Люминесцентно-кинетическая спектроскопия сложных комплексов полифенилхинолинов

© Е.Л. Александрова⁺, В.М. Светличный^{*¶}, Н.В. Матюшина^{*}, Л.А. Мягкова^{*}, С.В. Дайнеко[•], И.Л. Мартынов[•], А.Р. Тамеев[■]

* Институт высокомолекулярных соединений Российской академии наук,

199004 Санкт-Петербург, Россия

⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

• Национальный исследовательский ядерный университет МИФИ,

115409 Москва, Россия

Институт химической физики и электрохимии им. А.Н. Фрумкина Российской академии наук, 119071 Москва. Россия

(Получена 4 декабря 2014 г. Принята к печати 15 декабря 2014 г.)

Методом люминесцентно-кинетической спектроскопии для полифенилхинолинов (ПФХ), представляющих собой сложные донорно-акцепторные комплексы, показано что, по мере усиления π -системы, при переходе от (О, К) к (О, ИК) и (ФА, К), сначала наблюдается увеличение времени жизни возбужденного состояния τ , а для наиболее сильного КПЗ ПФХ (ФА, ИК), кинетика люминесценции которого описывается двумя экспонентами, имеет место его снижение до величины, равной τ ПФХ (О, К). Это свидетельствует о наличии в данном комплексе двух излучающих центров, локализованных в ариленовом фрагменте и в фенилхинолиновом кольце, и, таким образом, подтверждает сделанное ранее заключение о формировании в полифенилхинолинах с разветвленной π -системой сложных Д–А комплексов.

1. Введение

Известно [1,2], что мономерное звено 2,6-полифенилхинолинов (ПФХ) общей формулы

где X — мостиковая группа, Ar — ариленовый фрагмент, представляет собой сложный внутримолекулярный комплекс с переносом заряда (ВКПЗ), или донорноакцепторный (Д–А), между донорным (Д) ариленовым Ar фрагментом и акцепторным (А) фенилхинолиновым (ФХ) циклом, являющимся, в свою очередь, Д–А комплексом между мостиковой группой X и хинолиновым кольцом, т.е. ВКПЗ, в котором ариленовый фрагмент и мостиковая группа между акцепторными хинолиновыми кольцами являются донорами.

Поэтому в данной работе методом люминесцентнокинетической спектроскопии выполнены исследования оптических свойств (спектров поглощении и люминесценции) синтезированных ПФХ различной структуры, представляющих собой такие комплексы, и оценены времена жизни возбужденных состояний в них.

2. Объекты и методы исследования

Исследования выполнены для полифенилхинолинов (ПФХ) общей формулы (1), содержащих между хинолиновыми циклами мостиковую группу (Х) — кислородную (-O-) или фениламинную (=N-Ph) группы, а в ароматическом радикале (Ar) — додецилкарбазольный (K_{12}) или диоктилиндоло[3,2-b]карбазольный (ИК₈) фрагменты:

[¶] E-mail: valsvet@hq.macro.ru

ПФХ-4 (ФА-К₁₂)

Полимеры с указанными мостиковыми группами были синтезированы ранее и обладали довольно высокими светочувствительными характеристиками [2,3]. Синтез изученных ПФХ (ПФХ-1–ПФХ-4) проводили аналогично работе [4] по реакции Фридлендера [5].

Измерение спектров поглощения было проведено на спектрофотометре Agilent Cary 60 UV-Vis. Измерения спектров люминесценции и возбуждения были выполнены с помощью спектрофлуориметра Agilent Cary Eclipse Fluorescence.

При исследовании кинетики люминесценции для возбуждения образцов использовали излучение второй гармоники Ti:Sapphire лазера Tsunami (SpectraPhysics), укомплектованного блоком генерации второй гармоники и прореживания импульсов (doubler and pulse selector module) 3980 (SpectraPhysics). Длина волны излучения основной гармоники Ti: Sapphire лазера составляла 790 нм, энергия в импульсе равнялась 25 нДж, длительность импульса 50 фс, частота повторения 80 МГц. Параметры излучения второй гармоники: длина волны 395 нм, энергия в импульсе 0.15 нДж, длительность импульса 300 фс, частота повторения 8 МГц. Сигнал люминесценции образца в направлении, перпендикулярном возбуждающему излучению, собирался с помощью оптического конденсора и направлялся в спектрографмонохроматор M266 (Solar Laser Systems), укомплектованный лавинным фотодиодом (avalanche photodiode) и системой счета одиночных фотонов (time-correlate single photon counting system) PicoHarp 300 (PicoQuant). Запись кинетики люминесценции образцов выполнена на длине волны λ , соответствующей максимуму их спектра излучения. Время жизни возбужденного состояния т определяли по уровню 1/е.

3. Результаты и их обсуждение

Спектры поглощения и возбуждения люминесценции К- и ИК-содержащих ПФХ с различными (кислородной и ФА) мостиковыми группами приведены на рис. 1 и 2 соответственно. Полученные результаты для всех изученных ПФХ коррелируют с измеренными ранее [1–3]. Спектры люминесценции (рис. 3), полученные для исследованных ПФХ при использованной в данной работе $\lambda = 395$ нм, соответствующей краю поглощения и возбуждения люминесценции (рис. 1 и 2), также хорошо согласуются с полученными в предыдущих работах результатами при $\lambda = 425$ нм [1,2].

Кинетика люминесценции для изученных ПФХ приведена на (рис. 4), видно, что все экспериментальные кривые, за исключением данных для ФА–ИК₈, хорошо описываются моноэкспоненциальной зависимостью. Ки-

Рис. 1. Спектры поглощения растворов ПФХ различной структуры в толуоле: $I - (O-K_{12}), 2 - (\Phi A - \mathcal{U}K_8), 3 - (O-\mathcal{U}K_8), 4 - (\Phi A - K_{12}).$

Рис. 2. Нормированные спектры возбуждения растворов ПФХ различной структуры в толуоле: $I - (O-K_{12})$ ($\lambda_{ex} = 310$ нм), $2 - (\Phi A - \mathcal{U}K_8)$ ($\lambda_{ex} = 395$ нм), $3 - (O-\mathcal{U}K_8)$ ($\lambda_{ex} = 395$ нм), $4 - (\Phi A - K_{12})$ ($\lambda_{ex} = 395$ нм) в максимуме их люминесценции.

Физика и техника полупроводников, 2015, том 49, вып. 7

нетика релаксации полимера $\Phi A - HK_8$ описывается двумя экспонентами. Величины времен жизни τ возбужденных состояний приведены в таблице. Из нее видно, вопервых, что для П ΦX (O, K) τ совпадает с полученным ранее [6] для слабополярных растворителей, к которым относится изученный в данной статье толуол. Во-вторых, по мере увеличения ароматической π -системы времена жизни τ возрастают при переходе от П ΦX (O, K) к П ΦX (O, ИK) и П ΦX (ΦA , K), в то время как для П ΦX (ΦA , ИK) с наиболее разветвленной π -системой величина τ снижается, становясь равной времени τ для П ΦX (O, K).

Для объяснения полученного результата для ПФХ (ФА, ИК) следует иметь в виду, что ПФХ (ФА, ИК) представляет собой сложный Д-А комплекс с переносом заряда как внутри ариленового ИК фрагмента,

Рис. 3. Нормированные спектры люминесценции растворов ПФХ различной структуры в толуоле: $1 - (O-K_{12})$, $2 - (\Phi A - \mathcal{U}K_8)$, $3 - (O-\mathcal{U}K_8)$, $4 - (\Phi A - \mathcal{K}_{12})$.

Рис. 4. Кинетика затухания люминесценции полимеров в растворе в максимуме их люминесценции при возбуждении $\lambda = 395$ нм: $1 - (O-K_{12}), 2 - (\Phi A - MK_8), 3 - (O-MK_8), 4 - (\Phi A - K_{12}).$

Физика и техника полупроводников, 2015, том 49, вып. 7

Времена жизни возбужденных состояний τ ПФХ различной структуры в максимуме их люминесценции λ_{max} при возбуждении $\lambda = 395$ нм

№ п.п.	ПФХ (X, Ar)	λ _{max} люминес- ценции, нм	Время жизни τ , нс
1	$\Pi \Phi X (O-K_{12})$	427	1.8
2	ПФХ (ФА-ИК ₈)	485	1.9
3	$\Pi \Phi X (O - И K_8)$	490	2.7
4	$\Pi\Phi X \; (\Phi A{-}K_{12})$	481	2.8

так и в бихинолиновом фрагменте (содержащем ТФА группировку с низким потенциалом ионизации) между электроноакцепторными хинолиновыми кольцами (А) и электронодонорным ФА мостиком (Д). По-видимому, наблюдаемый эффект снижения τ связан с наличием в ПФХ (ФА, ИК) двух излучающих компонент сложного ДА комплекса, приводящих к более быстрой релаксации энергии возбуждения. Наблюдаемый эффект, очевидно, может быть использован для повышения быстродействия оптоэлектронных систем, в которых используются ПФХ.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта 14-03-01137_а.

Список литературы

- [1] Е.Л. Александрова, В.М. Светличный, Л.А. Мягкова, Н.В. Матюшина, Т.Н. Некрасова, Р.Ю. Смыслов, В.Д. Паутов, А.Р. Тамеев, А.В. Ванников, В.В. Кудрявцев. Опт. и спектр., **114** (5), 803 (2013).
- [2] В.М. Светличный, Е.Л. Александрова, Т.Н. Некрасова, Р.Ю. Смыслов, Л.А. Мягкова, Н.В. Матюшина. ФТП, 46 (4), 512 (2012).
- [3] В.М. Светличный, Е.Л. Александрова, Л.А. Мягкова, Н.В. Матюшина, Т.Н. Некрасова, Р.Ю. Смыслов, А.Р. Тамеев, С.Н. Степаненко, А.В. Ванников, В.В. Кудрявцев. ФТП, 45 (10), 1392 (2011).
- [4] А.В. Сидорович, В.М. Светличный, И.В. Калинина, Т.И. Жукова, Л.Ф. Сергеева, В.В. Кудрявцев, И.В. Гофман. Высокомолекуляр. соединения: Сер. Б, 35 (9), 1538 (1993).
- [5] S.O. Norris, J.K. Stille. Macromolecules, 9 (3), 496 (1976).
- [6] Е.Л. Александрова, В.М. Светличный, Т.Н. Некрасова, Р.Ю. Смыслов, Л.А. Мягкова, Н.В. Матюшина, А.Р. Тамеев, В.Д. Паутов, В.В. Кудрявцев. ФТП, 47 (8), 1055 (2013).

Редактор Т.А. Полянская