08

Спин-фононный и решеточный вклады в расщепление основного состояния Gd³⁺ и Eu²⁺ в кристаллах шеелита

© А.Д. Горлов

Научно-исследовательский институт физики и прикладной математики Уральского федерального университета, Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@urfu.ru

(Поступила в Редакцию 13 января 2015 г.)

Исследованы спектры ЭПР Gd³⁺ в монокристаллах CaWO₄ в области температур $T = 1.8, 4.2, 114-300 \, \mathrm{K}$ и получены зависимости параметров спинового гамильтониана $b_n^m(T)$. Проведен анализ зависимости $b_2^0(T)$. Выделены спин-фононный вклад $b_2^0(F)$ и вклад статической решетки $b_2^0(L)$ в величины $b_2^0(T)$. Для этого рассчитано изменение $b_2^0(L)$ с учетом температурных сдвигов ионов кислорода в CaWO₄. Аналогичный анализ проведен для CaWO₄: Eu²⁺ на основе ЭПР-данных других авторов (Bronstein, Voterra и Harvey, Kiefte). Показано, что $b_2^0(F) > 0$, изменения $b_2^0(F)$ в зависимости от T для этих примесных центров хорошо описываются только моделью Pfister, а смена знака $b_2^0(T)$ для Eu²⁺ определяется температурным расширением решетки.

Работа выполнена в рамках госзадания Минобрнауки РФ (код проекта 2457) на оборудовании Центра коллективного пользования "Современные нанотехнологии" УрФУ.

Спектроскопические исследования кристаллов со структурой шеелита (CaWO₄) с примесью редкоземельных металлов (P3M) связаны с широким использованием их в технике [1–3]. Эффективность устройств на основе таких материалов существенно зависит от фононного спектра, влияющего как на релаксационные характеристики, так и на положения энергетических уровней примеси [4–7].

Многочисленные ЭПР-исследования примесных ионов переходных групп в разных кристаллах показали, что параметры спинового гамильтониана $b_n^m(T)$, или константы начального расщепления, заметно зависят температуры. Эти параметры, определяющие от расщепление ΔE основного состояния таких центров, зависят не только от координат лигандов $(R_i, \theta_i, \varphi_i)$, окружающих примесь, но и от тепловых колебаний узлов решетки кристаллов [4-11]. Используя только спектры ЭПР, невозможно разделить вклады в ΔE от температурных изменений координат и от тепловых колебаний решетки. Однако, если учесть температурное параметров начального расщепления, поведение например, $b_n^0(L)$ за счет изменения координат лигандов (implicit effect), можно выделить вклад от решеточных колебаний $b_n^0(F)$ (фононный вклад или explicit effect) [4] из экспериментальных значений $b_n^0(T)$. Тогда разность между экспериментальными $b_n^0(T)$ и расчетными $b_n^0(L)$ величинами при выбранной температуре следует отнести к вкладу от решеточных колебаний $b_n^0(F)$, т.е.

$$b_n(F) = b_n^0(T) - b_n(L).$$
 (1)

В (1) и далее $b_n^0(F) = b_n(F)$ и $b_n^0(L) = b_n(L)$.

В настоящей работе выделены эти вклады в b_2^0 для Gd^{3+} и Eu^{2+} в монокристаллах CaWO₄ с помощью наших ЭПР-исследований Gd^{3+} в CaWO₄, данных ра-

бот [12–15] и результатов температурных рентгеноструктурных измерений [16,17].

Отметим, что в работах, посвященных такого рода исследованиям, температурной зависимостью $b_n(L)$ часто пренебрегают [9–11]. Там, где этот вклад учитывается, оценки проводятся в модели точечных зарядов при использовании данных по коэффициентам термического расширения (сжатия), известным в ограниченном диапазоне температур (см. ссылки в работах [4–11]). Нами $b_n(L)$ рассчитан в рамках хорошо зарекомендовавшей себя суперпозиционной модели [18]. Наши результаты, как показано далее, четко указывают на необходимость учета изменений $b_n(L)$ при анализе температурных зависимостей b_2^0 , по крайней мере в шеелитовых структурах. В [12–15] уже частично исследована зависи-

В $[12^{-15}]$ уже частично исследована зависимость $b_n^m(T)$ для Gd^{3+} и Eu^{2+} в CaWO₄, однако, на наш взгляд, выводы о решеточном и фононном вкладах некорректны. Анализ ЭПР-данных для Eu^{2+} в CaWO₄ проведен нами с целью определения причин смены знака $b_2^0(T)$ и сравнения параметров, описывающих температурное поведение начального расщепления для двух примесных РЗМ-ионов в *S*-состоянии в одной матрице. Полученные результаты могут служить опорными данными при тестировании теоретических моделей динамических и статических взаимодействий вблизи примесных центров.

Изученные кристаллы CaWO₄: Gd³⁺ выращены методом Чохральского с примесью 0.02 wt.% Gd₂O₃ (с природным содержанием изотопов) в шихте. Исследования спектров ЭПР при разных ориентациях внешнего магнитного поля **H** и температурах проведены на спектрометре Bruker EMX plus в трехсантиметровом диапазоне. Спектр ЭПР (электронный спин S = 7/2) представляет собой набор интенсивных (разрешенные переходы с изменением проекций спина $|\Delta M| = 1$)

Параметр	T, K								
	1.8	4.2	114 (3)	153(3)	199(4)	240(4)	300(2)		
$g_x = g_y$	1.992(1)	1.992(1)	1.9915(6)	1.9917(5)	1.9917(5)	1.9915(7)	1.9918(8)		
g_z	1.992(1)	1.992(1)	1.9915(7)	1.9916(5)	1.9916(5)	1.9915(6)	1.9916(5)		
b_2^0	-2757(1)	-2758(2)	-2739.7(4)	-2728.7(3)	-2716.7(3)	-2700.8(3)	-2679.6(3)		
b_4^0	-71.9(5)	-71.7(5)	-71.4(3)	-70.9(3)	-70.2(3)	-69.4(3)	-68.4(3)		
b_4^4	-437(4)	-438(4)	-434(2)	-432(2)	-429(2)	-425(2)	-420(2)		
$P_2^0(\mathrm{Gd}^{155})$	-59.49(1)	-59.5(4)	-59.2(4)	-59.0(4)	-58.8(4)	-58.5(5)	-58.3(5)		
$P_2^0({ m Gd}^{157})$	-63.36(1)	-63.3(4)	-62.7(4)	-62.6(4)	-62.5(4)	-62.3(5)	-62.2(5)		

Таблица 1. Параметры (в MHz) спинового гамильтониана Gd³⁺ в CaWO₄

Примечание. $b_6^0 = 0.6(8)$, $b_6^4 = 13(11)$, $b_6^6 = 0(2)$; $A_x = A_y = 12.3(3)$, $A_z = 12.4(3)$ и $b_2^0(T)/P_2^0(T) = 46.2(3)$ для Gd¹⁵⁵ и $A_x = A_y = 16.2(3)$, $A_z = 16.3(3)$ и $b_2^0(T)/P_2^0(T) = 43.4(3)$ для Gd¹⁵⁷ при всех температурах; значения g_n табличные.

и слабых (запрещенные переходы с $|\Delta M| > 1$) сигналов. Положения всех переходов хорошо описываются спиновым гамильтонианом, соответствующим локальной симметрии D_{2d} , т.е. Gd^{3+} замещает Ca^{2+} , как было установлено ранее в [12,13]. Во всех ориентациях Н наблюдалась сверхтонкая структура (СТС) ЭПР-сигналов, связанная с нечетными изотопами Gd^{155,157} (ядерный спин I = 3/2). СТС наиболее четко разрешена в спектрах, обусловленных запрещенными электронно-ядерными переходами (включающими перевороты ядерных спинов), из-за малой ширины сигналов (0.4-1 G) даже при $T > 300 \, \text{K}$. Исследование СТС в разных ориентациях Н позволило определить константы сверхтонкого $(A_x = A_y, A_z)$ и квадрупольного (P_2^0) взаимодействий для нечетных изотопов. Методика определения A_i и P_2^0 описана в [19]. Данные, полученные в системе координат, аналогичной [19], приведены в табл. 1. При близких температурах они совпадают с результатами [12,13], кроме величин b_4^4 , значения которых зависят от выбора направления осей Х, Ү.

Температурная зависимость b_2^0 для Gd^{3+} и Eu^{2+} в CaWO4

1. СаWO₄: Gd³⁺. На рис. 1 приведена экспериментальная зависимость $b_2^0(T)$ для Gd³⁺ в CaWO₄, где кружки на линии I — наши данные, а звездочки данные работ [12,13]. Этот параметр увеличивается с ростом температуры, что характерно и для других кристаллов со структурой флюорита с примесью Gd³⁺ [12,13,19,20]. Чтобы определить отношение двух вкладов в $b_2^0(T)$ (см. (1)), мы рассчитали $b_2(L)$ в модели суперпозиции [18]. С учетом температурных изменений координат ближайших к РЗМ восьми ионов кислорода. Для определения $b_2(L)$ использовались выражение для b_2^0 и значения "intrinsic" параметров для Gd³⁺, приведенные в [21],

$$b_2(L) = \sum_i k_i(\theta) [b_{2p}(R_0/R_i)^3 + b_{2s}(R_0/R_i)^{10}].$$
 (2)

Здесь $b_{2p} = -1.289 \cdot 10^4$ MHz — вклад от точечного заряда O^{2-} на расстоянии $R_0 = 2.34$ Å, а $b_{2s} = 6.892 \cdot 10^3$ MHz — вклад от перекрывания и ковалентности, $k_i(\theta) = n/2(3\cos^2\theta_i - 1)$ — координацион-

ные факторы [18]. Ближайшие к Gd³⁺ лиганды разбиваются на две четверки, эквивалентные по вкладам в b_2^0 , так что i = 1, 2, a n = 4. Их координаты R, θ, φ в решетке CaWO₄ мы определили по экспериментальным результатам работ [16,17], используя функциональные зависимости от *T* параметров решетки и значения координат x, y, z для лигандов. Расстояния $Gd^{3+}-O^{2-}$ рассчитаны по формуле $R_i = R + (r_i - r_h)/2$ [22], где r_i, r_h ионные радиусы примесного и замещаемого ионов, взятые из таблиц Шеннона [23]. Полученные значения $b_2(L)$ представлены точками 2 на рис. 1. Ошибки для $b_2(L)$ отражают различие между средними значениями координат O^{2-} (в диапазоне $T = 5-300 \, {\rm K}$) и величинами x, y, z, приведенными в [17] для конкретных температур. Поскольку полученные значения $b_2(L)$ уменьшаются, а b_2^0 увеличивается с ростом T (рис. 1), можно сделать вывод о том, что $b_2(F) > 0$.

Рис. 1. Зависимость $b_2^0(T)$ для CaWO₄: Gd³⁺ (1), расчетные значения для $b_2(L)$ при разных T (2) и зависимость $b_2(F)$, определяемая соотношением (3) с параметрами из табл. 2 (3). Квадраты на кривой 3 получены с помощью (1). Кружки на кривой I — наши результаты, звездочки — данные работ [12,13].

	Параметр						
Модель	b ₂ ⁰ (RL), MHz	<i>b</i> ₂ (0), MHz	$\omega \cdot 10^{-13},$ rad/s	$\Theta_{\rm D}, {\rm K}$			
	Gd^{3+}						
Pfister [7]		73.6(78)	2.51(17)				
Pfister [7,11]	-2789(3)	31.7(14)	2.36(12)				
Huang [5,11]	-2757(3)	42.8(29)		455(19)			
Shrivastava [6,11]	-2757(3)	33.3(25)		250(12)			
	Eu^{2+}						
Pfister [7]		108.2(50)	4.28(11)				
Pfister [7,11]	17.6(11)	-0.79(5)	0.23(2)				
Huang [5,11]	16.7(10)	0.72(5)		32(2)			
Shrivastava [6,11]	16.7(10)	-0.78(5)		23(2)			

Таблица 2. Модельные параметры температурных зависимостей $b_2(F)$ и b_2^0

Примечание. Ошибки в параметрах соответствуют 3σ .

Далее рассмотрим зависимость от Т фононно-индуцированного вклада $b_2(F)$ в b_2^0 , который определим согласно (1) по нашим экспериментальным данным. Известно несколько теоретических моделей спин-фононного взаимодействия, влияющего на положение энергетических уровней примесей в кристаллах. Это модель Huang [5], которая предполагает доминирующее влияние оптических фононов на ΔE , а следовательно, и на $b_2(F)$, а также модель Shrivastava [6], где наибольший вклад в ΔE вносят акустические фононы, и модель Pfister [7], в которой показано, что локальные оптические колебания примесного кластера играют основную роль в фононно-индуцированном вкладе. Каждой модели соответствует своя функциональная температурная зависимость для $b_n(F)$. Используя процедуру "genfit" (пакет Mathcad), мы нашли, что функция, которая наиболее точно описывает эту зависимость, предложена в [7]:

$$b_2(F) = b_2(0)[\operatorname{coth}(\hbar\omega/2kT) - 1],$$
 (3)

где $b_2(0)$ — вклад "нулевых колебаний" решетки, ω — частота локальных колебаний кластера, включающего примесь и ближайшие лиганды, k — постоянная Больцмана. Так, на рис. 1 кривая 3 соответствует выражению (3) с параметрами $b_2(0)$ и ω для Gd³⁺, приведенными в табл. 2. Квадраты на кривой получены с помощью (1) (звездочки — данные работ [12,13]). Приведенные на рис. 1 ошибки для $b_2(F)$ получены при учете неточностей в определении $b_2^0(T)$ и $b_2(L)$, а погрешности для параметров в табл. 2 соответствуют утроенному среднеквадратичному отклонению, т.е. 3σ .

2. CaWO₄: Eu²⁺. Экспериментальная зависимость $b_2^0(T)$ для Eu²⁺ в CaWO₄ по данным работ [14,15] (точки на кривой *I* рис. 2) — практически прямая, пересекающая ось *T*. Эти результаты проанализированы нами также, как и для Gd³⁺ в CaWO₄. Расчет $b_2(L)$ проведен с "intrinsic" параметрами

 $b_{2p} = -1.1548 \cdot 10^4 \text{ MHz}$ [24] при $R_0 = 2.5 \text{ Å}$ и $b_{2s} = 9.756 \cdot 10^3 \text{ MHz}$, последний был определен в [25] при T = 1.8 K.

Температурное поведение $b_2(L)$ показано на рис. 2 точками 2. Этот параметр уменьшается, причем $b_2(L) > 0$ при T < 90 К и меняет знак при возрастании T. Следовательно, $b_2(F) > 0$. Смена знака b_2^0 при $T \sim 194$ К определяется тем, что здесь $|b_2(L)| \sim b_2(F)$. При T > 194 К $b_2(F) < |b_2(L)|$, и их сумма отрицательна, т. е. $b_2^0 < 0$. Выражение (3) с параметрами, приведенными в табл. 2 для Eu²⁺, неплохо описывает рост $b_2(F)$ с увеличением T (кривая 3 на рис. 2). Ошибки в параметрах также соответствуют 3σ .

Для оценки влияния двух вкладов в температурную зависимость b_2^0 определим отношение $\Delta b_2(L)$ (разность значений при T = 1.8 и 300 K) к $b_2(F)$ при T = 300 K. Получаем следующий результат: $|\Delta b_2(L)/b_2(F)| \sim 0.5$ для Gd³⁺ и ~ 1.2 для Eu²⁺. Отсюда можно сделать заключение о необходимости учета температурных изменений $b_2(L)$ при анализе $b_2^0(T)$ для этих примесных центров в CaWO₄. Отметим также, что ранее в работе [25] нами описана слабая зависимость $b_2^0(T)$ ($\Delta b_2^0 \sim 10$ MHz в диапазоне T = 1.8-300 K) для Eu²⁺ в SrMoO₄, что также, возможно, указывает на компенсацию спин-фононного и решеточного вкладов в b_2^0 , т.е. на то, что $|\Delta b_2(L)/b_2(F)| \sim 1$.

Нам не удалось описать зависимость $b_2(F)$ от T с помощью двух других модельных функций [5,6] как для Gd^{3+} , так и для Eu^{2+} в CaWO₄. Оказалось, что параметры для этих функций критично зависят от начальных условий, поэтому нет однозначного выбора. Лишь введение дополнительной константы позволяет воспроизвести зависимость $b_2(F)$ от T, однако в моделях [5,6] она отсутствует.

С другой стороны, экспериментальные зависимости $b_2^0(T)$ как для Gd^{3+} , так и для Eu^{2+} в CaWO₄ можно

Рис. 2. Зависимости $b_2^0(T)$ для CaWO₄: Eu²⁺ из данных работ [14,15] (*I*) и температурное изменение $b_2(L)$ (расчет) (*2*). *3* — зависимость $b_2(F)$ от *T*: точки определены с помощью (1), а кривая задана выражением (3) с параметрами из табл. 2.

описать с помощью любой из функций [5-7], если взять их в виде выражений (2)-(4) из работы [11]. В эти выражения введен параметр $b_n^0(\mathrm{RL}) = \mathrm{const}$, называемый вкладом от "жесткой решетки", а значение $b_2(F)$ для моделей [5,6] зависит от интегральных функций, включающих температуру Дебая Θ_D . Проведя фиттинг для всех модельных функций, мы получили параметры, приведенные в табл. 2. На рис. 1 и 2 кривые 1 соответствуют выражению (2) из работы [11]. Понятно, что при таком подходе вся температурная зависимость $b_2^0(T)$ "перекладывается" на спин-фононный вклад. На наш взгляд, именно в этом причина разных значений не только $b_2(0)$ и ω , но и Θ_D для Gd³⁺ и Eu²⁺ в CaWO₄. Более того, эти параметры различаются на порядок для двух РЗМ в S-состоянии в одном кристалле. Это вновь указывает на необходимость учета температурных изменений $b_2(L)$, роль которого в таком описании играет $b_2^0(RL)$.

Отношение величин спин-фононных вкладов $b_2(0)$ в модели [7] для Gd³⁺ и Eu²⁺ в CaWO₄ составляет ~ 0.7. В теоретических моделях работ [4–7] показано, что спин-фононное взаимодействие определяет смешивание основного и возбужденных состояний примесного иона, приводя к температурной зависимости $b_2(F)$. Если возбужденные состояния для Eu²⁺ лежат ниже, чем для Gd³⁺ в CaWO₄, то это может объяснить отношение величин спин-фононных вкладов. С другой стороны, большая амплитуда нулевых колебаний примесного кластера также может привести к аналогичному эффекту.

Температурные изменения других констант спинового гамильтониана $(b_4^0$ и b_4^4 , табл. 1) подобны наблюдавшимся ранее в [13,19,20] для Gd³⁺ в изоструктурных кристаллах. Анализ температурных изменений этих параметров нами проведен только в модели [7] (взято выржение (2) из [11]) для сравнения величин ω , поскольку, на наш взгляд, нет удовлетворительных моделей расчета решеточных вкладов $b_4(L)$. Получены следующие результаты: $b_4^0(\text{RL}) = -75.1 \text{ MHz}, \ \omega = 4.24 \cdot 10^{13} \text{ rad/s}$ и $b_4^4(\mathrm{RL}) = -448.3\,\mathrm{MHz},\,\omega = 3.2\cdot 10^{13}\,\mathrm{rad/s}.$ Как и ожидалось, частоты ω отличаются как друг от друга, так и от значений, определенных для $b_2^0(T)$. Эти результаты указывают на заметный вклад температурных изменений $b_4^0(\text{RL})$ и $b_4^4(\text{RL})$ в $b_4^0(T)$ и $b_4^4(T)$, поскольку модель [7] предполагает лишь одну частоту локальных колебаний кластера, влияющую на все параметры начального расщепления. С этой точки зрения результаты работы [20], где для всех зависимостей $b_n^m(T)$ определена только одна ω , кажутся странными, поскольку это возможно лишь при условии, что $b_n^m(\text{RL}) = \text{const}$ при всех температурах.

Таким образом, в настоящей работе проведен анализ зависимостей $b_2^0(T)$ для Gd^{3+} и Eu^{2+} в CaWO₄ в рамках моделей Huang [5], Shrivastava [6] и Pfister [7]. Анализ показал, что наиболее приемлемой является модель [7], где локальные колебания примесного кластера играют основную роль в спин-фононном взаимодействии. В рамках этой модели выделен спин-фононный вклад $b_2^0(F) > 0$. Показана необходимость учета температурных изменений вклада от статической решетки

 $b_2^0(L)$, особенно для Eu²⁺ в CaWO₄, причем отношения изменений решеточного (в диапазоне T = 1.8 - 300 K) к спин-фононному вкладу (T = 300 K) близки к 0.5 для Gd³⁺ и ~ 1.2 для Eu²⁺ в CaWO₄.

Показано, что причиной смены знака $b_2^0(T)$ для Eu^{2+} в CaWO₄ является изменение знака вклада от статической решетки $b_2^0(L)$ при увеличении параметров решетки с ростом температуры. При T > 194 K $b_2^0(L) < 0$, а $|b_2^0(L)| > b_2^0(F)$, что приводит к $b_2^0 < 0$.

Автор благодарит И.Н. Куркина за предоставление образцов $CaWO_4: Gd^{3+}$.

Список литературы

- [1] Y. Huang, H.J. Seo. J. Phys. Chem. A 113, 5317 (2009).
- [2] J. Brubach, T. Kissel, M. Frotscher, M. Euler, B. Albert, A. Dreizler. J. Lumin. 131, 559 (2011).
- [3] В.Осико, И.Щербаков. Фотоника 39, 3, 14 (2013).
- W.M. Walsh, jr. Phys. Rev. 114, 1473 (1959); W.M. Walsh, jr.,
 J. Jeener, N. Bloembergen. Phys. Rev. 139, A1338 (1965).
- [5] C.-Y. Huang. Phys. Rev. 159, 683 (1967).
- [6] K.N. Shrivastava. Phys. Rev. 187, 446 (1969).
- [7] G. Pfister, W. Draybrodt, W. Assmus. Phys. Status Solidi B 36, 351 (1969).
- [8] S.B. Oseroff, R. Calvo. Phys. Rev. B 5, 2474 (1972).
- [9] D Nicollin, H Bill. J. Phys. C: **11**, 4803 (1978).
- [10] T. Rewajt, M. Krupskig, J. Kuriatat, J.Y. Buzare. J. Phys.: Cond. Matter 4, 9909 (1992).
- [11] T. Rewajt, J. Kuriata, J. Typek, J.Y. Buzare. Acta Phys. Pol. A 84, 1143 (1993).
- [12] C.F. Hempstead, K.D. Bowers. Phys. Rev. 118, 131 (1960).
- [13] J.S.M. Harvey, H. Kiefte. Can. J. Phys. 49, 995 (1971).
- [14] J. Bronstein, V. Voterra. Phys. Rev. 137, A1201 (1965).
- [15] J.S.M. Harvey, H. Kiefte. Can. J. Phys. 47, 1505 (1969).
- [16] A. Senyshyn, H. Kraus, V.B. Mikhailik, V. Yakovyna. Phys. Rev. B 70, 214 306 (2004).
- [17] A. Senyshyn, M. Hoelzel, T. Hansen, L. Vasylechko, V.B. Mikhailik, H. Kraus, H. Ehrenberg. J. Appl. Cryst. 44, 319 (2011).
- [18] D.J. Newman, W. Urban. Adv. Phys. 24, 793 (1975).
- [19] А.Д. Горлов. ФТТ 55, 883 (2013).
- [20] S.V. Nistor, M. Stefan, E. Goovaerts, M. Nikl, P. Bohacek. J. Phys.: Cond. Matter. 18, 719 (2006).
- [21] L.I. Levin, A.D. Gorlov. J. Phys.: Cond. Matter 4, 1981 (1992).
- [22] W.C. Zheng. S.Y. Wu. Physica B 304, 137 (2001).
- [23] R.D. Shennon. Acta. Cryst. A 32, 751 (1976).
- [24] В.А. Важенин, А.Д. Горлов, Л.И. Левин, К.М. Стариченко, С.А. Чикин, К.М. Эриксонас. ФТТ **29**, 3035 (1987).
- [25] А.Д. Горлов. ФТТ 56, 2115 (2014).