05,04

Влияние электрического поля на намагниченность монокристалла SmFe₃(BO₃)₄

© А.Л. Фрейдман¹, А.Д. Балаев¹, А.А. Дубровский^{1,2}, Е.В. Еремин¹, К.А. Шайхутдинов^{1,2}, В.Л. Темеров¹, И.А. Гудим¹

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Международная лаборатория сильных магнитных полей и низких температур, Вроцлав, Польша E-mail: fss4@yandex.ru

(Поступила в Редакцию 12 января 2015 г.)

Впервые экспериментально зафиксировано изменение намагниченности монокристалла SmFe₃(BO₃)₄, вызванное приложением переменного электрического поля. Как показали измерения, намагниченность осциллирует не только с частотой прикладываемого электрического поля, но и с удвоенной частотой. Измерены зависимости магнитоэлектрического эффекта от магнитного и электрического полей и температуры. Мы полагаем, что за наличие второй гармоники магнитоэлектрического эффекта ответственна электрострикция.

Работа выполнена при поддержке РФФИ (грант № 14-02-00307_а.)

1. Введение

Сосуществование магнитного порядка и спонтанной электрической поляризации в материалах, называемых мультиферроиками, является предметом интенсивных исследований в области физики конденсированного состояния вещества в последнее время. Мультиферроиками можно назвать те соединения, в которых присутствуют любые два или все три типа упорядочения: спонтанный магнитный момент, спонтанный дипольный момент и спонтанная деформация [1].

Среди мультиферроиков можно выделить два типа: вещества, в которых магнитный и сегнетоэлектрический фазовые переходы происходят независимо друг от друга, и вещества, в которых данные фазовые переходы происходят одновременно и являются взаимосвязанными. В последнем случае взаимодействие между магнитной и сегнетоэлектрической подсистемами может быть очень сильным [2].

Материалы, в которых наблюдается магнитоэлектрический эффект, показывают зависимость поляризации от приложенного магнитного поля (так называемый ME_H -эффект), либо изменение намагниченности при приложенном электрическом поле (так называемый ME_E -эффект) [3].

Среди веществ, в которых наблюдается магнитоэлектрический эффект, выделяется семейство боратов $RM_3(BO_3)_4$, где R — редкоземельный ион или Y, а M ион Al, Fe, Ga, Sc, Cr. Кристаллы этого семейства имеют пространственную группу R32, см. например [4], что определяет отсутствие центра инверсии. Подрешетка из октаэдров MO₆ образует геликоидальную цепочку вдоль *с*-оси с обменным взаимодействием между 3*d*-элементами, ионы редкоземельного элемента, образуя призмы RO₆, изолированы друг от друга треугольниками BO₃, и, как следствие, взаимодействие типа R–O–R отсутствует. Как треугольники ВО₃, так и RO₆ призмы связаны с тремя цепочками МО₆.

В работе [5] показано, что в соединении SmFe₃(BO₃)₄ поляризация имеет несобственный характер и индуцируется антиферромагнитным упорядочением ($T_N \approx 40 \,\mathrm{K}$) ионов Fe³⁺, что указывает на сильную магнитоэлектрическую связь. На данном соединении проводились измерения величины магнитоиндуцированной поляризации $\Delta P(H)$ (ME_H -эффект) [5], так же проводилось исследование магнитодиэлектрического эффекта $\varepsilon(H)$ [2], однако до сих пор не были опубликованы измерения ME_E -эффекта, т.е. измерения намагниченности как функции электрического поля $\Delta M(E)$, чему посвящена данная работа.

2. Эксперимент

Монокристалл ферробората самария $SmFe_3(BO_3)_4$ был выращен из раствора—расплава на основе $Bi_2Mo_3O_{12}$ [6]. Мы будем пользоваться ортогональной системой координат (x, y, z), где x и z совпадают с кристаллографическими направлениям a и c соответственно, а направление y перпендикулярно плоскости xz. Образец для исследований вырезался в форме прямоугольной пластинки.

Для измерений ME_E -эффекта на грани yz образца наносился проводящий клей на эпоксидной основе. Прикладываемое к обкладкам образца переменное электрическое поле E за счет магнитоэлектрического эффекта $(ME_E$ -эффект) приводит к осцилляции его намагниченности с амплитудой ΔM и частотой прикладываемого напряжения (первая гармоника), а также с частотой, в два раза превышающей частоту поля E. Измеряемая величина ΔM фиксируется синхронным детектором Stanford Research Systems Model SR830 DSP Lock-in

 $\Delta M'_{yx}, 10^{-3} \text{ emu/g}$ 3

2

0

2.0

 10^{-3} emu/g

0.5

0

20

15

20

15

10

 H_v , kOe

Amplifier, который обладает возможностью измерения сигнала на нескольких гармониках. Детально ознакомиться с методикой измерения МЕЕ-эффекта можно в работах [7,8].

Результаты 3.

а

2000

1000

Ex, VICIII

b

2000

Ex, VICIII

На рис. 1 приведены результаты измерений первой гармоники МЕЕ-эффекта как функции магнитного поля Н и амплитуды переменного электрического поля Е. Нами выведены обозначения $\Delta M'_{ii}$ (или $\Delta M''_{ii}$), где один штрих означает первую гармонику, а два штриха вторую, *i* — направление, вдоль которого измерялась величина изменения намагниченности ΔM (направле-

10

 H_x , kOe

ние Н так же всегда совпадает с і из-за конструктивных особенностей установки), ј — направление поля Е. Как видно из рис. 1 для возникновения МЕ_Е-эффекта необходимо, чтобы и магнитное и электрическое поле были отличны от нуля как для поперечного (рис. 1, *a*), так и для продольного (рис. 1, b) случаев. При этом функция $\Delta M(E, H)$ линейна относительно электрического поля Е, но нелинейна и немонотонна относительно магнитного поля Н. Эффекты отличаются по величине и имеют максимумы в магнитных полях 6.4 и 4.2 kOe для поперечного и продольного эффектов соответственно, максимальная величина $\Delta M'_{yx}$ примерно в 2 раза превосходит $\Delta M'_{rr}$.

Интересно заметить, что в случае МЕ_н-эффекта в районе 5 kOe наблюдается наибольшая кривизна функ-

Рис. 2. Зависимость магнитоэлектрической восприимчивости поперечного $\beta'_{yx}(H_y, T)$ (a) и продольного $\beta'_{xx}(H_x, T)$ (b) эффектов. Кружками обозначены экспериментальные данные, а треугольниками — точки, полученные spline-аппроксимацией.

Рис. 3. Зависимость второй гармоники поперечного $\Delta M''_{yx}(H_y, E_x)$ (*a*) и продольного $\Delta M''_{xx}(H_x, E_x)$ (*b*) магнитоэлектрического эффектов, T = 4.2 К. Кружками обозначены экспериментальные данные, а треугольниками — точки, полученные апроксимацией полиномом второй степени.

ции $\Delta P(H)$ [5], в то время как ME_E -эффект имеет максимум вблизи этих значений магнитного поля. Кроме того, в полях выше 10 kOe функция $\Delta P(H)$ стремится к насыщению, в то время как ME_E -эффект практически пропадает, что соответствует установлению однородного антиферромагнитного упорядочения [5].

На рис. 2 представлены графики температурно-полевой зависимости величины магнитоэлектрической восприимчивости первой гармоники ME_E -эффекта, определенной как $\beta'_{ij} = \Delta M'_{ij}/E_j$. На рис. 2, *а* магнитное поле приложено вдоль направления оси *y* (поперечный эффект), а на рис. 2, *b* — вдоль оси *x* (продольный эффект). Как видно из рисунков, на зависимостях $\beta'_{yx}(H_y, T)$ и $\beta'_{xx}(H_x, T)$ максимум ME_E -эффекта уменьшается и смещается в сторону слабых магнитных полей по мере увеличения температуры вплоть до фазового перехода при T = 33 K.

Также на данном образце нами обнаружено изменение намагниченности $\Delta M''$ с частотой, равной удвоенной частотое возбуждающего электрического поля *E*. На рис. 3 представлены графики зависимости второй гармоники ME_E -эффекта как функции *H* и *E*. В то время как первая гармоника ME_E -эффекта $\Delta M'$ линейна относительно амплитуды электрического поля *E*, сигнал второй гармоники $\Delta M''$ имеет квадратичную зависимость относительно *E*. Зависимость $\Delta M''$ относительно магнитного поля также усложняется.

По мере увеличения магнитного поля амплитуда второй гармоники поперечного эффекта $\Delta M''_{yx}$ (рис. 3, *a*) возрастает до первого максимума, который наблюдается в поле $H_v \sim 2 \,\mathrm{kOe}$, затем эффект убывает и в поле $\sim 3.5\,\mathrm{kOe}$ полностью пропадает. По мере дальнейшего увеличения поля величина $\Delta M_{yx}''$ снова увеличивается и достигает своего второго максимума в поле $H_{\rm y} \sim 7.5 \, {\rm kOe}$, затем наблюдается монотонное убывание эффекта. Если после этого начать уменьшать внешнее поле H_v , то возникнет небольшой гистерезис, показанный на рис. 4. Следует отметить, что на всех приведенных нами графиках величина ΔM имеет смысл амплитуды изменения магнитного момента, однако используемый метод измерений позволяет также наблюдать за фазой принимаемого сигнала, которая, как оказалось, зависит от магнитного поля. Например, для всех конфигураций измерений и гармоник наблюдается переключение фазы на π при изменении направления поля H на противоположное, то есть при переходе через 0, другими словами, эффект оказался нечетным по Н. Кроме того, фаза второй гармоники поперечного эффекта $\Delta M''_{vr}(H_v)$

Рис. 4. Зависимость $\Delta M''_{yx}(H_y)$ при различных значениях амплитуды внешнего электрического поля E_x , T = 4.2 K. На вставке показана зависимость $\Delta M''_{yx}$ как функция квадрата амплитуды внешнего электрического поля E_x при $H_y = 8$ kOe, T = 4.2 K.

Рис. 5. Зависимость $\beta_{yx}^{\prime\prime}(H_y, T)$ (*a*) и $\beta_{xx}^{\prime}(H_x, T)$ (*b*).

переключается также в поле $H_y \sim +3.5$ kOe (рис. 4). Вставка к рис. 4 указывает на строгую квадратичную зависимость второй гармоники относительно электрического поля E, т.е. $\Delta M'' = \beta''(H)E^2$.

В случае второй гармоники продольного эффекта $\Delta M''_{xx}$ (рис. 3, *b*) также наблюдаются два максимума в полях H = 5.2 и 8.1 кОе при T = 4.2 K, однако переключение фазы происходит лишь в точке H = 0. Продольный эффект так же проявляет слабый гистерезис по полю H.

Температурно полевая зависимость магнитоэлектрической восприимчивости $\beta''(H, T)$ представлена на рис. 5 для поперечного (рис. 5, *a*) и продольного (рис. 5, *b*) эффектов. Как видно из рис. 5, максимумы второй гармоники ME_E -эффекта, как и в случае первой гармоники, смещаются в область слабых магнитных полей при повышении температуры. Кроме того, точка переключения фазы поперечного эффекта также смещается в область слабых полей по мере увеличения *T*.

4. Обсуждение

Прикладываемое к кристаллу переменное электрическое поле возбуждает в нем одновременно обратный пьезоэлектрический эффект и электрострикцию. При этом, когда образец находится в постоянном магнитном поле, деформация приводит к возникновению магнитоупругого эффекта, что вызывает изменение намагниченности. На рис. 6 схематично представлена временная зависимость прикладываемого переменного электрического поля *E* и магнитоэлектрический отклик первой $\Delta M'$ и второй $\Delta M''$ гармоник. Так как кристалл находится в постоянном магнитном поле Н, намагниченность образца осциллирует относительно постоянного значения $M_0(H)$ с амплитудой ΔM . При этом частота первой гармоники совпадает с частотой возбуждающего поля Е, а частота второй гармоники в два раза больше частоты поля Е. Это означает, что эффект, приводящий к возникновению осцилляций $\Delta M'$, нечетен по *E*, а $\Delta M''$ — четный.

Рис. 6. Схематичное изображение временной зависимости E(t), $\Delta M'(t)$, $\Delta M''(t)$.

Согласно нашим измерениям величина $\Delta M'$ линейна относительно электрического поля E, а $\Delta M''$ имеет квадратичную зависимость, что и указывает на обусловленность ME_E -эффекта пьезоэлектрическим и электрострикционным эффектами.

5. Заключение

Были впервые проведены измерения ME_E -эффекта как функции магнитного, электрического полей и температуры для кристалла SmFe₃(BO₃)₄. Были отделены линейный и квадратичный вклады в изучаемый магнитоэлектрический эффект. Прикладываемое к кристаллу переменное электрическое поле возбуждает в нем одновременно пьезоэлектрический эффект и электрострикцию. Было сделано предположение, что за наличие первой гармоники ME_E -эффекта ответственен пьезоэлектрический эффект, а за наличие второй — электрострикционный. Для более качественного объяснения немонотонного вида зависимостей ME_E -эффекта необходимы дополнительные исследования, что является задачей для дальнейшей работы.

Список литературы

- [1] W. Eerenstein, N.D. Mathur, J.F. Scott. Nature 442, 759 (2006).
- [2] А.А. Мухин, Г.П. Воробъев, В.Ю. Иванов, А.М. Кадомцева, А.С. Нарижная, А.М. Кузьменко, Ю.Ф. Попов, Л.Н. Безматерных, И.А. Гудим. Письма в ЖЭТФ 93, 305 (2011).
- [3] H. Schmid. Introduction to complex mediums for optics and electromagnetics. SPIE Press, Bellingham, Washington (2003). C. 172.
- [4] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. ФНТ 36, 640 (2010).
- [5] Ю.Ф. Попов, А.П. Пятаков, А.М. Кадомцева, Г.П. Воробьев, А.К. Звездин, А.А. Мухин, В.Ю. Иванов, И.А. Гудим. ЖЭТФ 138, 226 (2010).
- [6] E.P. Chukalina, M.N. Popova, L.N. Bezmaternykh, I.A. Gudim. Phys. Lett. A 374, 1790 (2010).
- [7] A.D. Balaev, A.L. Freydman. J. Surf. Investigation. 8, 1, 17 (2014).
- [8] A.L. Freydman, A.D. Balaev, A.A. Dubrovskiy, E.V. Eremin, V.L. Temerov, I.A. Gudim. J. Appl. Phys. 115, 174 103 (2014).