Изучение фазовых превращений в углероде при электродинамическом сжатии

© И.П. Макаревич, А.Д. Рахель*, Б.В. Румянцев**, Б.Э. Фридман

Институт проблем электрофизики Российской академии наук,

191186 Санкт-Петербург, Россия

* Институт теплофизики экстремальных состояний

Объединенного института высоких температур Российской академии наук,

125412 Москва, Россия

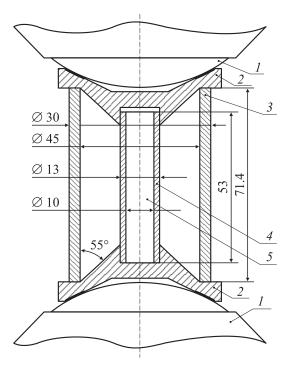
** Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: alfred/mdlab@mail.ioffe.ru

Исследовался фазовый переход графита в алмаз в ударных волнах при электродинамическом сжатии. Нагружение исследуемого углеродсодержащего материала осуществлялось осесимметричным схлопыванием медной оболочки (лайнера). Лайнер деформировался пондеромоторными силами, возникающими при прохождении по нему импульсного электрического тока с амплитудой $2-4\,\mathrm{MA}$. Схлопывание цилиндрического медного лайнера со скоростью $\sim 1\,\mathrm{km/s}$ обеспечивало ступенчатое нагружение углеродного материала в ампуле от 5 до $40\,\mathrm{GPa}$ в течение $4\,\mu\mathrm{s}$. В результате очистки сохраненного материала были получены агломераты, содержащие поликристаллы алмаза. Средний размер поликристаллов алмаза в агломератах составляет около $1-2\,\mu\mathrm{m}$, выход агломератов $\sim 3\%$.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 01-02-17243).


1. Введение

Разработка методов получения высоких импульсных давлений имеет важное научное и практическое значение. Такие методы используются при изучении уравнений состояний и фазовых превращений веществ, в технологиях получения сверхтвердых материалов. С точки зрения практики изучение фазового состояния углерода и синтез алмаза до сих пор привлекают внимание исследователей [1-3]. В настоящее время для получения высоких импульсных давлений и ударного сжатия веществ используют в основном взрывчатые вещества. Однако взрывные технологии имеют ряд существенных недостатков, главный из которых — обеспечение соответствующей инфраструктурой. Поэтому создание альтернативных методов ударного сжатия, не использующих взрывчатые вещества, является актуальной научной и практической задачей. Одним из перспективных методов получения высоких импульсных давлений является электродинамическое сжатие металлических лайнеров в схеме Z-пинч [4]. Такие эксперименты по электродинамическому ускорению массивных медных лайнеров и ударному сжатию графита были выполнены в Институте проблем электрофизики РАН.

2. Эксперимент

Установка по электродинамическому сжатию состоит из высоковольтного емкостного накопителя, который при замыкании на разрядную камеру (рис. 1) электродинамического стенда генерирует импульсный ток величиной до 10 МА. Исследуемый образец 5 в стальной

ампуле 4 с помощью стальных переходников 2 размещается соосно внутри медного лайнера 3. Переходники 2 обеспечивают непрерывный динамический контакт медного лайнера с электродами 1 за время прохождения импульса тока и схлопывания лайнера к центру. Перед

Рис. 1. Разрядная камера электродинамического стенда: I — электроды разрядной камеры, 2 — переходники, 3 — медный лайнер, 4 — стальная втулка (ампула сохранения), 5 — углеродсодержащий материал.

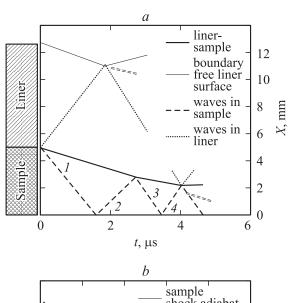
6*

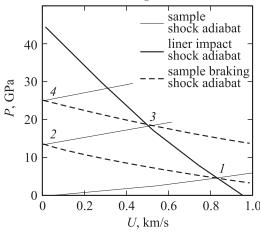
Состав образца	Плотность, kg/m ³	Пористость, %	Давление GPa/длительность μs				Выход* на
			Состояние**				углеродную
			1	2	3	4	фазу в %
Графит	1700	25	4.5/1.6	13/1.1	18/0.7	25/0.7	< 1
Графит / медь 1 : 1 mass	3400	6	10/1.2	27/1.0	32/0.6	38/0.6	6

Характеристики образцов, параметры нагружения и выход алмазной фазы

подачей импульса тока разрядная камера вакуумируется до остаточного давления 1—5 kPa.

Нагружение стальной ампулы 4 с исследуемым углеродным материалом осуществляется высокоскоростным осесимметричным схлопыванием медной оболочки (лайнера) 3. Лайнер деформируется при воздействии на него пондеромоторных сил, возникающих при прохождении по нему импульсного электрического тока. Как показывают расчеты [4] и эксперимент, разгон лайнера осуществляется за $\sim 60\,\mu\mathrm{s}$. Скорость внутренней поверхности лайнера в момент налета на ампулу сохранения составляет $0.95\,\mathrm{km/s}$.


Характеристики исследованных образцов, параметры нагружения и содержание алмазной фазы в сохраненных образцах приведены в таблице.


На рис. 2 представлены результаты расчета ударного волнообмена в образце под действием схлопывающегося лайнера. Расчет проведен для плоских волн и без учета диссипативных потерь [5]. Схлопывание цилиндрических ударных волн приводит к еще большим значениям давления, зависящим от текущего радиуса и диссипативных потерь.

Пространственно-временной анализ нагружения (рис. 2,a) показывает, что данные размеры лайнера и скорость схлопывания $0.95 \, \mathrm{km/s}$ обеспечивают время нагружения $\sim 4 \, \mu \mathrm{s}$. За это время образец подвергается 4-х кратному нагружению. Расчетные значения давления в ударных волнах и длительность их действия приведены в таблице. Достигнутое максимальное давление (рис. 2,b) мало для осуществления полного фазового перехода в графите ($25 \, \mathrm{GPa}$) и достаточно для смеси графит/медь ($38 \, \mathrm{GPa}$) [1,3], что подтверждается наличием алмазной фазы в сохраненном материале образцов.

После нагружения сохраненное вещество в ампуле извлекалось и подвергалось химическому окислению раствором бихромата калия $K_2Cr_2O_7$ в серной кислоте для удаления металла и окисления графита. Полученный остаток высушивался и анализировался. Оценка выхода, приведенная в таблице, является минимальной из-за неравномерности обжатия ампулы и жестких условий химического окисления, приводящих к частичному окислению алмазной фазы. После дополнительного плазмо-химического окисления тлеющим разрядом в токе воздуха с выходом $\sim 50\%$ получен остаток темно-серого цвета, состоящий из сглаженных пористых частиц-агрегатов размером $50-100\,\mu{\rm m}$.

Морфология частиц сохраненного очищенного материала образцов изучалась на электронном сканирующем микроскопе при регистрации излучения обратного пото-

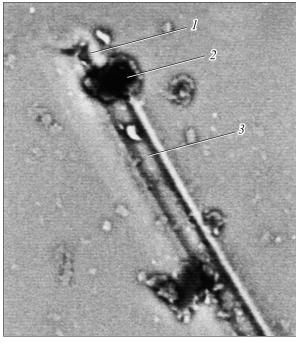


Рис. 2. Диаграммы нагружения образца графита плотностью $1700\,\mathrm{kg/m^3}$ ударом медного лайнера со скоростью $0.95\,\mathrm{km/s}$ (стальная оболочка ампулы рассматривается как часть медного лайнера). a — пространственно-временная X(T) диаграмма ударно-волнового нагружения. Траектории фронтов ударных волн: I — сжатия, 2 — отраженной от оси, 3 — вторичного сжатия, 4 — вторично отраженной от оси. b — ударноволновая диаграмма нагружения в координатах давление — массовая скорость P(U). Точки 1,2,3,4 — состояния образца на адиабатах соответствующих ударных волн.

^{* —} остаток после окислительно-кислотной очистки бихроматом калия в серной кислоте.

^{** —} номер состояния соответствует кратности воздействия ударной волны (рис. 2).

20 μm

Рис. 3. Окончание трека на стекле от агрегата очищенного образца: I — отдельные поликристаллы алмаза, 2 — агрегат, 3 — трек.

ка рассеянных электронов (BSE), интенсивность отражения которых определяется атомным весом вещества поверхности.

На рис. 3 приведено изображение конца трека, полученного при сдвиговой деформации тонкого слоя очищенного образца между стеклянными пластинами. Видно, что в процессе сдвига два единичных кристалла треугольной формы, потеряв маскирующую углеродную массу, затормозились и остановились. Более темные частицы с меньшим коэффициентом отражения — углеродные частицы. Более светлые частицы — частицы силикатного стекла. Дополнительная идентификация производилась с помощью рентгеновского микрозонда. В маскирующей углеродной массе, по-видимому, находится еще несколько единичных кристаллов, так как трек позади нее имеет большую ширину. По ширине протяженных треков длиной в $10^2 - 10^3$ раз превышающих размер частицы был оценен размер единичных кристаллов алмазной фазы в $1-2 \mu m$.

3. Заключение

Примененная установка электродинамического сжатия позволяет в объеме $\sim 4~{\rm cm}^3$ обеспечить ступенчатое нагружение исследуемого вещества до $30-40~{\rm GPa}$ длительностью до $4~\mu{\rm s}$. В данных условиях нагружения зафиксирован синтез алмазной фазы из реакторного графита с размером зерна поликристалла алмаза до $1-2~\mu{\rm m}$.

Выход алмазной фазы зависит от плотности графита и состава смеси графита с металлом. Применение смеси металла с графитом позволяет увеличить давление, способствует фазовому переходу и сохранению алмазной фазы при разгрузке.

Примененные в работе методы очистки позволили выделить до 3% углеродной массы в виде агрегатов, состоящих из зерен алмазной фазы, аморфного углерода и графита.

Список литературы

- M.V. Zhernokletov, G.V. Simakov. Proc. of the Conf. of the American Physical Society Topical Group on Shock Compression of Condensed Matter held at Seattle. Washington (1995). P 69
- [2] В.В. Дигонский, С.В. Дигонский. Закономерности образования алмаза. Недра, СПб. (1992). 223 с.
- [3] M. Yoshida, N.N. Thadhani. Shock compression of condensed matter. Elsevier Science Publ. B.V. (1991–1992). P. 585.
- [4] B.E. Fridman, I.P. Makarevich, A.D. Rakhel, B.V. Rumyantsev. Abstract book of Int. Conf. on Megagauss Magnetic Field Generation and Related Topics "MEGAGAUSS-IX". Moscow—St. Petersburg, Russia (2002). P. 39.
- [5] С.Г. Андреев, А.В. Бабкин, Ф.А. Баум, Н.А. Имховик, И.Ф. Кобылкин, В.И. Колпаков, С.В. Ладов, В.А. Одинцов, Л.П. Охитин, В.В. Селиванов, В.С. Соловьев, К.П. Станюкович, В.П. Челышев, Б.И. Шехтер. Физика взрыва / Под ред. Л.П. Орленко. Изд. 3-е, перераб. Физматлит, М. (2002). Т. 1. 832 с.