Прыжковый транспорт в области объемного заряда *p*-*n*-структур с квантовыми ямами InGaN/GaN как источник избыточного 1/*f* шума и потерь эффективности светодиодов

© Н.И. Бочкарева, А.М. Иванов, А.В. Клочков, В.С. Коготков*, Ю.Т. Ребане, М.В. Вирко*, Ю.Г. Шретер¶

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

(Получена 10 ноября 2014 г. Принята к печати 11 ноября 2014 г.)

Показано, что в светодиодах с квантовыми ямами InGaN/GaN эффективность излучения и уровень 1/f шума коррелируют с изменением дифференциального сопротивления диода при увеличении тока. Анализ результатов показывает, что прыжковый транспорт по состояниям дефектов через *n*-область объемного заряда приводит к ограничению тока туннельным сопротивлением в области средних токов и шунтированию *n*-барьера при больших токах. Увеличение среднего числа туннелирующих электронов вызывает подавление токового 1/f шума в области средних токов. Сильный рост плотности токового шума при больших токах, $S_J \propto J^3$, связывается с уменьшением среднего числа туннелирующих электронов при уменьшении высоты и ширины *n*-барьера с ростом прямого смещения. Более быстрый рост туннельно-рекомбинационной утечки тока вдоль протяженных дефектов по сравнению с ростом тока туннельной инжекции приводит к падению эффективности излучения.

1. Введение

Высокая квантовая эффективность в присутствии высокой плотности дислокаций является уникальным свойством светодиодов на основе GaN. Однако при высоких плотностях тока в этих светодиодах наблюдается уменьшение эффективности (efficiency droop effect), что считается серьезным препятствием для расширения их применения в твердотельном освещении. Падение эффективности часто связывают с оже-рекомбинацией, основываясь на анализе сублинейной зависимости интенсивности фотолюминесценции в слоях InGaN от уровня накачки, проведенном в [1] при достаточно грубых допущениях об аномально большом времени жизни, обусловленном рекомбинацией через локальные уровни дефектов, и о применимости приближения плоских зон. Механизм оже-рекомбинации предполагает, что внутренняя квантовая эффективность светодиодов при рабочих токах ограничивается собственными свойствами материала. Альтернативные механизмы связывают эту проблему прежде всего с дефектами материала и дизайном структуры, т.е. со степенью совершенства технологии. Так, в ряде работ падение эффективности объясняется возрастающей конкуренцией безызлучательной рекомбинации на дефектах в результате насыщения состояний в композиционных флуктуациях потенциала в квантовой яме InGaN/GaN [2-6] или замедлением латеральной локализации инжектированных носителей с ростом уровня инжекции [7,8]. Вместе с тем достаточно низкая эффективность часто наблюдается и при малых уровнях инжекции, что естественно связать с утечками тока, которые наблюдаются при допороговых напряжениях, в отсутствие излучения. Возрастание утечек

тока с ростом уровня инжекции может вносить свой вклад в падение квантовой эффективности. Вопрос о механизме, ответственном за токи утечки, остается в литературе спорным. Основные рассматриваемые механизмы связаны с инжекцией электронов из квантовой ямы в *p*-область [9], перетеканием горячих носителей над квантовой ямой [10] и туннельными утечками носителей по состояниям дефектов в области объемного заряда [11,12].

Ответ на вопрос о механизме утечек тока может дать изучение характерных особенностей вольт-амперных характеристик светодиодов на основе GaN, которые нельзя описать в рамках принятого представления тока через *p*-*n*-переход в виде суммы термоэмиссионной, рекомбинационной и туннельной компонент. Уже в ранних работах было показано, что туннелирование носителей с участием локализованных состояний дефектов является основным механизмом прохождения тока в GaN-светодиодах [13,14]. В работах [15,16] предложена туннельно-рекомбинационая модель прохождения тока в GaN-светодиодах, предполагающая, что подбарьерное туннелирование носителей доминирует лишь на одной стороне асимметричного *p*-*n*-перехода, тогда как на другой его стороне доминирует надбарьерная инжекция. В отличие от туннельно-рекомбинационной модели для неидеальных гетеропереходов [17,18], предполагающей резонансное туннелирование носителей на состояния интерфейса, в модели [15,16] предполагается, что туннелирование носителей происходит посредством туннельных прыжков между дефектными состояниями. Как показано в [19], распределение плотности состояний дефектов в запрещенной зоне n-GaN и p-GaN экспоненциально и может быть аппроксимировано суперпозицией двух урбахов-

[¶] E-mail: y.shreter@mail.ioffe.ru

ских хвостов с характеристическими энергиями 20-50 и 180-280 мэВ.

Туннельный (прыжковый) транспорт через область объемного заряда приводит не только к понижению эффективной высоты инжекционного барьера и избыточному стационарному току, но и обусловливает переходные процессы с широким спектром времен релаксации [15], определяет динамический отклик p-n-структуры, в частности, избыточную емкость, ее зависимость от напряжения, а также отрицательную емкость (индуктивность) при небольших прямых токах [20].

Наличие широкого спектра времен релаксации, связанного с туннелированием по состояниям дефектов в области объемного заряда, должно отражаться в спектре и уровне шума светодиодов. В этой работе мы используем измерения низкочастотного шума светодиодов на основе GaN с целью идентифицировать механизм формирования шума в p-n-светодиодных структурах с квантовыми ямами InGaN/GaN, а также проанализировать особенности механизмов прохождения тока и падения эффективности излучательной рекомбинации в этих диодах с ростом плотности тока.

2. Эксперимент

В работе представлены результаты, полученные на коммерческих светодиодах с номинальными токами J = 20 мА (реальная площадь диодов $S \approx 10^{-3}$ см²) и пиковой энергией излучения активной области $hv_p = 2.65$ эВ. Для детальных исследований были выбраны 5 светодиодов, максимальная эффективность которых отличалась более чем на порядок. Диоды обозначены в статье в порядке уменьшения эффективности, как диоды A, B, C, D и E, максимальная эффективность светодиода A, принятую равной $\eta_p = 100\%$, составляет 56, 37, 17 и 6% соответственно. Максимальное уменьшение квантовой эффективности с увеличением плотности тока в диапазоне плотностей тока j = 1-20 А · см⁻² наблюдалось в диоде A и составило 27%.

Максимальная внешняя квантовая эффективность диода *А* фирмы Nichia (NSPB-500S) наблюдается при токе $J_{\text{max}} = 0.5 \text{ мA} (j_{\text{max}} = 0.5 \text{ A/cm}^2)$ и составляет 26% при 77 К и 15% при 300 К. Внешняя квантовая эффективность диодов *B*, *C*, *D* и *E* составляет 8.4, 5.6, 2.6 и 0.9% соответственно. Учитывая, что во всех исследованных диодах *A*-*E* не принято мер для увеличения эффективности экстракции света η_{extr} , и принимая $\eta_{\text{extr}} \approx 25\%$ [12], получаем в качестве оценки для внутренней квантовой эффективности диода *A* $\eta_{\text{int}} \approx 60\%$ [12] и диодов *B*, *C*, *D* и *E* — 36, 22, 10 и 3% соответственно.

Измерения статических вольт-амперных характеристик проведены с помощью Keithley 238. Измерения интенсивности излучения и внешней квантовой эффективности проводились с помощью интегрирующей сферы и калиброванного Si-фотодиода. Измерения низкочастотного шума были проведены в полосе частот $10 \Gamma_{\rm II} - 8 \kappa \Gamma_{\rm II}$. Измерялись флуктуации тока $\delta J_{\rm meas}$, возникающие при пропускании постоянного прямого тока через светодиод. Флуктуации напряжения на нагрузочном сопротивлении $R_{\rm L} = 100$ Ом оцифровывались измерительным аналого-цифровым преобразователем с собственным уровнем шумов 1 мкВ в полосе частот 8 кГц. При измерениях записывались 2 млн выборок с частотой дискретизации 16 кГц в каждой точке по постоянному току и осуществлялась обработка данных программой с использованием быстрого преобразования Фурье. Флуктуации тока короткого замыкания вычислялись как $\delta J = \delta J_{\rm meas}(1 + R_{\rm L}/r_{\rm d})$, где $r_{\rm d}$ — дифференциальное сопротивление светодиода. По тем же данным рассчитывалась спектральная плотность шума.

3. Результаты эксперимента

На рис. 1 представлены вольт-амперные характеристики исследуемых светодиодов J(U), а также полученные из них зависимости тока от напряжения на p-n-переходе $U_j = U-J \cdot r_s$. Последовательное сопротивление оценивалось из линейной области J-U-характеристик и составило в диодах A, B и D $r_s = 20$ Ом, в диодах Cи E $r_s = 26.7$ Ом. Кривые $\log J(U_j)$ имеют двухступенчатую S-образную форму и могут быть аппроксимированы экспоненциальной функцией $J \propto \exp(qU_j/n_jkT)$, где $n_j(U_j)$ — фактор идеальности, kT — тепловая энергия, q — элементарный заряд.

Рис. 1. Зависимости прямого тока от приложенного напряжения J(U) и от прямого смещения p-n-перехода $J(U_j)$ для GaN-светодиодов A(I), B(2), C(3), D(4) и E(5). Стрелками вверх на кривых $J(U_j)$ отмечены пороговые токи J_{th} при напряжении U_{th} , стрелками вниз отмечены токи J_{max} , при которых квантовая эффективность диода максимальна. Вставка иллюстрирует туннельно-рекомбинационный механизм протекания тока в p-n-структуре светодиода.

Физика и техника полупроводников, 2015, том 49, вып. 6

Обращает на себя внимание большой разброс величины напряжения на p-n-переходе при рабочем токе J = 20 мА у исследованных диодов, достигающий 0.55 В. Напряжение U_j соответствовало напряжению плоских зон, близкому к $E_{g,GaN}/q = 3.42$ В, лишь у неэффективного диода E, в то время как у другого неэффективного диода D оно составило $U_j = 2.87$ В, что близко к величине $E_{g,InGaN}/q = 2.89$ В, а у наиболее эффективного диода $A U_j = 3.15$ В. Здесь $E_{g,GaN}$ и $E_{g,InGaN}$ — ширина запрещенной зоны в GaN и в квантовой яме InGaN/GaN соответственно.

Во всех диодах при пороговом напряжении излучения света $U_{\rm th}$ наблюдается ток туннельной утечки (пороговый ток $J_{\rm th}$) — наименьший, 0.8 мкА при $U_{\rm th} = 2.32$ В, в диодах A ($\eta_p = 1$) и B ($\eta_p = 0.56$); равный 4 мкА при $U_{\rm th} = 2.35$ В в диоде C ($\eta_p = 0.37$); достигающий 0.3 мА

Рис. 2. Зависимости квантовой эффективности электролюминесценции от тока для диодов A(1), B(2), C(3), D(4) и E(5).

Рис. 3. Зависимости фактора идеальности $J(U_j)$ -характеристик от тока для диодов A(I), B(2), C(3), D(4) и E(5).

Рис. 4. Спектральная плотность токового шума как функция частоты в диодах A(1), B(2), E(3), C(4) и D(5) при прямом токе J = 20 мА.

при $U_{\rm th} = 3.02\,{\rm B}$ в диоде $E~(\eta_p = 0.06)$, и наибольший, 2 мА при $U_{\rm th} = 2.26\,{\rm B}$, в диоде $D~(\eta_p = 0.17)$.

На рис. 2 и 3 представлены токовые зависимости квантовой эффективности $\eta(J)$ и фактора идеальности $n_i(J)$, полученные из кривых $\log J(U_i)$. Как видно из рис. 1 и 2, в диодах А и В при U > Uth наблюдается быстрый рост тока с напряжением $(n_i \approx 2)$ и эффективность быстро растет с увеличением тока, причем рост эффективности начинается уже при J = 1 мкА. С увеличением напряжения крутизна ВАХ уменьшается. В области средних токов, где $n_i \approx 5$, рост эффективности с током замедляется. Эффективность достигает максимума при пиковом токе J_{max} , равном 0.8 и 0.5 мА в диодах А и В соответственно. Эффективность начинает падать, когда крутизна кривых $J-U_i$ вновь увеличивается. При J > 10 мА фактор идеальности снова уменьшается до n_i < 2 (рис. 3). Подобную закономерность можно отметить и для диода С. В диодах D и E рост интенсивности и эффективности излучения начинается также при увеличении крутизны кривых $\log J - U_i$.

На рис. 4 представлены частотные спектры плотности токового шума S_J исследованных светодиодов, измеренные при различных токах. В частотном диапазоне $10\Gamma \mathfrak{l} < f < 8 \, \kappa \Gamma \mathfrak{l}$ спектры имеют форму, близкую к $S_J \propto 1/f$, что позволяет считать 1/f шум основным источником шума. Однако в области частот $10-100\Gamma \mathfrak{l}$ наблюдается более сильный рост шума с понижением частоты $S_J \propto 1/f^{1+s}$, $s \leq 0.3$.

Рис. 5. Зависимости спектральной плотности токового шума (a) и плотности флуктуаций напряжения (b) от тока для диодов A(1), B(2), C(3), D(4) и E(5).

На рис. 5, а представлены результаты измерений плотности токового шума S_J как функции тока в исследуемых диодах. Как видно из рис. 5, а, у эффективных диодов А и В наблюдаются примерно одинаковые флуктуации тока, но менее эффективные диоды С, D и E демонстрируют существенное различие как в величине флуктуаций тока, так и в характере их увеличения с ростом прямого тока. В диоде D наблюдается резкое возрастание флуктуаций тока уже при малом токе J = 0.02 мА, тогда как в диоде *C* флуктуации тока резко возрастают лишь при токе J = 0.2 мА. В то же время в диодах А и В с высокой эффективностью и диоде Е с наименьшей эффективностью токовые флуктуации нарастают с увеличением тока слабее и их уровень при токе 1 мА примерно тот же, что и в диоде С при токе 0.1 мА, а в диоде *D* при 0.01 мА.

Как видно из рис. 5, a, рост токового шума в диодах A, B, E с увеличением тока близок к линейному $S_J \propto J$

для тока 20 > J > 0.2 мА. В области токов J < 1 мА в диоде $D S_J$ также растет с током линейно, а в диоде C — сверхлинейно. При дальнейшем росте тока после переходной области при токах J = 1-3 мА в диодах C и D наблюдается зависимость, близкая к $S_J \propto J^3$.

Плотность флуктуаций напряжения S_U в зависимости от тока, полученная из токового шума, используя $S_U = S_J \cdot r_d^2$, представлена на рис. 5, b; $r_d = dU/dJ$ дифференциальное сопротивление диода, полученное из статических вольт-амперных характеристик J(U). В диодах A, B и E с увеличением тока в диапазоне 2 > J > 0.2 мА наблюдается зависимость $S_U(U)$, близкая к $S_U \sim J^{-1}$, при 20 > J > 2 мА S_U слабо зависит от тока; в диодах C и D участок слабой зависимости $S_U(U)$ смещается в область низких токов.

4. Обсуждение результатов

4.1. Прыжковый транспорт в области объемного заряда и эффективность

4.1.1. Туннельно-рекомбинационная модель протекания тока через *p*-*n*-переход.

Низкие пороговые и рабочие напряжения диодов А-D свидетельствуют о туннельной инжекции по крайней мере через один из барьеров к квантовой яме. Предположительно, туннелирование с участием дефектных состояний является доминирующим механизмом электронного тока, тогда как в токе через *p*-барьер доминирует надбарьерная инжекция дырок [8]. Приложенное прямое напряжение распределяется между *n*-и р-барьерами так, чтобы обеспечить равенство потоков электронов и дырок. Полный ток через *p*-*n*-переход может контролироваться надбарьерным дырочным током $J_p \propto \exp(qU_p/kT)$ или подбарьерным туннельным электронным током $J_n \propto \exp(qU_n/n_{jn}kT)$ $(n_{jn}$ — фактор идеальности характеристики $J_n(U_n)$, U_n и U_p — падения напряжения на *n*- и *p*-барьерах, $U_n + U_p = U_i$). Соответственно фактор идеальности $J(U_j)$ -характеристики $n_j(U_j)$ может изменяться в пределах от 1 до n_{jn} при увеличении напряжения и изменении механизма, контролирующего полный ток.

Анализ вольт-амперных характеристик приводит к следующей туннельно-рекомбинационной модели протекания тока через *p*-*n*-структуру диода.

В области малых токов $(J \leq J_{\rm th})$ ток утечки через p-n-переход, подобно избыточному току в туннельных диодах, обусловлен туннельным током электронов из n-области в изоэнергетические состояния дефектов в p-барьере с последующей рекомбинацией со свободными дырками в p-области [13–15]. В этой области токов полный ток контролируется плотностью свободных дырок в p-области обедненного слоя и основная часть приложенного напряжения падает на p-барьере. Надбарьерный дырочный ток $J_p \sim \exp(qU_p/kT)$ быстро

растет с напряжением U_j , и дифференциальное сопротивление *p*-барьера $r_p = kT/qJ$ быстро падает, что отражается в уменьшении фактора идеальности $n_j(U_j)$ с ростом тока (рис. 1 и 3). Соответственно, по мере того как растет напряжение U_j , электроны, туннелирующие по состояниям дефектов, рекомбинируют с дырками все ближе к активной области. При пороговом напряжении разность квазиуровней Ферми достигает красной границы спектра излучения активной области $hv_{\min} = 2.3$ эВ, что указывает на туннельную инжекцию носителей в хвосты состояний квантовой ямы InGaN/GaN [21]. При $U \ge U_{th}$ носители рекомбинируют излучательно и безызлучательно в активной области (см. вставку к рис. 1).

В области средних токов $(J_{\text{max}} > J > J_{\text{th}})$, на крутом участке кривых $\log J(U_i)$, туннельное сопротивление *п*-барьера начинает постепенно ограничивать ток. Это отражается в уменьшении наклона кривых $\log J(U_i)$ и увеличении фактора идеальности $n_i(U_i)$ с ростом тока (рис. 3). Так как с увеличением энергии туннельная прозрачность *n*-барьера растет, а плотность свободных электронов уменьшается, при увеличении прямого смещения основной поток электронов туннелирует по изоэнергетическим линиям выше электронного квазиуровня Ферми и все ближе к вершине *n*-барьера. Электронный квазиуровнь Ферми перемещается ближе к зоне проводимости и поток электронов, втекающих в *n*-область объемного заряда по состояниям дефектов, экспоненциально распределенным в запрещенной зоне n-GaN, увеличивается. Так как плотность изоэнергетических состояний уменьшается при приближении к активной области и расстояние между ними увеличивается, это приводит к накоплению электронов на состояниях дефектов в глубине обедненной *п*-области.

В области больших токов $(J > J_{max})$ электроны туннелируют через барьер, обусловленный разрывом в зоне проводимости на границе InGaN/GaN. С ростом напряжения носители накапливаются все ближе к активной области, туннельное сопротивление постепенно падает и шунтирует обедненную *n*-область перехода, что приводит к увеличению доли напряжения U_j на *p*-барьере. Соответственно на кривых $\log J(U_j)$ наблюдается второй крутой участок при больших токах и резкое уменьшение фактора идеальности n_j .

Интересно отметить, что подобные S-образные вольтамперные характеристики с двумя крутыми участками наблюдались ранее в прямосмещенных $p^{++}-n^+$ переходах в сильно легированном Si [22], где сильное увеличение тока при малых смещениях также связывалось с туннелированием по локализованным состояниям дефектов, но S-образность I-V-кривых не нашла объяснения.

В диода *C* и *D*, эффективность которых достигает максимума лишь при токах J > 5 мА, ток туннельной утечки вносит основной вклад в протекающий через p-n-структуру полный ток и характер кривой log $J(U_j)$ в большой степени отражает поведение нелинейной утечки тока с низким туннельным сопротивлением при

прямом смещении p-n-перехода (рис. 1, кривая 3). В диоде E с высоким туннельным сопротивлением быстрый рост тока утечки с ростом прямого смещения происходит лишь вблизи $U = U_{\rm th} \approx E_{g,\rm InGaN}/q \approx 2.9-3$ В, когда носители инжектируются в квантовую яму.

Таким образом, можно заключить, что в рамках предлагаемой туннельно-рекомбинационной модели двухступенчатый рост тока при прямом смещении p-nперехода в GaN-светодиодах обусловлен приближением туннельно-прозрачной области объемного заряда к квантовой яме с двух сторон перехода. Быстрый рост тока вблизи порогового напряжения вызван ростом плотности дырок, рекомбинирующих с электронами в активной области. Быстрый рост тока при $J > J_{\text{max}}$ вызван увеличением туннельной прозрачности *n*-барьера при прямом смещении и его шунтированием проводимостью по мелким состояниям экспоненциальных хвостов в квантовой яме.

4.1.2. Падение эффективности светодиода в результате увеличения утечек вдоль протяженных дефектов

При высокой туннельной прозрачности *п*-барьера (диоды A, C и D) напряжение U_p и соответственно плотность дырок в квантовой яме в локальных участках утечек тока растет с увеличением напряжения быстрее, чем в бездефектных участках. Быстрый рост тока вблизи порогового напряжения обусловлен в основном быстрым ростом тока утечки. Постепенное уменьшение крутизны кривых $\log J(U_i)$ также связано с ограничением тока утечки локальным туннельным сопротивлением. Ток туннельной инжекции в хвосты плотности состояний квантовой ямы ограничивается при $U > U_{\rm th}$ лишь плотностью электронов и дырок. В результате компонента тока, обусловленная излучательной рекомбинацией $J_{\rm rad} \propto \exp(qU_j/kT)$, растет с напряжением U_j быстрее, чем туннельно-рекомбинационная утечка тока $J_{n/\text{rad}} \propto \exp(qU_i/n_i kT)$, и эффективность излучения быстро увеличивается с ростом тока. В области средних токов рост эффективности с током замедляется, так как ток в бездефектных участках структуры также начинает ограничиваться локальным туннельным сопротивлением п-барьера.

Меньшая крутизна кривых $\log J(U_j)$ в области средних токов в диодах *B* и *E* по сравнению с диодами *A* и *C* указывает на уменьшение туннельной прозрачности *n*-барьера в диодах *B* и *E*. Туннельное сопротивление *n*-барьера контролирует полный ток и в локальных участках утечки ток выше, чем в бездефектных участках, где туннельная инжекция ослаблена. В результате максимальная эффективность в диодах *B* и *E* меньше, чем в диодах *A* и *C*.

При увеличении напряжения в области больших токов носители заполняют состояния на границе с квантовой ямой и прыжковая проводимость в дефектных участках шунтирует локальный *n*-барьер. Эффективность начинает падать, когда при уменьшении высоты и ширины *n*-барьера все больше уменьшается его туннельное сопротивление.

В GaN точечные дефекты аккумулируются в поле упругих напряжений ядер дислокаций [23], и наиболее вероятно, что локальные утечки тока происходят вдоль дислокаций, границ зерен и других протяженных дефектов. Точечными дефектами, ответственными за прыжковый транспорт, как показало исследование температурных зависимостей эффективности и емкости в работах [24,25], по-видимому являются вакансионные кислород- и водородсодержащие комплексы.

В низкоэффективных диодах D, C, E с повышенным током утечки при $U_j = U_{\text{th}}$ и соответственно высокой локальной прыжковой проводимостью *n*-барьера в дефектных участках максимальная эффективность наблюдается в области больших токов (J = 4-10 мA), на крутом участке кривой $\log J(U_j)$, когда туннельное сопротивление *n*-барьера понижается, обеспечивая туннельную инжекцию и рост эффективности.

В более эффективных диодах *A*, *B* с низким током утечки при $U_j = U_{\text{th}}$ туннельная инжекция эффективна уже при малых токах, обеспечивая более быстрый рост эффективности с током. Эффективность максимальна в области средних токов (J = 0.4-0.8 мA) и начинает падать на крутом участке кривой $\log J(U_j)$ в результате более быстрого падения туннельного сопротивления в дефектных участках.

Как видно из рис. 1, эффективность начинает падать, когда напряжение на p-n-переходе близко к $E_{g,InGaN}/q = 2.89$ В, и электроны туннелируют по изоэнергетическим линиям, близким к дну зоны проводимости в квантовой яме. Инжектированные электроны обладают слишком низкой энергией, что исключает инжекцию электронов в p-область или перетекание горячих электронов над квантовой ямой, предлагаемых в [9,10] в качестве механизмов падения эффективности.

4.2. Прыжковый транспорт в области объемного заряда как источник избыточного 1/*f* шума

Полученные результаты предполагают два основных источника шума в GaN-светодиодах: 1) шум, связанный с рекомбинацией электронов и дырок, инжектированных в активную область p-n-структуры, и 2) шум, обусловленный флуктуациями туннельного сопротивления n-области объемного заряда.

Сильный шум прыжковой проводимости в полупроводниках обусловлен флуктуациями числа электронов на критической "сетке сопротивлений", перколяционном кластере, определяющем проводимость между противоположными гранями решетки. Медленный обмен электронами между перколяционным кластером и мелкими изолированными кластерами вызывает перколяционные эффекты и 1/f шум [26,27].

При туннелировании в *п*-области объемного заряда по состояниям экспоненциальных хвостов плотность изоэнергетических состояний убывает по мере удаления от границы с нейтральной *п*-областью. Соответственно прыжковая проводимость у границы с нейтральной областью максимальна, а у границы с активной областью минимальна и определяет сквозную проводимость. По мере увеличения прямого смещения и приближения электронного квазиуровня Ферми к дну зоны проводиости в n-GaN область с высокой прыжковой проводимостью приближается к активной области, а ширина области с низкой проводимостью $w_{
m hop}$ сужается, плотность носителей в ней растет и сквозная проводимость быстро растет с напряжением. Увеличение прыжковой проводимости через обедненную область с ростом тока должно влиять и на токовую зависимость 1/f шума.

Спектральная плотность токового 1/f шума согласно формуле Хоуге [28]:

$$S_J = \frac{\alpha}{f\bar{N}} J^2,\tag{1}$$

где *а* — постоянная Хоуге, *N* — среднее число электронов, принимающих участие в проводимости.

В области средних токов $(J_{\max} > J > J_{th})$ при увеличении напряжения U_n плотность электронов n_c на границе с активной областью быстро растет, соответственно растет и среднее число электронов, принимающих участие в сквозной проводимости через область объемного заряда, $\bar{N} = n_c w_{\text{hop}}$. Так как $n_i(J) > 2$, ток через переход ограничивает туннельное сопротивление $r_{
m hop}=w_{
m hop}^2/(q\mu\bar{N}),$ где μ — эффективная подвижность. Отсюда $\bar{N} = w_{
m hop}^2/(q\mu r_{
m hop}).$ Аппроксимируя ток через *p*-*n*-структуру функцией $J = J_0 \exp(qU_j/n_j kT)$, получаем для дифференциального сопротивления перехода $r_i = dU_i/dJ = n_i(J)kT/qJ$. В области средних токов можно пренебречь изменением w_{hop} и считать, что $r_i \approx r_{\text{hop}}$, $\bar{N} \propto n_c$, $ar{N} \propto 1/r_{
m hop}$ и равна $ar{N} = w_{
m hop}^2 J/\left(n_j(J)\mu kT
ight)$. Учитывая, что $w_{\text{hop}}^2/\mu kT = \tau_{\text{hop}}/q$ (τ_{hop} — характерное время тун-нелирования при $U_n = kT/q$), получаем из (1) для S_J :

$$S_J = \frac{\alpha q}{f \tau_{\rm hop}} n_j(J) J.$$
 (2)

В области средних токов фактор идеальности $n_j(J)$ растет с увеличением тока (рис. 3), так как электроны туннелируют все ближе к вершине барьера и высота эффективного инжекционного барьера растет. Концентрация электронов, рекомбинирующих с дырками в активной области, растет с ростом тока медленней, чем при $n_j = \text{const.}$ Соответственно уровень шума сверхлинейно растет с током и токовая зависимость уровня шума определяется токовой зависимостью фактора идеальности. В случае $n_j = \text{const.}$, $r_j \propto 1/J$ и $S_J \propto J$. При $r_j = \text{const}$ и $S_J \propto J^2$. В случае $n_j = n_0 J^m$ в некоторой области токов $S_J \propto n_0 J^{1+m}$.

В случае $n_j = 1$ ток ограничивается скоростью рекомбинации в активной области и для токового шума имеем $S_J = \alpha q J / \tau f$, где $\tau \ll \tau_{\rm hop}$ — рекомбинационное время жизни.

Учитывая, что $r_d = r_j + r_s$, получим для измеряемого токового шума $S_{J,\text{meas}} = S_J (r_j/r_d)^2$:

$$S_{J,\text{meas}} = \frac{\alpha q}{f \tau_{\text{hop}}} n_j(J) J \frac{r_j^2(J)}{r_d^2(J)}.$$
(3)

Спектральная плотность флуктуаций напряжения, рассчитанная из токового шума, используя $S_U = S_J r_j^2$, равна:

$$S_U = \frac{\alpha q}{f \tau_{\rm hop}} \left(\frac{kT}{q}\right)^2 \frac{n_j^3(J)}{J}.$$
 (4)

Таким образом, рост фактора идеальности в области средних токов приводит к сверхлинейному росту токового шума диода и замедлению падения шума напряжения с ростом тока.

В области больших токов $(J > J_{\text{max}})$ туннельное сопротивление *n*-барьера уменьшается с ростом тока по мере того, как туннелирующие электроны накапливаются все ближе к границе квантовой ямы и динамический отклик меняется с емкостного на индуктивный [20]. Фактор идеальности $n_j(J)$ при этом уменьшается с ростом тока, что, согласно (2) и (4), должно приводить к сублинейному росту токового шума и более быстрому падению шума напряжения. Таким образом, увеличение крутизны $J(U_j)$ -характеристики в результате быстрого роста плотности инжектированных электронов и дырок должно приводить к подавлению шума вплоть до снижения уровня шума с ростом тока.

При дальнейшем росте тока w_{hop} уменьшается и эффективный объем, в котором электроны модулируют ток сквозь *n*-барьер, уменьшается с ростом тока, что должно приводить к сильному росту шума. Считая, что $n_c \approx \text{const}$ и $\bar{N} = n_c w_{hop}$ уменьшается с ростом тока в результате уменьшения w_{hop} и соответственно уменьшения туннельного сопротивления, так что $\bar{N} \propto w_{hop}$ и $\bar{N} \propto r_{hop} \approx r_j$, получаем, что $\bar{N} = \mu n_c^2 k T n_j (J)/J$.

В области больших токов получаем для плотности токового шума:

$$S_J = \frac{\alpha}{f} \frac{1}{\mu n_c^2 kT} n_j^{-1}(J) J^3.$$
 (5)

Учитывая, что $S_U = S_J r_j^2$, получаем для спектральной плотности флуктуаций напряжения в области больших токов:

$$S_U = \frac{\alpha}{f} \frac{kT}{\mu q^2 n_c^2} n_j(J) J.$$
(6)

В диоде *С* в области токов J = 0.1-1 мА, где $r_j/r_d = 1, n_j \sim J^{0.45}$ (рис. 3, кривая 3), токовый шум растет как $S_{J,\text{meas}} \approx S_J \propto J^{1.45}$ (рис. 5, *a*, кривая 3), что соответствует (2). В области токов J > 3 мА $n_j \sim J^{-0.3}$, что дает в соответствии с (5) $S_J \propto J^{3.3}$, а с учетом, что $r_j/r_d \propto J^{-0.2}$, объясняет близкую к кубической

Физика и техника полупроводников, 2015, том 49, вып. 6

токовую зависимость плотности шума $S_{J,\text{meas}} \propto J^3$, наблюдающуюся в диоде *C*. Уменьшение $S_{J,\text{meas}}$ при токе J > 10 мА, связано с резким уменьшением отношения $r_j/r_d = r_j/r_s$. Шум напряжения в области токов J = 0.1-1 мА, где $r_j \propto J^{-1}$, с ростом тока слабо растет $S_U \propto J^{0.3}$ (рис. 5, *b*, кривая 3), а затем в области токов J > 3 мА растет более сильно в соответствии с (6) при $n_j \propto J^{-0.3}$.

В диоде *D* в области токов J = 0.03 - 0.3 мА $n_j \propto J^{0.2}$ (рис. 3, кривая 4), токовый шум почти линейно растет, а шум напряжения слабо падает с ростом тока (рис. 5, *a* и *b*, кривые 4), что соответствует (2) и (4). В области токов J > 1 мА, после переходной области, где $n_j(J)$ проходит через максимум и начинает падать, обусловливая сублинейный рост S_J и падение S_U в соответствии с (2) и (4), токовый шум, как и в диоде *C*, растет с током кубически.

В диодах *A* и *B* фактор идеальности в области токов J = 0.4-8 мА изменяется слабо, составляя $n_j \approx 4$ (рис. 3, кривые *1* и 2), что в соответствии с (2) и (4) объясняет близкий к линейному рост токового шума и уменьшение шума напряжения $S_U \propto 1/J$ с током (рис. 5, *a* и *b*, кривые *1* и 2). Небольшое подавление роста шума в области токов $J \approx 10$ мА связано с падением фактора идеальности при J > 3 мА. Переход к зависимостям $S_J \propto J^3$ и $S_U \propto J$ наблюдается лишь при токах, близких к рабочим ($J \approx 20$ мА).

В низкоэффективном диоде *E* с малым током утечки, в области токов J < 0.4 мА $n_j = 7$ (рис. 3, кривая 5), в области токов 1–10 мА $n_j \propto J^{-0.3}$ и $S_J \propto J^{0.7}$ (рис. 5, *a*, кривая 5) в соответствии с (2). При больших токах шум демпфируется, как и в диодах *A* и *B*.

Таким образом, токовые зависимости плотности шума для исследованных диодов обусловлены шумом туннельного сопротивления *n*-области обедненного слоя. Избыточным шумом, обусловленным прыжковой проводимостью в области объемного заряда, можно объяснить и сильное возрастание 1/f шума с ростом тока $(S_J(J) \sim J^2 \, \text{и} \, S_J(J) \sim J^4)$, наблюдавшееся ранее в GaNсветодиодах [29,30] и связываемое в этих работах с шумом контактов.

Используя соотношение $S_J = \alpha q J/\tau f$ для плотности токового шума в эффективных диодах A и B, для которых $n_j \approx 1$ при J = 20 мА (рис. 3, кривые I и 2), принимая $\tau = 10^{-9}$ с и учитывая, что $S_J = 2.3 \cdot 10^{-16} \text{ A}^2/\Gamma$ ц при $f = 10 \Gamma$ ц (рис. 4, кривая I), мы получаем для постоянной Хоуге $\alpha = S_J \tau f/qJ = 8 \cdot 10^{-4}$. Такое же малое значение для постоянной Хоуге наблюдается и в неэффективном диоде E, в котором также $n_j \approx 1$ при J = 20 мА, но ток определяется практически полностью безызлучательной рекомбинацией в активной области. Отметим, что для диода D, в котором $S_J \propto J$ при J = 0.04 мА и $S_J = 10^{-16} \text{ A}^2/\Gamma$ ц, записав (2) в виде $S_J = \alpha_{\text{meas}}qJ/\tau f$, где $\alpha_{\text{meas}} = \alpha \tau n_j/\tau_{\text{hop}}$, получаем $\alpha_{\text{meas}} = 0.15$. Равный уровень шума высокоэффективных диодов A, B и низкоэффективного диода E связан, согласно (2), с малым фактором идеальности n(J) в области токов J = 0.1-20 мА и низких прямых смещений в диодах A, B, и больших прямых смещений в диоде E. При этом высокая туннельная прозрачность n-барьера в диодах A, B обеспечивает туннельную инжекцию, а в диоде E обусловливает туннельную утечку.

В диодах A, B низкое пороговое напряжение $U_{\rm th} = 2.32$ В и малый пороговый ток $J_{\rm th} = 0.8$ мкA, туннельная утечка при $U_j < U_{\rm th}$ также мала. Большая крутизна $J(U_j)$ -характеристик свидетельствует о высокой туннельной прозрачности *n*-барьера. Туннельная инжекция электронов через *n*-барьер обеспечивает высокую квантовую эффективность при малом уровне шума.

В диоде *E* пороговое напряжение $U_{\rm th} = 3.02$ В на 0.7 В больше, чем в диодах *A*, *B*, и лишь на 0.4 В меньше напряжения плоских зон; пороговый ток также очень высок и обусловлен большим током утечки $J_{\rm th} = J_{\rm leak} = 0.3$ мА. Медленный по сравнению с диодом *C* рост тока утечки при низких смещениях $U_j < U_{\rm th}$ свидетельствует о малой туннельной прозрачности *n*-барьера. Туннельная прозрачность *n*-барьера становится высокой лишь при больших смещениях в результате сужения *n*-барьера. Рост туннельной утечки через *n*-барьер при $U_j > U_{\rm th}$ приводит к низкой эффективности при малом уровне шума.

О неоднозначном характере связи между уровнем шума и эффективностью GaN-светодиодов свидетельствуют и опубликованные в [29,30] экспериментальные результаты: равенство оптического шума высокоэффективных и низкоэффективных светодиодов [30], отсутствие корреляции между эффективностью и уровнем токового шума диодов одного поколения [30], равный уровень шума исходных и деградировавших при рабочем токе светодиодов [29]. Эти факты могут найти объяснение в рамках предложенной в данной работе модели шума.

Нами также наблюдалось уменьшение плотности токового шума с ростом тока в диодах с линейной туннельной утечкой при допороговых напряжениях, сопровождающейся резким ростом интенсивности излучения, и тока при пороговом напряжении, связанное, согласно (2), с резким уменьшением фактора идеальности. С резким уменьшением фактора идеальности может быть связано и падение уровня шума с ростом тока, наблюдавшееся в низкоэффективных светодиодах ($\eta \leq 1$) в [30].

Таким образом, уровень шума GaN-светодиода может не отражать структурное совершенство материала и эффективность светодиода, вместе с тем уровень шума может быть чувствительным индикатором надежности светодиода.

5. Заключение

Проведенное выше качественное рассмотрение прыжковой проводимости сквозь область объемного заряда как источника избыточного шума позволяет уточнить представления о механизме транспорта и причине снижения квантовой эффективности с ростом тока в GaN-светодиодах.

Прыжковая проводимость сквозь часть *n*-области объемного заряда, граничащую с квантовой ямой $g_{hop}(U_j)$ (см. вставку к рис. 1), понижая инжекционный *n*-барьер и внося последовательное туннельное сопротивление для электронного тока, управляет, как затвор, током p-n-перехода $J(U_j)$, а флуктуации прыжковой проводимости вызывают флуктуации тока. Это приводит к двухступенчатому росту как тока, обусловленного излучательной рекомбинацией носителей в активной области, так и тока туннельной утечки, а также определяет токовые зависимости токового шума.

На первом крутом участке вольт-амперной характеристики p-n-перехода $J(U_j)$ прыжковая проводимость "затвора" $g_{hop}(U_j)$ не ограничивает электронного тока и эффективность быстро растет. При увеличении прямого смещения $g_{hop}(U_j)$ растет, так как электроны туннелируют все ближе к вершине *n*-барьера, где плотность дефектных состояний экспоненциально повышается, но растет слабее, чем поток термоактивированных электронов. Это ограничивает рост электронного тока и приводит к уменьшению крутизны $J(U_j)$ -характеристики и увеличению токового шума.

На втором крутом участке вольт-амперной характеристики $J(U_j)$ прыжковая проводимость $g_{hop}(U_j)$ увеличивается в результате роста плотности дефектных состояний, контролирующих проводимость, и сужения области, ограничивающей поток электронов. Это приводит к мягкому туннельному проколу *n*-барьера. В режиме туннельного прокола, чем меньше сильно шумящее туннельное сопротивление $r_{hop}(U_j)$ ограничивает прохождение тока, тем больше крутизна характеристики $J(U_j)$ и тем выше плотность токового шума в результате уменьшения числа электронов, контролирующих проводимость. Мягкий туннельный прокол *n*-барьера приводит к преимущественному росту тока туннельной утечки и уменьшению эффективности.

Список литературы

- Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett., 91, 141 101 (2007).
- [2] T. Mukai, M. Yamada, S. Nakamura. Jpn. J. Appl. Phys., pt 1, 38, 3976 (1999).
- [3] Н.И. Бочкарева, Д.В. Тархин, Ю.Т. Ребане, Р.И. Горбунов, Ю.С. Леликов, И.А. Мартынов, Ю.Г. Шретер. ФТП, 41, 88 (2007).
- [4] J. Hader, J.V. Moloney, S.W. Koch. Appl. Phys. Lett., 96, 221 106 (2010).
- [5] T.J. Badcook, S. Hammersley, D. Watson-Parris, P. Dawson, M.J. Godfrey, M.J. Kappers, C. McAleese, R.A. Oliver, C.J. Humphreys. Jpn. J. Appl. Phys., **52**, 08JK10 (2013).
- [6] J. Mickevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, R. Gacka. Appl. Phys. Lett., 103, 011 906 (2013).

- [7] Н.И. Бочкарева, В.В. Вороненков, Р.И. Горбунов, А.С. Зубрилов, Ю.С. Леликов, Ф.Е. Латышев, Ю.Т. Ребане, А.И. Цюк, Ю.Г. Шретер. ФТП, 44, 822 (2010).
- [8] N.I. Bochkareva, Y.T. Rebane, Y.G. Shreter. Appl. Phys. Lett., 103, 191 101 (2013).
- [9] I.A. Pope, P.M. Smowton, P. Blood, J.D. Thomson, M.J. Kappers, C.J. Humphreys. Appl. Phys. Lett., 82, 2755 (2003).
- [10] A. Hori, D. Yasunaga, A. Satake, K. Fujiwara. Appl. Phys. Lett., 79, 3723 (2001).
- [11] B. Monemar, B.E. Sernelius. Appl. Phys. Lett., 91, 181103 (2007).
- [12] N.I. Bochkareva, V.V. Voronenkov, R.I. Gorbunov, A.S. Zubrilov, Y.S. Lelikov, P.E. Latyshev, Y.T. Rebane, A.I. Tsyuk, Y.G. Shreter. Appl. Phys. Lett., 96, 133 502 (2010).
- [13] H.C. Casey, jr., J. Muth, S. Krishnankutty, J.M. Zavada. Appl. Phys. Lett., 68, 2867 (1996).
- [14] P. Perlin, M. Osinski, P.G. Eliseev, V.A. Smagley, J. Mu, M. Banas, P. Sartori. Appl. Phys. Lett., 69, 1680 (1996).
- [15] Н.И. Бочкарева, Е.А. Zhirnov, А.А. Ефремов, Ю.Т. Ребане, Р.И. Горбунов, Ю.Г. Шретер. ФТП, **39**, 627 (2005).
- [16] Н.И. Бочкарева, Д.В. Тархин, Ю.Т. Ребане, Р.И. Горбунов, Ю.С. Леликов, И.А. Мартынов, Ю.Г. Шретер. ФТП, 41, 88 (2007).
- [17] J.P. Donnelly, A.G. Milnes. IEEE Trans. Electron. Dev., ED-14, 63 (1967).
- [18] Б.Л. Шарма, Р.Л. Пурохит. Полупроводниковые гетеропереходы (М., Радио и связь, 1979).
- [19] H. Qiu, C. Hoggatt, W. Melton, M.W. Leksono, J.I. Pankove. Appl. Phys. Lett., 66, 2712 (1995).
- [20] Н.И. Бочкарева, Ю.Т. Ребане, Ю.Г. Шретер. ФТП, **48**, 1107 (2014).
- [21] Н.И. Бочкарева, В.В. Вороненков, Р.И. Горбунов, А.С. Зубрилов, Ф.Е. Латышев, Ю.С. Леликов, Ю.Т. Ребане, А.И. Цюк, Ю.Г. Шретер. ФТП, 46, 1054 (2012).
- [22] J. del Alamo, R.M. Swanson. IEEE Trans. Electron Dev. Lett., EDL-7, 629 (1986).
- [23] E. Muller, D. Gerthzen, P. Bruckner, F. Scholz, Th. Gruber, A. Waag. Phys. Rev. B, 73, 245 316 (2006).
- [24] Н.И. Бочкарева, А.А. Ефремов, Ю.Т. Ребане, Р.И. Горбунов, А.В. Клочков, Ю.Г. Шретер. ФТП, 40, 122 (2006).
- [25] Н.И. Бочкарева, В.В. Вороненков, Р.И. Горбунов, Ф.Е. Латышев, Ю.С. Леликов, Ю.Т. Ребане, А.И. Цюк, Ю.Г. Шретер. ФТП, 47, 115 (2013).
- [26] R.F. Voss. J. Phys. C: Sol. St. Phys., 11, L923 (1978).
- [27] B.I. Shklovskii. Sol. St. Commun., **33**, 273 (1980).
- [28] F.N. Hooge. Physica, 60, 130 (1972).
- [29] S. Bychikhin, D. Pogany, L.K.J. Vandamme, G. Meneghesso, E. Zanoni. J. Appl. Phys., 97, 123 714 (2005).
- [30] S. Sawyer, S.L. Rumyantsev, M.S. Shur, N. Pala, Yu. Bilenko, J.P. Zhang, X. Hu, A. Lunev, J. Deng, R. Gaska. J. Appl. Phys., 100, 034 504 (2006).

Редактор А.Н. Смирнов

Hopping in space charge region of p-n-structures with InGaN/GaN quantum wells as a source of excess 1/f noise and losses in efficiency of light-emitting diodes

N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, V.S. Kogotkov*, Y.T. Rebane, M.V. Virko*, Y.G. Shreter

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

* Saint Petersburg State Polytechnical University,

195251 St. Petersburg, Russia

Abstract A correlation of emission efficiency and 1/f noise level with changes in differential resistance as a function of current in the light-emitting diodes with InGaN/GaN quantum wells is shown. Analysis of results obtained shows that hopping via defect states through space-charge n-region results in the tunnel resistance limitation of the current in the middle current region and in the formation of shunt pathways through the *n*-barrier at high currents. Increase in a mean number of tunneling electrons leads to the suppression of 1/f noise current in the middle current region. Strong increase in the noise current density at high currents, $S_J \propto J^3$, is related to a decrease in a mean number of tunneling electrons due to a decrease in the height and width of the n-barrier while the forward bias increases. The tunnelrecombination leakage current along extended defects increases faster with increasing current than tunnel injection current does, resulting in the efficiency droop.