^{18,13} Низкоэнергетическое приближение в теории адсорбции на графене

© С.Ю. Давыдов^{1,2}, О.В. Посредник²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия E-mail: Sergei_Davydov@mail.ru

(Поступила в Редакцию 11 марта 2015 г.)

Изучено влияние линейной аппроксимации электронного спектра однослойного графена (низкоэнергетическое приближение) на величину перехода заряда между адатомом и графеном. Показано, что использование такой аппроксимации для адсорбции щелочных металлов и галогенов ведет к изменению чисел заполнения локальных и зонных состояний по сравнению с результатами, полученными в модели, учитывающей весь спектр. Суммарные числа заполнения, однако, согласуются вполне удовлетворительно.

1. Введение

Изучение адсорбционных свойств однослойного графена вызывает повышенный интерес, так как любое его взаимодействие с посторонним атомом можно рассматривать как акт адсорбции [1]. С теоретической точки зрения к этой задаче можно подойти, исходя из первых принципов или воспользовавшись тем или иным модельным гамильтонианом. В качестве последнего популярен гамильтониан Андерсона [1,2], впервые использованный в задаче об адсорбции Ньюнсом [1,3]. Здесь применен именно такой подход.

В теоретических работах по графену часто используется так называемое низкоэнергетическое приближение, когда реальный закон дисперсии электронов $\varepsilon(\mathbf{k})$ заменяется линейной зависимостью вида

$$\varepsilon_{\pm}(q) = \varepsilon_{\rm D} \pm \frac{3}{2} ta |\mathbf{q}|,$$
 (1)

где $\mathbf{q} = \mathbf{K} - \mathbf{k}$; \mathbf{K} — волновой вектор точки Дирака, энергия которой есть ε_{D} ; t — интеграл перехода электрона между ближайшими соседями, отстоящими друг от друга на расстояние a; знаки "плюс" и "минус" относятся соответственно к зоне проводимости и валентной зоне [4]. Выражение (1) справедливо только для малых значений $|\mathbf{q}|$ и, следовательно, для низких (относительно ε_{D}) энергий. В дальнейшем положим $\varepsilon_{\mathrm{D}} = 0$.

2. Общие соотношения

Для решения задачи об адсорбции на графене требуется знать его энергетическую плотность состояний

$$\rho_g(\omega) = N^{-1} \sum_{\mathbf{k}} \delta(\omega - \varepsilon_{\mathbf{k}}),$$

где N — число атомов графена, ω — энергия [1]. При этом суммирование (интегрирование) должно идти

по всей зоне Бриллюэна, что может быть выполнено только численно. С целью не только упростить задачу, но и получить аналитические выражения используют аппроксимацию (1), вводя вектор обрезания \mathbf{q}_c и соответствующую энергию обрезания $\xi = 3ta \mathbf{q}_c/2$ (см., например, [5–7]). При этом плотность состояний графена в интервале $|\omega| \leq \xi$ принимает вид

$$\rho(\omega) = \frac{2|\omega|}{\xi^2}.$$
 (2)

Функция Грина адсорбированного одноэлектронного атома (см., например, [8]) равна

$$G_a(\omega) = \left(\omega - \varepsilon_a - \Lambda(\omega) + i\Gamma(\omega)\right)^{-1}.$$
 (3)

Здесь функция

$$\Gamma(\omega) = \pi \rho(\omega) V^2 \tag{4}$$

описывает уширения квазиуровня адатома, функция

$$\Lambda(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Gamma(\omega') d\omega]}{\omega - \omega'}$$
(5)

отвечает сдвигу квазиуровня, ε_a — энергия атомного уровня, V — матричный элемент взаимодействия атом-графен, P — символ главного значения. Подставляя (4) в (5), получим

$$\Lambda(\omega) = \frac{2V^2\omega}{\xi^2} \ln \frac{\omega^2}{|\xi^2 - \omega^2|}.$$
 (6)

Зависимость приведенной функции сдвига $\lambda = \Lambda \xi / 2V^2$ от безразмерной энергии $x = \omega/\xi$ представлена на рисунке. Отметим, что $\lambda(x) = 0$ при $x = \pm 1/\sqrt{2}$.

Плотность состояний на адатоме имеет вид

$$\rho_{a}(\omega) = \frac{1}{\pi} \frac{\Gamma(\omega)}{\Omega^{2}(\omega) + \Gamma^{2}(\omega)},$$
$$\Omega(\omega) = \omega - \varepsilon_{a} - \Lambda(\omega).$$
(7)

3. Числа заполнения адатома

Число заполнения адатома n_a удобно представить в виде суммы зонного n_b и локального n_l вкладов [1,8]

$$n_a = n_b + n_l, \tag{8}$$

$$n_b = \int_{-\xi}^{E_{\rm F}} \rho_a(\omega) d\omega, \qquad (9)$$

$$n_l = \left| 1 - \frac{d\Lambda(\omega)}{d\omega} \right|_{\omega_l}^{-1}.$$
 (10)

Здесь ω_l — энергия локального уровня, расположенного ниже валентной зоны графена, $E_{\rm F}$ — энергия уровня Ферми, которая в однослойном нелегированном графене совпадает с точкой Дирака, так что $E_{\rm F} = 0$. Выражение для производной $d\Lambda(\omega)/d\omega$ приведено в Приложении.

Начнем с оценки зонного вклада n_b . Поскольку интеграл (9) точно не берется, прибегнем к упрощениям. Аналогично [8] аппроксимируем приведенную функцию сдвига $\lambda(x)$ выражением

$$\lambda(x) = \begin{cases} -a_1, & -1 < x < -1/\sqrt{2}, \\ a_2, & -1/\sqrt{2} < x < 0, \\ -a_2, & 0 < x < 1/\sqrt{2}, \\ a_1, & 1/\sqrt{2} < x < 1. \end{cases}$$
(11)

Значения коэффициентов a_1 и a_2 найдем из уравнений

$$a_{1}(1 - 1/\sqrt{2}) = \int_{1/\sqrt{2}}^{1} \lambda(x) dx,$$
$$a_{2}/\sqrt{2} = \int_{0}^{1/\sqrt{2}} \lambda(x) dx.$$
(12)

Получаем $a_1 = \ln 2/(2 - \sqrt{2}) = 1.18$, $a_2 = \ln 2/\sqrt{2} = 0.49$. Воспользовавшись аппроксимацией (12), положим $n_b = I(\eta_a, \gamma)$ и представим этот интеграл в виде

$$I(\eta_a, \gamma) = I_1(\eta_a, \gamma) + I_2(\eta_a, \gamma), \qquad (13)$$

$$I_1(\eta_a, \gamma) = -\gamma \int_{-1}^{-1/\sqrt{2}} \frac{x dx}{(x - \eta_{a1})^2 + \pi^2 \gamma^2 x^2},$$
 (14)

$$I_2(\eta_a, \gamma) = -\gamma \int_{-1/\sqrt{2}}^{0} \frac{x dx}{(x - \eta_{a2})^2 + \pi^2 \gamma^2 x^2},$$
 (15)

где $\eta_{a1,2} = \eta_a \mp \gamma a_{1,2}$, $\eta_a = \varepsilon_a/\xi$, $\gamma = 2V^2/\xi^2$. Аналитические выражения для интегралов (14) и (15) приведены в Приложении.

Зависимость приведенных функций сдвига $\lambda = \Lambda \xi / 2V^2$ от безразмерной энергии $x = \omega / \xi$.

Перейдем теперь к численным расчетам для конкретных случаев адсорбции. Для этого нужно принять определенную процедуру оценки параметров задачи. Начнем с параметра ξ . Как известно [4], практически линейный ход плотности состояний графена наблюдается при $|\omega| < t$. Положим поэтому $\xi = t$, так что $q_c a = 2/3$. Отметим, что, согласно [5], t = 2.38 eV. Матричный элемент взаимодействия адатом-графен примем равным $V = \langle a | V | p_z \rangle$, где V — оператор взаимодействия, $|a\rangle$ волновая функция адсорбируемого атома, $|p_z\rangle$ — волновая функция атома углерода [8,9], что, конечно, является приближением (см. подробнее [10]). Схемы оценки энергии уровня адатома ε_a и приведены в [8,9], работу выхода свободного однолистного графена принимаем равной $\phi_g = 5.11 \text{ eV} [11]$. Исходные данные и результаты расчетов в сопоставлении с результатами работы [9] (где использовалась модель, учитывающая весь электронный спектр, а не только его линейную часть) приведены в табл. 1 и 2.

Как следует из табл. 1, в случае адсорбции щелочных металлов порядок полученных здесь чисел заполнения n_b тот же, что и в работе [9].¹ Что же касается адсорбции галогенов, то полученные здесь значения n_b на порядок меньше, чем в работе [9]. Это связано с чрезвычайно высокими значениями параметра γ и, как следствие, большими $|\eta_{a1}|$ и η_{a2} .

Перейдем теперь к оценкам локального вклада n_l в число заполнения адатома. Для этого необходимо найти корень уравнения $\Omega(\omega) = 0$ с энергией $\omega^* < -\xi$. Итак,

¹ Отметим, что аналитические выражения работы [8] дают практически те же результаты, что проведенный там же численный расчет.

Параметр	Li	Na	Κ	Rb	Cs
ε_a , eV	3.02	2.46	2.55	2.60	2.78
η_a	1.27	1.03	1.07	1.09	1.17
γ	1.38	0.86	0.43	0.37	0.31
n_b	0.06	0.04	0.06	0.06	0.05
n_b [9]	0.11	0.08	0.04	0.04	0.03
n_l	0.11	0.07	0.01	0	0
n_l [9]	0	0	0	0	0
Z_a	0.83	0.89	0.93	0.94	0.95
Z_a [9]	0.89	0.92	0.96	0.96	0.97

Таблица 1. Адсорбция щелочных металлов на графене: исходные данные и результаты расчетов в сопоставлении с результатами работы [9]

Таблица 2. Адсорбция галогенов на графене: исходные данные и результаты расчетов в сопоставлении с результатами работы [9]

Параметр	F	Cl	Br	Ι
ε_a , eV	-1.00	-0.49	-0.10	0.41
η_a	-0.42	-0.21	-0.04	0.17
γ	25.56	10.53	7.59	5.20
n_b	0	0.02	0.02	0.03
n_{b} [9]	0.06	0.17	0.24	0.32
n_l	0.51	0.49	0.47	0.43
n_l [9]	0.47	0.37	0.28	0.11
Z_a	-0.51	-0.51	-0.49	-0.46
Z_a [9]	-0.53	-0.54	-0.52	-0.43

имеем уравнение

$$x - \eta_a - \gamma x \ln \frac{x^2}{x^2 - 1} = 0, \tag{16}$$

где $x = \omega/t$. Расчеты показывают, что в случае адсорбции щелочных металлов локальные уровни ω_l расположены достаточно близко к нижней границе сплошного спектра графена (мелкие уровни), тогда как при адсорбции галогенов локальные уровни ω_l расположены гораздо ниже дна валентной зоны графена (глубокие уровни). В Приложении приведены упрощенные выражения для соответствующих чисел заполнения.

4. Переход заряда

Вычислив ω_l и воспользовавшись выражениями (10) и (П1), получим значения n_l приведенные в табл. 1 и 2. В случае щелочных металлов полученные нами значения n_l больше найденных в [9] для адатомов Li, Na и K. То же относится и к адсорбции галогенов.

Переход заряда в адсорбционной системе определяется зарядом адатома Z_a. Для щелочных металлов заряд адатома $Z_a = 1 - n_a$, так что электрон частично переходит с верхнего заполненного уровня адатома на графен. Для галогенов $Z_a = -n_a$, так как электрон графена частично переходит на уровень сродства адатома. В двух последних строках табл. 1 и 2 сопоставлены значения Z_a , полученные в настоящей работе, и работе [9]. Соответствие следует признать вполне удовлетворительным. Необходимо, однако, подчеркнуть, что в рамках низкоэнергетического приближения "удельные веса" вкладов зонных и локальных состояний по сравнению с [9] претерпевают существенные изменения.

Приложение

1. Значение производной $d\Lambda(\omega)/d\omega$, входящей в выражение (10), равно

$$\frac{d\Lambda(\omega)}{d\omega} = -\frac{4V^2}{\omega^2 - \xi^2} \left(1 - \frac{\omega^2 - \xi^2}{2\xi^2} \ln \frac{\omega^2}{\omega^2 - \xi^2}\right). \quad (\Pi 1)$$

2. Интегралы (14) и (15) имеют вид

$$I_{1}(\eta_{a},\gamma) \frac{2[1+(\pi\gamma)^{2}]}{\gamma} = \ln 2 \frac{(1+\eta_{a1})^{2}+(\pi\gamma)^{2}}{(1+\eta_{a1}\sqrt{2})^{2}+(\pi\gamma)^{2}} + \operatorname{sgn}(\eta_{a1}) \frac{2}{\pi\gamma} \left(\arctan \frac{1+\eta_{a1}\sqrt{2}+(\pi\gamma)^{2}}{\sqrt{2}|\eta_{a1}|\pi\gamma} - \arctan \frac{1+\eta_{a1}+(\pi\gamma)^{2}}{|\eta_{a1}|\pi\gamma}\right),$$
(II2)

$$\begin{aligned} & \mathcal{V}_{2}(\eta_{a},\gamma)\frac{2[1+(\pi\gamma)^{2}]}{\gamma} = \ln\frac{(1+\eta_{a2}\sqrt{2})^{2}+(\pi\gamma)^{2}}{2\eta_{a2}^{2}} \\ & +\operatorname{sgn}(\eta_{a2})\frac{2}{\pi\gamma}\bigg(\arctan\frac{1}{\pi\gamma}-\arctan\frac{1+\eta_{a2}\sqrt{2}+(\pi\gamma)^{2}}{\sqrt{2}|\eta_{a2}|\pi\gamma}\bigg). \end{aligned}$$
(II3)

Отметим, что такова же структура интеграла (П2.12) в работе [8], где, однако, перед скобками, содержащими арктангенсы, пропущен множитель $sgn(\eta_{a2})$.

3. Рассмотрим локальные уровни. Пусть имеем мелкий уровень $x_l = -1 - \alpha$, где $x_l = \omega_l / \xi$, $\alpha \ll 1$. Тогда из уравнения (16) получим $\alpha \approx 2^{-1} \exp[-(1 + \eta_a)/\gamma]$, откуда в соответствии с (10) и (П1) получаем $n_l \approx \alpha/(\gamma + \alpha)$. Пусть теперь уровень глубокий, так что $|x_l| \gg 1$. Легко показать с учетом уравнения (16), что $x_l \approx \eta_a + \gamma$. Тогда получаем $n_l \approx (1 + (2\gamma/x_l^2))^{-1} \sim 1$.

Список литературы

- С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Изд-во СПбГЭТУ "ЛЭТИ", СПб (2013). 235 с.; twirpx.com/file/1596114/
- [2] P.W. Anderson. Phys. Rev. 124, 41 (1961).

- [3] D.M. Newns. Phys. Rev. 178, 1123 (1969).
- [4] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
- [5] С.Ю. Давыдов. ФТП 47, 97 (2013).
- [6] S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi. Rev. Mod. Phys. 83, 407 (2011).
- [7] N.M.R. Peres, F. Guinea, A.H. Castro Neto. Phys. Rev. B 73, 125 411 (2006).
- [8] С.Ю. Давыдов, Г.И. Сабирова. ФТТ 53, 608 (2011).
- [9] С.Ю. Давыдов, Г.И. Сабирова. Письма в ЖТФ 37, 11, 51 (2011).
- [10] С.Ю. Давыдов. ФТП 46, 204 (2012).
- [11] A. Mattausch, O. Pankratov. Phys. Rev. Lett. 99, 076 802 (2007).