04

Получение электроэнергии за счет прямого переноса заряда, генерируемого в коронном разряде

© Т.Э. Березкина^{1,2}, С.В. Масюкевич^{1,3}, Н.Р. Галль^{1,2,3}

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: www.piter.ru@bk.ru

² Санкт-Петербургский государственный политехнический университет

³ Институт аналитического приборостроения РАН, Санкт-Петербург

Поступило в Редакцию 3 декабря 2014 г.

Рассмотрена возможность прямой генерации электроэнергии за счет переноса заряда, создающегося в коронном разряде потоками воздуха, двигающимися в направлении, перпендикулярном оси разряда. Проведены экспериментальные измерения и сделаны теоретические оценки, показывающие возможность осуществления такой генерации. Мощность, снимаемая с короны, составила порядка 10^{-3} W, что примерно на порядок уступает теоретически максимальной мощности. Предложены пути использования эффекта за счет создания сборок, работающих от действия ветра.

Истощение традиционных источников энергии, таких как углеводородное ископаемое сырье и уран, а также экологические проблемы, вытекающие из традиционного способа получения энергии, ставит настоятельную задачу поиска других путей генерации электрической энергии. В последние десятилетия предпринимаются огромные усилия по развитию таких методов, часть которых, например солнечная и ветровая энергетика, уже реально поставлены на промышленную основу [1]. Между тем даже эти способы нельзя считать экологически чистыми: затраты энергии на изготовление одного ветрового генератора или солнечной батареи сравнимы, а то и превышают суммарный выход электричества, способный быть созданным устройством за весь срок его службы [2]. Поэтому поиск путей генерации электричества, требующих минимальных капитальных затрат, представляется актуальным.

В данной работе рассматривается возможность генерации электроэнергии за счет прямого переноса носителей заряда потоками движуще-

35

гося газа или пара. При этом в качестве источника свободных носителей одного знака предлагается использовать коронный разряд, в котором пространственное разделение зарядов происходит естественным образом [3]. В области коронного разряда, прилегающей к противоэлектроду, положительные или отрицательные ионы в зависимости от типа короны свободно движутся в самосогласованном электрическом поле, являющемся суммой полей электродов и объемного заряда носителей, принимающих участие в формировании короны [4]. Именно эти заряды могут быть использованы для формирования электродвижущей силы.

Рассмотрим систему, в которой поток воздуха, газа или пара движется перпендикулярно оси разряда. При этом на ионы действуют две силы: со стороны газового потока и со стороны электрического поля, причем при атмосферном давлении можно написать:

$$\mathbf{V}_i = \mathbf{V}_g + K \mathbf{E},$$

где V_i — скорость иона, V_g — скорость газа, E — напряженность электрического поля, а K — подвижность иона, причем три первые величины — векторы, и их сумма должна пониматься как векторная сумма. Для типичных условий коронного разряда вблизи противоэлектрода $E \sim 5 \cdot 10^3$ V/cm, а величина $K \sim 2 \cdot 10^{-4} \text{m}^2/(\text{V} \cdot \text{s})$ [5]; при этом "электрическая" часть скорости иона составит $V_{el} \sim 100$ m/s. При условии, что противоэлектрод не является слишком протяженным, ветер, дующий вдоль него со скоростью 20–30 m/s, способен "выдуть" значительную часть общего количества ионов, сгенерированных в разряде. Рассмотрим на простейшей модели, как они могут быть использованы для генерации ЭДС.

На рис. 1 представлена простейшая электрическая схема для генерации ЭДС с помощью коронного разряда. Корона горит между острием Iи противоэлектродом 2, который должен быть в направлении движения воздуха. Минимальная ширина на практике составляет несколько миллиметров и ограничивается возможностью перехода коронного разряда в искровой при уменьшении площади противоэлектрода. Электродом 3является сетка, которая должна быть достаточно частой для захвата двигающихся ионов и в то же время достаточно редкой, чтобы не выступать существенным сопротивлением для газового потока. Газовый поток движется в направлении оси X со скоростью V_g .

Пусть *d* — ширина противоэлектрода 2, а *L* — расстояние между иглой *l* и противоэлектродом 2. Какой должна быть величина *V*_g,

Рис. 1. Схема экспериментального стенда: 1 — игла, 2 — противоэлектрод, 3 — сетчатый коллектор, 4 — форсунка для выхода потока воздуха, 5 — компрессор с ресивером, 6,7 — нагрузочное сопротивление, 8 и 10 — микроамперметры, 9 — регулируемый высоковольтный источник, 11 — газодинамический поток.

чтобы все ионы прошли мимо электрода 2 и могли быть отнесены на электрод 3?

Пренебрежем для начала возможной величиной электрического поля между электродами *1* и *3*, и рассмотрим только газовый транспорт в области, прилегающей к противоэлектроду. Величина скорости газа должна быть такой, чтобы за время электрического дрейфа между электродами ион успело бы снести мимо, т.е.

$$t_{el} = t_g$$
.

Рассмотрим движение иона лишь на достаточном удалении от острия, т.е. в области, где электрическое поле близко к однородному. Полагая, что ширина этой области $\sim L/2$, можно написать

$$L/2V_{el}=d/V_g,$$

это означает, что

$$V_g = (2d/L)V_{el}.$$

Подставив данные для ионов, рассчитанные выше, и реалистичные размеры области и противоэлектрода (L = 10 mm, d = 1 mm), получим

$$V_g = (2d/L)V_{el} = 0.2 V_{el} \sim 20 \text{ m/s},$$

Таким образом, если предположить, что наличие поперечного ветра не влияет на ток коронного разряда, то при вполне реальных скоростях газового потока возможно выдувание значительной части всего тока короны, а при увеличении скорости ветра до 30–40 m/s — почти 100% тока.

Необходимо также учесть электрическое сопротивление движению ионов, которое возникнет в системе и будет противодействовать электродвижущей силе при наличии нагрузки. Рассмотрим электрическую схему, представленную на рис. 1. Как видно, протекание тока в сопротивлении нагрузки между электродами 1 и 3 равносильно приложению между ними разности потенциалов, равной U_{13}

$$U_{13} = I_{13}R$$
,

где *R* — нагрузочное сопротивление. При этом мощность *P*, отдаваемая системой во внешнюю цепь, равна

$$P = I_{13}^2 R$$
,

поскольку величина тока, протекающего между электродами 1 и 3, не может быть больше, чем ток коронного разряда, то чем выше R, тем выше мощность в цепи, т.е. система ведет себя как классический "источник тока".

Экспериментальные исследования были проведены на стенде, схема которого представлена на рис. 1. Между иглой I и противоэлектродом 2, подавалось напряжение, достаточное для зажигания коронного разряда; обычно расстояние между иглой и противоэлектродом составляло ~ 5 mm, напряжение зажигания лежало в интервале 3.5-3.6 kV, а напряжение горения короны в зависимости от тока в интервале 3.7-4.5 kV. Противоэлектрод представлял собой медную ленту размером 7×13 mm, расположенную длинной частью в направлении, перпендикулярном плоскости рисунка симметрично относительно него, он был соединен с нулевым проводом высоковольтного источника. В качестве коллектора использовалась металлическая сетка площадью

 67×67 mm с ячейкой размером порядка 1.5 mm. Коллектор располагался на варьируемом расстоянии от 15 mm от области разряда и был электрически соединен с иглой через нагрузочное сопротивление *R*. Ток разряда сильно зависел от подаваемого напряжения, мы использовали токи в интервале 0.3 до $30 \,\mu$ А. Система в целом была изолирована от земли, но могла бы быть и соединена с ней, для целей данной работы это неважно.

Поток воздуха создавался компрессором с давлением в ресивере 7 аtm и направлялся на область коронного разряда через трубку диаметром 3 mm. Выходной срез трубки располагался на расстоянии 25 mm от области короны и находился под потенциалом, равным потенциалу иглы. Средний расход во время эксперимента составлял 701/min, скорость воздуха на срезе трубки составляла ~ 140 m/s и быстро спадала по мере удаления. По имеющимся в литературе данным [6], ее средняя величина на расстоянии 10 mm составляла ~ 40 m/s, а на расстоянии 30 mm — 20 m/s. Величины тока, измеряемого на коллекторе, практически не зависели от величины нагрузочного сопротивления *R* в интервале $R < 1.5 G\Omega$; при бо́лыших сопротивлениях измерения не проводились. Для избежания утечек коллектор, нагрузочное сопротивление и подводящие провода подвешивались на изоляторах из оргстекла. В отсутствие воздушного потока, но при работающей короне ток коллектора был меньше 1 nA.

Зависимость тока коллектора от величины тока коронного разряда представлена на рис. 2. Как видно, на коллектор удается перенести лишь относительно небольшую долю тока разряда, лежащую в интервале 1–1.5%. Разброс экспериментальных данных составляет величину порядка 50% и в основном определяется точностью юстировки подающей газ трубки относительно области короны.

Чем определяется максимальная величина R, а значит и снимаемая с ячейки мощность? Пусть расстояние между электродами 1 и 3 вдоль линии движения газа равно D. Тогда величина электрического поля в этой области, направленная против движения носителей заряда, переносимых газовым потоком, по порядку величины равна

$$E_{13} = U_{13}/D.$$

Для того чтобы это поле не заперло движение ионов, необходимо, чтобы создаваемая им электрическая скорость была бы меньше ветровой,

Рис. 2. Зависимость значений тока коллектора от тока коронного разряда при наличии поперечного потока воздуха.

т. е.

$$V_g > KU_{13}/D = KI_{13}R/D.$$

Отсюда вытекает условие на максимальную нагрузку системы

$$R < V_g D/(KI_{13}),$$

а значит, и на максимальную снимаемую с нее мощность

$$P_{\max} = I_{13}^2 R_{\max} = I_{13} V_g D / K.$$

Подставим в это соотношение реальные цифры. Пусть $I_{13} = 1 \,\mu$ А, $V_g = 20 \,\text{m/s}$, $D = 50 \,\text{mm}$, а $K = 2 \cdot 10^{-4} \,\text{m}^2/(V \cdot \text{s})$. При этом максимальная ожидаемая мощность составит $P_{\text{max}} = 10^{-2}$ W. В эксперименте получаемая мощность была примерно на порядок ниже и составляла 10^{-3} W. При сборке ячеек в матрицу и использовании морского ветра или ветра в пустыне одна ячейка займет площадь порядка $10 \times 10 \,\text{mm}^2$ и на $1 \,\text{m}^2$ разместится $\sim 10^4$ ячеек, что обеспечит мощность порядка 10-100 W. Главное здесь — постоянство скорости воздуха в пределах

от области короны до коллектора, которого почти невозможно добиться при использовании компрессора. Важным вопросом является вопрос о КПД: в наших экспериментах, в отличие от теоретических оценок, мощность короны между иглой и противоэлектродом существенно превышала полезную мощность на нагрузочном сопротивлении. Отчасти это является следствием быстрого торможения потока воздуха, вырывающегося из компрессора, отчасти — его неоднородности в области горения короны. Кроме того, высокое напряжение, необходимое для поджога и горения короны, может быть получено не от внешнего источника, а за счет трибоэлектрического эффекта [7] при трении движущегося воздуха о специально установленные продольные электроды.

Таким образом, по удельной энерговыработке предлагаемая система потенциально является способной конкурировать и с традиционными ветряками, и с солнечными элементами, не требуя при этом ни роторов и лопаток, ни особочистого кремния или арсенида галлия.

Список литературы

- [1] *Lovins A.* Reinventing Fire: Bold Business Solutions for the New Energy Era. Chelsea: Chelsea Green Publishing, Electrical Coronas, 2011. 334 p.
- [2] Stover D. // Bulletin of the Atomic Scientist. 2011. P. 1-8.
- [3] Loeb L. // University of California Press. 1965. P. 1-75.
- [4] Райзер Ю.П. Физика газового разряда. 2-е изд. М.: Наука, 1992. 630 с.
- [5] Shumate C., Louis R.H., Hill H.H. // J. Chromatogr. 1986. V. 373 (2). P. 141–173.
- [6] Путилов К.А. Курс физики. В 3-х т. Т. 1. М.: Физматгиз, 1963. С. 529-534.
- [7] Adams C.K. Nature's Electricity. Tab Books. NY, 1965. P. 63.