$ см⁻³ соответственно. Некоторые отличия значений N_t и n_t , вероятно, обусловлены тем, что облучение не только вызывает рождение электронно-дырочных пар, но и стимулирует отжиг и перераспределение генетических дефектов в решетке кристалла.

На рис. 2 представлены температурные зависимости фототока (кривые 1, 3) и рентгенопроводимости (кривые 2, 4) монокристаллов TlInSe₂. Как следует из рис. 2 (кривая 1), фототок кристаллов экспоненциально растет в интервале 140-285 К, выше которого наступает термическое гашение фототока. Появление участка температурного гашения фототока с энергией активации $E_{\rm vt} \sim 0.42$ эВ при 285 К и для слабых уровней возбуждения из области собственного поглощения света связано с оптической перезарядкой между *г*-центрами и мелкими акцепторами. С ростом уровня возбуждения (см. рис. 2, кривая 3) глубина температурного гашения фототока уменьшается. Противоположные результаты были получены при рентгеновском возбуждении кристаллов TlInSe₂. Как видно из рис. 2 (кривые 2 и 4), при рентгеновском воздействии наблюдалась слабая активация фототока в интервале 120-350 К, но при этом гашение фототока не наблюдалось. Отсутствие гашения фототока при облучении кристаллов свидетельствует, по-видимому, о введении рентгеновскими квантами дефектов, которые компенсируют исходные дефекты, ответственные за гашение фототока.

Для выяснения причин указанных различий проводимости при рентгеновском возбуждении были проведены измерения рентгенопроводимости монокристаллов TIInSe₂ в области малых и высоких интенсивностей.

Рис. 2. Температурная зависимость тока монокристалла TlInSe₂ при фотовозбуждении (кривые *1* и *3*) и при рентгеновском возбуждении (кривые *2* и *4*): *1* и *2* — слабый уровень возбуждения, *3* и *4* — высокий уровень возбуждения.

На рис. 3 показаны зависимости коэффициентов рентгенопроводимости (K_{σ}) от интенсивностей облучения Eдля монокристаллов TlInSe₂ при различных ускоряющих напряжениях V_a (T = 300 K, $F = 2 \cdot 10^2$ B/см). Видно, что величина коэффициента K_{σ} экспоненциально уменьшается с ростом V_a и E (кривые 1-5). Как следует из полученных данных, коэффициенты K_{σ} для всех образцов уменьшаются, согласно [9], как по мере возрастания дозы облучения, так и с увеличением величины ускоряющего напряжения. Согласно [10], рентгенопроводимость кристаллов, так же как и фотопроводимость, определяется свойствами материала и условиями генерации и ре-

Рис. 3. Зависимость коэффициентов рентгенопроводимости от интенсивности облучения для TIInSe₂ при различных ускоряющих напряжениях V_a (T = 300 К и $F = 2.2 \cdot 10^3$ B/cm): I - 25, 2 - 30, 3 - 35, 4 - 40, 5 - 50 кэВ.

Рис. 4. Зависимость коэффициентов рентгенопроводимости от интенсивности рентгеновского облучения для предварительно облученных γ -квантами дозой 10^5 рад монокристаллов TlInSe₂ (T = 300 К и $F = 2.2 \cdot 10^3$ В/см) при различных ускоряющих напряжениях V_a : 1 - 25, 2 - 30, 3 - 35, 4 - 40, 5 - 50 кэВ.

комбинации носителей. Как следует из полученных данных, в исследуемых кристаллах рентгенопроводимость обусловлена преимущественно поглощением излучения на дефектах, роль которых выполняют глубокие компенсированные акцепторы, ответственные за оптические и фотоэлектрические свойства монокристаллов TIInSe₂. Чтобы выяснить, обусловлен ли наблюдаемый эффект изменением объемных параметров, связанных с реализацией подпорогового механизма [10] или с изменением зарядового состояния имеющихся дорадиационных дефектов, было проведени исследование рентгенопроводимости кристалла TIInSe₂, предварительно облученного *у*-квантами.

На рис. 4 представлены зависимости коэффициентов рентгенопроводимости от интенсивностей облучения для предварительно облученных монокристаллов TlInSe₂ γ -квантами ($D \sim 10^5$ рад) при различных ускоряющих напряжениях (T = 300 K, $F = 2 \cdot 10^2$ В/см). Из характеристик видно, что коэффициент K_{σ} при низких напряжениях V_a линейно растет с ростом дозы облучения, а далее экспоненциально уменьшается (рис. 4, кривая 1). По мере увеличения V_a характер дозовой зависимости K_{σ} постепенно ослабевает (рис. 4, кривые 2–5). Такое расхождение полученных результатов, возможно, связано с перестройкой исходных дефектов в результате предварительного облучения [11,12]. Изменение поведения К_о в предварительно облученных монокристаллах TlInSe₂ у-квантами связано с тем, что под действием у-квантов с энергией 1.25 МэВ, вероятно, возникают дефекты типа вакансия и межузельный атом. Эти дефекты в запрещенной зоне создают локальные уровни, которые при малых дозах дают свой положительный вклад в электропроводность под действием рентгеновского излучения. Как было показано в работе [13], в результате у-облучения образцов TlInSe₂ происходят радиационностимулированные процессы, связанные с активизацией процесса миграции собственных дефектов.

В работе [10] показано, что радиационные дефекты, генерируемые под действием рентгеновского излучения, устойчивы при температуре жидкого азота, но частично отжигаются при температурах T < 300 К. Поэтому при комнатной температуре практически все генерируемые дефекты нестабильны, быстро аннигилируют и не могут внести ощутимого вклада в проводимость. В этом случае в радиационно-стимулированном процессе основную роль играют различные электронные возбуждения, вызываемые рентгеновским излучением. С учетом работ [5,7] можно предположить, что монокристаллы TlInSe₂, как и весь класс сложных полупроводников, содержат в значительном количестве неконтролируемые примеси и дефекты, создающие в запрещенной зоне глубокие и мелкие энергетические уровни как акцепторного, так и донорного типа. Эти дефекты, согласно нашим результатам, активно захватывая пары Френкеля, рождаемые рентгеновским излучением возле крупных структурных повреждений кристаллической решетки TlInSe₂, изменяют зарядовые состояния энергетических уровней. И как следствие, это приводит к уменьшению рентгенопроводимости экспериментальных образцов. Отсутствие температурного гашения фотопроводимости при облучении рентгеновскими квантами в монокристаллах TlInSe2 (рис. 3, кривые 3 и 4) свидетельствует о изменении концентрации рекомбинационных r- и s-центров и незначительной скорости введения рентгеновскими квантами свободных дефектов V_{In} и X_{In}, которые находятся вдали от крупных повреждений решетки.

Полученные результаты указывают на значительное различие в кинетике захвата на ловушки при разных видах возбуждения образца, что может быть следствием высокой пространственной концентрации электронных возбуждений в кристалле при поглощении рентгеновского кванта. Это в свою очередь указывает на то, что в кристалле TlInSe₂ имеет место высокая плотность локальных состояний в запрещенной зоне, которые экспоненциально распределены по энергии [3]. На основе анализа полученных экспериментальных результатов можно заключить, что генерации и стабилизации подпороговых дефектов, возникающие при рентгеновском облучении в кристалле TlInSe2, играют существенную роль в процессе перезарядки в момент облучения. Это позволяет предположить, что в результате рентгеновского облучения в кристаллах TlInSe2 возникают неразделенные (связанные) пары Френкеля. В пользу этого предположения свидетельствует и тот факт, что образования каких-либо комплексов не происходит, так как после прекращения облучения не наблюдается остаточных явлений. В этом случае процесс отжига обусловлен рекомбинацией компонентов неразделенных пар Френкеля.

4. Заключение

Установлено, что характер рентгенопроводимости TlInSe₂, при которой генерируются свободные носители обоих знаков, существенно отличается от характера темновой проводимости, когда в образце имеются только свободные электроны. Предполагается, что такое аномальное явление может быть обусловлено неоднородной перезарядкой глубоких центров и соответственно появлением объемных зарядов, которые уменьшают рентгенопроводимость монокристаллического TlInSe₂.

При рентгеновском облучении нелегированных монокристаллов TlInSe2 имеет место подпороговое дефектообразование вакансий In и V[Se] в местах возле крупных структурных повреждений решетки технологического происхождения. Рассмотренные в данной статье монокристаллы TIInSe₂ с позиционно-неупорядоченными кристаллическими решетками по своей природе обладают повышенной радиационной стойкостью и весьма перспективны для практического использования.

Данная работа выполнена при финансовой поддержке Фонда развития науки при президенте Азербайджанской Республики — грант № EIF-BGM-2-BRTTE-1-2012/ 2013-07/06/1.

Список литературы

- [1] Э.М. Керимова, С.Н. Мустафаева, А.Б. Магеррамов. Неорг. матер., 33 (8), 1325 (1997).
- [2] И.В. Алексеев. ФТП, **32** (5), 120 (1998).
- [3] Г.Д. Гусейнов, А.У. Мальсагов, Л.М. Чапанова, В.А. Алиева. Докл. АН АзССР, 41, 20 (1985).
- [4] С.Н. Мустафаева, М.М. Асадов, А.И. Джаббаров. ФТТ, 56 (8), 1055 (2014).
- А.И. Наджафов. Автореф. канд. дис. (Баку, 2008).
- [6] К.Р. Аллахвердиев, Ф.М. Салаев, Ф.А. Микаилов, Т.С. Мамедов. ФТТ, 34 (11), 3615 (1992).
- [7] А.У. Шелег, В.Г. Гуртовой, С.Н. Мустафаева, Э.М. Керимова. ФТТ, **53** (3), 443 (2011).
- [8] Р.С. Мадатов, А.И. Наджафов, Т.Б. Тагиев, М.Р. Газанфаров. Электрон. обраб. материалов, 4, 120 (2010).
- [9] Н. Мотт, Р. Герни. Электронные процессы в ионных кристаллах (М., ИЛ, 1950).
- [10] В.С. Вавилов, Н.П. Кекелидзе, Л.С. Смирнов. Действие излучений на полупроводники (М., Наука, 1988).
- [11] С.Н. Мустафаева. ФТТ, 47 (11),193 (2005).
- [12] Р.М. Сардарлы, О.А. Самедов, Н.А. Алиева, А.П. Абдуллаев, Э.К. Гусейнов, И.С. Гасанов, Ф.Т. Салманов. ФТП, **48** (4), 442 (2014).
- [13] Р.С. Мадатов, А.И. Наджафов, Т.Б. Тагиев, М.Р. Газанфаров, М.А. Мехрабова. ФТТ, 53 (11), 2097 (2011).

Редактор А.Н. Смирнов

Features of electroconductivity of TIInSe₂ at photo- and X-ray excitation

R.S. Madatov*+, A.I. Najafov*, Y.M. Mustafayev*, M.R. Gazanfarov*, I.M. Movsumova•

* Institute of Radiation Problems of Azerbaijan, Azerbaijan National Academy of Sciences, Az-1143 Baku, Azerbaijan + Azerbaijan National Aviation Academy, Az-1045 Baku, Azerbaijan Ganja State University, Az-2000 Ganja, Azerbaijan

Abstract It has been studied the VAC of TlInSe₂ crystals at photo- and X-ray excitation. The parameters of traps have been calculated and found to equal: $N_t = 5 \cdot 10^{16} \,\mathrm{cm}^{-3}$, $n_t = 4.5 \cdot 10^{12} \text{ cm}^{-3}$ and $\Delta E_t = 0.42 \text{ eV}$ at 300 K. The calculated values of Nt and nt after X-ray excitation were found to be: $3 \cdot 10^{16} \text{ cm}^{-3}$ and $3.2 \cdot 10^{12} \text{ cm}^{-3}$, respectively. It has also been studied the dependence of X-ray coefficients conductivity on irradiation intensity for TIInSe₂ monocrystals at various accelerating voltages of V_a and established that the value of K_{σ} coefficient exponentially decreases with the growth of accelerating voltage of V_a and irradiation dose.