Влияние энергии размола на анизотропию деформационных искажений в нанокристаллических порошках нестехиометрического карбида тантала TaC,

© А.И. Гусев, А.С. Курлов, А.М. Бельков, Т.Д. Белькова

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 27 ноября 2014 г.)

Методом ренттеновской дифракции экспериментально изучено влияние энергии размола и нестехиометрии кубического карбида тантала TaC_y ($0.81 \le y \le 0.96$) на анизотропию деформации кристалла и размер частиц нанокристаллических порошков. Получена функциональная зависимость приведенного уширения дифракционных отражений от вектора рассеяния, учитывающая вклады размерного, деформационного и негомогенного уширения. Оценены средний размер областей когерентного рассеяния и величина микронапряжений в кристаллитах, учитывающая анизотропию деформационных искажений. Показано, что учет анизотропии микронапряжений и негомогенного уширения позволяет достичь более точного описания экспериментальных данных по уширению дифракционных отражений.

1. Введение

Дифракция рентгеновского или нейтронного излучения — один из основных методов изучения размера частиц и микронапряжений в наноструктурированных веществах. В дифракционном эксперименте размер *D* частиц и величину микронапряжений ε оценивают по уширению дифракционных отражений. Величина микронапряжений заметно зависит от способа получения наноматериала.

Нанотехнологии, связанные с получением наноструктурированных материалов, условно делят на две группы: "снизу вверх" (bottom-up) и "сверху вниз" (top-down) [1–3]. Нанотехнологии группы "снизу вверх" в основном базируются на химических методах (например, включая золь-гель-метод и различные методы синтеза и осаждения из водных и неводных растворов при невысоких температурах). Микронапряжения в веществах, получаемых этими методами, обычно малы (0.1-0.2% и менее) и практически не сказываются на свойствах.

Получение наноматериалов с помощью нанотехнологий группы "сверху вниз" преимущественно связано с использованием физических методов. Среди них особое место занимают методы, основанные на измельчении частиц (зерен) вещества в результате таких сильных механических воздействий, как интенсивная пластическая деформация и высокоэнергетический размол [4–6]. Наноструктурированные материалы, полученные этими методами, отличаются высокой концентрацией дислокаций и большой величиной микронапряжений. Дифракционное изучение микроструктуры таких наноматериалов обнаружило эффекты, обусловленные анизотропией микронапряжений [7–11].

Малый размер *D* зерен (кристаллитов, частиц) и микронапряжения ε кристаллической решетки, обуслов-

ленные ее деформационными искажениями и смещениями атомов из-за наличия дислокаций, являются наиболее известными причинами уширения дифракционных отражений. Менее известна такая причина уширения, как негомогенность [12–14], т.е. неоднородность состава вещества по объему образца. Негомогенность возможна в соединениях и вешествах с атомным или атомно-вакансионным замещением: в нестехиометрических соединениях MX_{y} ($MX_{y}\Box_{1-y}$, где \Box — структурная вакансия) и твердых растворах (сплавах) $A_v B_{1-v}$. При наличии негомогенности состав нестехиометрического соединения $MX_{v}\square_{1-v}$ или твердого раствора $A_{v}B_{1-v}$ меняется в интервале $y \pm \Delta y$, где $\Delta y > 0$ — негомогенность. Частицы (зерна) негомогенного вещества имеют разный состав и различаются параметрами кристаллической решетки или, что то же самое, величиной межплоскостного расстояния $d \pm \Delta d$. В этом случае любое отражение является суперпозицией отражений от частиц (зерен) с разными межплоскостными расстояниями и поэтому уширено.

До настоящего времени влияние нестехиометрии и малого размера частиц на особенности микроструктуры нанокристаллических веществ в литературе вообще не обсуждалось. Это связано с тем, что число сильно нестехиометрических соединений (в основном это сверхтвердые кубические карбиды и нитриды переходных металлов IV и V групп) невелико [14–16], а получить их в наносостоянии достаточно сложно.

В связи с этим целью настоящей работы является экспериментальное рентгено-дифракционное исследование влияния энергии размола, нестехиометрии и негомогенности на ширину дифракционных отражений с последующей оценкой анизотропии микронапряжений и размера частиц. В качестве объекта исследования использовались нанокристаллические порошки нестехиометрического кубического (пр. гр. *Fm*3*m*) карбида

10 5					,		S _{sp} ,	D, nm (±5) Pehtren		$\varepsilon_{\mathrm{aver}}$, % (±0.03)		
Карбид	t,	$a_{B1},$	ρ , -3	a'(y)=da/dy,	k_{hL} ,	Δy	$\mathbf{m} \cdot \mathbf{g}^{-1}$			тген	*	**
TaCy	h	nm	g · cm ⁻⁵	nm	rad		(± 0.20)	БЭГ	D^*	D^{**}	\mathcal{E}^{*}	\mathcal{E}^{**}
TaC _{0.81}	0	0.44277	14.60	0.0158	0.1427	0.016	0.2155	1910		_		-
	5	0.4426	14.60	0.0158	0.1427	0.016	12.35	33	30	32	0.50	0.51
	10	0.4425	14.60	0.0158	0.1427	0.016	17.50	23	28	35	0.78	0.71
	15	0.4424	14.62	0.0158	0.1427	0.016	25.21	16	22	21	0.81	0.79
TaC _{0.86}	0	0.44335	14.60	0.0163	0.1471	0.015	0.1475	2780	_	_	_	_
	5	0.4431	14.60	0.0163	0.1471	0.015	11.45	36	41	53	0.62	0.60
	10	0.4429	14.62	0.0163	0.1471	0.015	16.70	25	26	31	0.72	0.72
	15	0.4428	14.62	0.0163	0.1471	0.015	24.75	17	22	24	0.87	0.84
TaC _{0.90}	0	0.44407	14.58	0.0166	0.1495	0.015	0.1213	3390	_	_	_	_
	5	0.4436	14.58	0.0166	0.1495	0.015	12.18	34	34	39	0.64	0.62
	10	0.4434	14.60	0.0166	0.1495	0.015	18.50	22	26	29	0.82	0.81
	15	0.4432	14.62	0.0166	0.1495	0.015	25.79	16	19	21	0.82	0.83
TaC _{0.96}	0	0.44511	14.55	0.0172	0.1546	0.013	0.1219	3380	_	_	_	_
	5	0.4444	14.56	0.0172	0.1546	0.013	12.15	34	43	55	0.75	0.71
	10	0.4441	14.59	0.0172	0.1546	0.013	18.39	22	34	39	0.92	0.91
	15	0.4439	14.61	0.0172	0.1546	0.013	24.70	17	21	24	0.92	0.93

Влияние продолжительности t размола на период решетки a_{B1} , плотность ρ , негомогенность Δy , величину удельной поверхности S_{sp} , средний размер D частиц и величину микронапряжений ε в порошках нестехиометрического карбида тантала TaC_y

* Определено без учета анизотропии микронапряжений.

** Определено с учетом анизотропии микронапряжений *ε_{hkl}*.

тантала TaC_y с разным относительным содержанием углерода $0.81 \le y \le 0.96$, полученные методом высокоэнергетического размола крупнозернистых порошков.

2. Образцы и экспериментальные методы

Исходные крупнозернистые порошки нестехиометрических карбидов тантала $TaC_{0.81}$, $TaC_{0.86}$, $TaC_{0.90}$ и $TaC_{0.96}$ со средним размером частиц $2-3\,\mu$ m были получены ранее [13] по запатентованной методике [17]. Подробно методика синтеза описана в [14–16].

Размол крупнозернистых порошков нестехиометрических карбидов тантала осуществлялся в планетарной шаровой мельнице PM-200 Retsch с угловой скоростью вращения $\omega = 8.333$ rps (500 rpm). Во всех экспериментах величина загрузки M, т.е. масса порошка, взятого для размола, составляла 10 g, общая масса мелющих шаров была равна ~ 100 g, количество мелющих шаров составляло ~ 450 штук. Объем размольного стакана равен 50 ml. Размол проводился с добавлением 15 ml изопропилового спирта, после размола порошок высушивался. Продолжительность размола исходных крупнозернистых порошков составляла 5, 10 и 15 h. Методика размола подробно описана в работах [6,18–21].

Согласно [18,19], при использовании планетарной шаровой мельницы PM-200 Retsch энергия размола E_{mill} имеет вид

$$E_{\rm mill} = \kappa \omega^3 t, \qquad (1)$$

где $\kappa = 8\pi^3 a_k N_b m (R_c^2 + r^2)^{1/2} R_c \frac{64 - 3(r/R_c)^4}{64 - 16(r/R_c)^2}$ — посто-янный коэффициент, характерный для мельницы с разме-

рами R_c и $r; \omega$ — угловая скорость вращения мельницы (в оборотах в секунду): *t* — продолжительность размола (в s). Параметры, входящие в коэффициент к, для мельницы PM-200 Retsch имеют следующие значения: $R_c = 0.075 \,\mathrm{m}$ — радиус окружности, по которой движется ось стакана; $r = 0.0225 \,\mathrm{m}$ — внутренний радиус стакана; общая масса мелющих шаров $N_b m = 0.1 \, \text{kg}$, где N_b — число мелющих шаров, *m* — масса каждого шара; a_k — коэффициент полезного действия, показывающий, какая часть энергии расходуется на размол порошка. Коэффициент a_k мельницы PM-200 Retsch не превышает 0.01 [18]. Тщательное исследование размола карбидов ниобия и тантала NbC_y и TaC_y [21] показало, что коэффициент полезного действия a_k мельницы РМ-200 Retsch равен ~ 0.009 , в соответствии с чем $\kappa \approx 0.00135 \,\mathrm{kg} \cdot \mathrm{m}^2$. При таком значении κ и угловой скорости вращения мельницы $\omega = 8.333 \,\mathrm{rps}$ величина $\kappa \omega^3 = 0.781 \, \mathrm{J} \cdot \mathrm{s}^{-1}$ и $E_{\mathrm{mill}} \approx 0.781 t \, \mathrm{J}$. Таким образом, энергия размола E_{mill} при продолжительности размола 5, 10 и 15 h равна 14.06, 28.12 и 42.17 kJ соответственно.

Методом Брунауэра–Эммета–Теллера (БЭТ) на анализаторе удельной поверхности Gemini VII 2390t Surface Area Analyzer по изотермам адсорбции паров молекулярного азота при температуре 77 К измерялась удельная поверхность $S_{\rm sp}$ исходных порошков карбида тантала и тех же порошков после размола. В приближении одинакового размера и шарообразной формы всех частиц по величине удельной поверхности $S_{\rm sp}$ оценивался средний размер частиц $D = 6/\rho S_{\rm sp}$ (ρ — плотность карбида Та $T_{\rm y}$). Плотность исходных и размолотых порошков карбидов тантала Та $C_{0.81}$, Ta $C_{0.90}$ и Ta $C_{0.96}$ приведена в таблице.

Кристаллическая структура и фазовый состав нестехиометрических карбидов тантала определялись методом рентгеновской дифракции на дифрактометре Shimadzu XRD-7000 методом Брэгга–Брентано в интервале углов 2θ от 10 до 140° с пошаговым сканированием $\Delta(2theta) = 0.03^{\circ}$ и временем экспозиции 2 s в точке в излучении Cu $K_{\alpha_{1,2}}$. Рентгенограммы численно анализировались с помощью программного пакета X'Pert Plus [22]. Дифракционные отражения описывались функцией псевдо-Фойгта. Средний размер $\langle D \rangle$ областей когерентного рассеяния (ОКР) и величина микронапряжений ε в размолотых порошках карбидов тантала определялись по уширению дифракционных отражений. В первом приближении размер ОКР рассматривался как средний размер частиц порошка.

Уширение $\beta(2\theta)$ дифракционного отражения определялось как $\beta(2\theta) = [(FWHM_{exp})^2 - (FWHM_R)^2]^{1/2}$, где FWHM_{exp} — полная ширина экспериментального дифракционного отражения на половине высоты, FWHM_R — инструментальная функция углового разрешения дифрактометра. Функция разрешения RWHM_R(2θ) = $(u tg^2 \theta + v tg \theta + w)^{1/2}$ рентгеновского дифрактометра Shimadzu XRD-7000 была найдена в специальном дифракционном эксперименте на кубическом гексабориде лантана LaB₆ (NIST Standart Reference Powder 660a) с периодом решетки a = 0.41569162 nm. Функция разрешения FWHM_R(2θ), измеренная в градусах, имеет параметры u = 0.005791, v = -0.004627 и w = 0.010201.

3. Вклады анизотропии микронапряжений и негомогенности в уширение дифракционных отражений

Рентгеновское исследование пластически деформированных оцк-металлов (железо, молибден, тантал, вольфрам) позволило авторам работы [23] предположить, что наблюдаемое уширение дифракционных отражений можно считать суммой размерного и деформационного уширений. Вильямсон и Холл [24,25] предложили аппроксимировать совместное влияние малого размера частиц (кристаллитов) и микродеформаций на дифракционные отражения аддитивной функцией двух видов уширения. Если форма дифракционного отражения описывается функцией Лоренца (Коши) $L(\theta) = h_L \{1 + [(\theta - \theta_0)^2 / \theta_L^2]\}^{-1},$ то физическое уширение определяется как сумма размерного и деформационного уширений, т.е. $\beta(2\theta) = \beta_s(2\theta) + \beta_d(2\theta)$. В рентгеновском дифракционном эксперименте это приближение вполне оправдано, так как обычно физическое уширение β и инструментальная ширина FWHM_R описываются функцией псевдо-Фойгта с большим (до 90% и более) вкладом функции Лоренца. В частности, для изученных крупнозернистых и нанокристаллических порошков ТаС, вклад функции Лоренца в физическую ширину дифракционных отражений составляет от 90 до 100%. Заметим, что полная ширина на половине высоты FWHM_L функции Лоренца равна удвоенному параметру θ_L этой функции, т.е. FWHM_L = $2\theta_L$.

Если вклад негомогенности в уширение тоже описывается функцией Лоренца, то физическое уширение можно найти как сумму размерного, деформационного и негомогенного уширений, т.е.

$$\beta(2\theta) = \beta_s(2\theta) + \beta_d(2\theta) + \beta_h(2\theta). \tag{2}$$

Средний размер D малых частиц, или более точно, средний размер ОКР, связан с размерным уширением $\beta_s(2\theta)$ формулой Дебая—Шеррера

$$\beta_s(2\theta) = \frac{\lambda}{D\cos\theta} \,[\text{rad}],\tag{3}$$

где λ — длина волны излучения.

Обычно уширение $\beta_d(2\theta)$, обусловленное деформационными искажениями решетки, представляют в виде $\beta_d(2\theta) = 4\varepsilon \operatorname{tg} \theta$, где ε — микронапряжение, усредненное по объему кристалла. Но в сильно деформированных кристаллах нужно учитывать анизотропию микронапряжений. Согласно [24,26], уширение $\beta_d(2\theta)$, обусловленное деформационными искажениями кристаллической решетки, равно

$$\beta_d(2\theta) = 4\varepsilon_{hkl} \operatorname{tg} \theta \,[\mathrm{rad}],\tag{4}$$

где $\varepsilon_{hkl} = \sigma/E_{hkl} = k_{\rho}C_{hkl}^{1/2}$ — эффективное микронапряжение, учитывающее анизотропию деформации кристалла, σ — не зависящая от направления полная ширина на половине высоты функции распределения напряжений, E_{hkl} — зависящий от направления [hkl] модуль Юнга, k_{ρ} — постоянная для данного образца величина, зависящая от плотности дислокаций и вектора Бюргерса, т. е. от изменения межплоскостного расстояния и атомных смещений. В теории упругости анизотропный модуль Юнга E_{hkl} кубических кристаллов определяется через упругие постоянные c_{11} , c_{12} и c_{44} или компоненты тензора упругих деформаций s_{11} , s_{12} и s_{44} как

$$E_{hkl} = \frac{1}{s_{11} - (2s_{11} - 2s_{12} - s_{44})H}$$
(5)

где $H = (h^2k^2 + k^2l^2 + h^2l^2)/(h^2 + k^2 + l^2)^2$ — дислокационный фактор анизотропии. Коэффициент C_{hkl} учитывает наличие краевых и винтовых дислокаций в деформированном кристалле. Согласно [27], для кубических кристаллов коэффициент C_{hkl} равен

$$C_{hkl} = f_E C_{hkl,E} + (1 - f_E) C_{hkl,S}$$

= $[f_E A_E + (1 - f_E) A_S] + [f_E B_E + (1 - f_E) B_S] H$
= $A + BH$, (6)

где f_E и $f_S = (1 - f_E)$ — относительное содержание краевых и винтовых дислокаций, $A_{E,S}$, $B_{E,S}$ — плотности

краевых и винтовых дислокаций; *А* и *В* — постоянные для данного образца величины, зависящие от плотности дислокаций и их относительного содержания.

С учетом $\varepsilon_{hkl} = k_{\rho} C_{hkl}^{1/2}$ и (6) выражение (4) можно записать в виде

$$\beta_d(2\theta) = 4k_\rho C_{hkl}^{1/2} \operatorname{tg} \theta \equiv 4k_\rho (A + BH)^{1/2} \operatorname{tg} \theta.$$
 (7)

Из (6) и (7) следует, что анизотропия микронапряжений в большей степени обусловлена наличием дислокаций или дислокационно-подобных дефектов, чем атомными смещениями.

Усредненная по объему кристалла величина микронапряжений ε_{aver} равна

$$\varepsilon_{\text{aver}} = \left(\sum \varepsilon_{hkl} P_{hkl}\right) / \sum P_{hkl},$$
 (8)

где *P*_{hkl} — фактор повторяемости.

В работах [12–14] была получена формула негомогенного уширения β_h кубических кристаллов для случая, когда профиль дифракционных отражений описывается распределением Гаусса. Эта формула, в частности, была использована авторами [11] при анализе нейтронографических спектров карбида ниобия.

В обсуждаемом случае профили рентгеновских дифракционных отражений карбидов тантала TaC_y описываются распределением Лоренца (Коши), для которого полная ширина на половине высоты равна удвоенному параметру θ_L этой функции. С учетом этого негомогенное уширение $\beta_{hL}(2\theta)$ кубических кристаллов имеет несколько иной вид, чем в [11–14]:

$$\beta_{hL}(2\theta) = \frac{8a'(y)_{y=y_0}}{\lambda\sqrt{h^2 + k^2 + l^2}} \frac{\sin^2\theta}{\cos\theta} \Delta y$$
$$\equiv \frac{4|a'(y)|_{y=y_0}}{a(y)} \Delta y \cdot \operatorname{tg} \theta = k_{hL} \Delta y \operatorname{tg} \theta \operatorname{[rad]}, \quad (9)$$

где $a'(y) \equiv da_{B1}(y)/dy$ — производная от концентрационной зависимости периода решетки a_{B1} нестехиометрического соединения MX_y по составу y, $\sqrt{h^2 + k^2 + l^2}$ квадратичная форма для отражения (hkl) соединения с кубической структурой, $k_{hL} = 4|a'(y)|/a_{B1}(y)$, $\Delta y > 0$ негомогенность.

Подставляя (3), (7) и (9) в формулу (2), получим

$$\beta(2\theta) = \frac{\lambda}{D\cos\theta} + 4k_{\rho}(A + BH)^{1/2}\operatorname{tg}\theta + k_{hL}\Delta y\operatorname{tg}\theta.$$
(10)

Перейдем в выражении (10) от уширения $\beta(2\theta)$ к приведенному угловому уширению $\beta^*(2q) = [\beta(2\theta)\cos\theta]/\lambda$. В соответствии с (10) приведенное угловое уширение $\beta^*(2\theta)$, учитывающее малый размер частиц, анизотропию микронапряжений и негомогенность, равно

$$\beta^*(2\theta) = 1/D + 2k_\rho (A + BH)^{1/2} s + (k_{hL}/2)\Delta y s, \quad (11)$$

где $s = (2 \sin \theta)/\lambda$ — вектор рассеяния, $k_{\rho}(A + BH)^{1/2} = \varepsilon_{hkl}, (khL/2)\Delta ys = \beta_{hL}^*(2\theta).$

Из уравнения (11) следует, что при постоянной величине $\Delta y = \text{const} > 0$ негомогенность Δy вносит в приведенное уширение $\beta^*(2\theta)$ дополнительный вклад, пропорциональный вектору рассеяния *s* (рис. 1).

Рис. 1. Модельная зависимость приведенного уширения $\beta^*(2\theta)$ дифракционных отражений от вектора рассеяния *s* при отсутствии (1) и наличии (2) и негомогенного уширения.

Анизотропия микронапряжений и размер частиц в нанопорошках ТаС,

Согласно дифракционным данным, все исходные порошки карбида TaC_y являются однофазными и имеют кубическую (пр. гр. $Fm\overline{3}m$) структуру типа B1 (рис. 2, 3). Период a_{B1} кристаллической решетки карбидов TaC_y приведен в таблице. По данным БЭТ, средний размер частиц в исходных крупнозернистых порошках TaC_y составляет $2-3\mu$ m (см. таблицу). Степень гомогенности исходных крупнозернистых порошков карбида TaC_y достаточно высока. Свидетельством этого является расщепление $CuK_{a1,2}$ -дублетов. Для исходного карбида $TaC_{0.81}$ первым расщепленным отражением является отражение (311) в области углов $2\theta70.2-71.0^{\circ}$ (рис. 2). На рентгенограммах карбидов $TaC_{0.86}$, $TaC_{0.90}$ и $TaC_{0.96}$ расщепление наблюдается уже для отражений (220) в области малых углов $2\theta = 58.4-59.2^{\circ}$ (рис. 2, 3).

Влияние размола на изменение профиля дифракционных отражений порошков карбида TaC_y показано на рис. 2, 3. Как видно, увеличение продолжительности *t* и энергии E_{mill} размола сопровождается значительным уширением дифракционных отражений. Увеличение продолжительности размола *t* приводит также к некоторому уменьшению периода решетки по сравнению с исходным порошком (см. таблицу), что может быть следствием небольшого уменьшения относительного содержания углерода *y* в нанопорошках TaC_y .

Рентгеновская дифракция нанокристаллических порошков, полученных размолом в течение разного времени от 5 до 15 h, обнаружила в них примесную фазу гексагонального (пр. гр. $P\overline{6}m2$) карбида вольфрама WC. Появление примеси WC обусловлено тем, что при размоле происходит натирание материала мелющих шаров и футеровки стаканов, изготовленных из твердого сплава WC-6 wt.% Co. Наличие примеси WC в количестве 2.7-5.6 wt.% обнаружено во всех нанопорошках TaC_y , полученных размолом (рис. 2, 3).

В рентгеновском эксперименте с использованием Си $K_{\alpha 1,2}$ -излучения свидетельством гомогенности нестехиометрического карбида TaC_y служит расщепление дифракционных отражений. Расщепление отражения (hkl) на линии α_1 и α_2 наблюдается, если расстояние $\Delta(2\theta(\alpha_1, \alpha_2)) = [2\theta(\alpha_2) - 2\theta(\alpha_1)]$ между линиями α_1 и α_2 дублета больше, чем удвоенная полуширина экспериментального отражения [12–16]. Поскольку про-

Рис. 2. Рентгенограммы исходных крупнозернистых порошков $TaC_{0.81}$ и $TaC_{0.86}$ и полученных из них размолом в течение 5, 10 и 15 h нанокристаллических порошков. Длинные и короткие штрихи соответствуют дифракционным отражениям карбидов тантала TaC_y и примесного гексагонального карбида вольфрама WC, положение отражений WC в нанопорошках показано также вертикальными штриховыми линиями. Рентгенограммы записаны в излучении $CuK_{\alpha 1.2}$.

Рис. 3. То же, что на рис. 2, для порошков $TaC_{0.90}$ и $TaC_{0.96}$.

филь отражений описывается функцией Лоренца, имеем $\Delta(2\theta(\alpha_1, \alpha_2)) \geq 2\theta_{\exp}(2\theta) = \Delta(2\theta_{\exp}).$

В соответствии с [12–16] и с учетом (9) условие расщепления дублетов на рентгенограмме можно представить в виде неравенства

$$[\text{FWHM}_{R}(2\theta)]^{2} + [\beta_{hL}(2\theta)]^{2} \le [\Delta(2\theta(\alpha_{1},\alpha_{2}))]^{2}, \quad (12)$$

которое позволяет оценить степень гомогенности Δy соединения MX_y по расстоянию $\Delta(2\theta(\alpha_1, \alpha_2))$ между дублетами α_1 и α_2 первого расщепленного отражения. Из (12) следует, что максимальная величина негомогенности Δy равна

$$\Delta y_{\max} = \left\{ \left[\Delta \left(2\theta(\alpha_1, \alpha_2) \right) \right]^2 - \left[FWHM_R(2\theta) \right]^2 \right\}^{1/2} / (k_{hL} \operatorname{tg} \theta).$$
(13)

Рис. 4. Оценка негомогенности Δy исходного крупнозернистого порошка TaC_{0.86} по расщеплению экспериментального (символы) дифракционного отражения (220) на дублетные линии α_1 и α_2 . Рассчитанный профиль отражения (220) показан сплошной линией. Рентгенограмма записана в излучении CuK_{$\alpha_{1,2}$}.

Рис. 5. Экспериментальные (символы) профили дифракционных отражений (311) и (222) нанокристаллического порошка карбида тантала $TaC_{0.86}$, полученного размолом в течение 10 h, и их восстановление функциями псевдо-Фойгта. Согласно проведенному анализу, отражения (311) и (222) описываются только функцией Лоренца без вклада функции Гаусса. Рентгенограмма записана в излучении $CuK_{\alpha 1,2}$.

На рис. 4 в качестве примера показано дифракционное отражение (220) исходного крупнозернистого порошка карбида тантала $TaC_{0.86}$. Оценка негомогенности порошка по расщеплению отражения (220) в соответствии с (13) дает величину $\Delta y = 0.015$. Таким образом, состав этого карбида тантала определен с точностью $TaC_{0.860\pm0.015}$. Негомогенность Δy других исходных порошков TaC_y была определена аналогично. В пределах точности дифракционного эксперимента можно полагать, что негомогенность порошков TaC_y при размоле сохраняется неизменной. Значения негомогенности Δy исходных крупнозернистых и полученных размолом на-

нокристаллических порошков карбида тантала приведены в таблице.

Точное определение положения, интегральной интенсивности, полной ширины на половине высоты FWHM и уширения дифракционных отражений нанопорошков TaC_y требует их количественного описания модельными функциями. На рис. 5 в качестве примера показаны дифракционные отражения (311) и (222) нанопорошка карбида тантала $TaC_{0.86}$, полученного размолом крупнозернистого порошка в течение 10 h, а также их восстановление функциями псевдо-Фойгта $V(\theta)$, являющимися суперпозицией функции Лоренца и Гаусса:

$$V(\theta) = cA_n \left[1 + (\theta - \theta_0)^2 / \theta_L^2 \right]^{-1} + (1 - c)A_n \exp\left[-(\theta - \theta_0)^2 / (2\theta_G^2) \right], \quad (14)$$

где c — относительный вклад функции Лоренца в общую интенсивность отражения; θ_L и θ_G — параметры распределений Лоренца и Гаусса; A_n — нормирующий множитель. Параметры функций псевдо-Фойгта для всех дифракционных отражений всех исследованных порошков TaC_y количественно определялись методом наименьших квадратов. Выполненные расчеты показали, что вклад c функции Лоренца в физическую ширину дифракционных отражений во всех случаях составлял от 0.9 до 1.0. В частности, дифракционные отражения (311) и (222) нанопорошка TaC_{0.86}, показанные на рис. 5, описываются только функцией Лоренца без вклада функции Гаусса.

В реальном рентгеновском дифракционном эксперименте на кубическом кристалле с разверткой спектра по углу отражения при постоянной длине волны удается зафиксировать до 10–12 отражений. При небольшом числе экспериментальных точек их количественное описание функцией (11) с пятью независимыми параметрами (1/D, k_{ρ} , A, B, Δ_y) дает неустойчивое решение и приводит или к очень большой (> 0.1), или к отрицательной величине Δy . И то и другое физически неверно. Поэтому для расчета микронапряжений с учетом их анизотропии в угловое уширение вводили поправку на негомогенное уширение с учетом величин Δy , найденных в соответствии с (13). В этом случае рассматривается функция

$$\begin{bmatrix} \beta^*(2\theta) - \beta^*_{hL}(2\theta) \end{bmatrix} = 1/D + 2\varepsilon_{hkl}s$$
$$\equiv 1/D + 2k_\rho (A + BH)^{1/2}s, \quad (15)$$

которая минимизируется по четырем параметрам 1/D, k_{ρ} , A и B.

Выполненный расчет показал, что для всех нанопорошков TaC_y наименьшая величина микронапряжений ε_{hkl} наблюдается в направлении (200) и эквивалентных ему направлениях, а наибольшее микронапряжение ε_{hkl} наблюдается в направлении (111). Зависимость величины микронапряжений ε_{111} и ε_{200} в направлениях (111) и (200) и усредненного по объему кристалла микронапряжения ε_{aver} от состава у карбида TaC_y и энергии размола

Рис. 6. Зависимость величины микронапряжений ε_{111} (*I*) и ε_{200} (*2*) в направлениях (111) и (200) и усредненного по объему кристалла микронапряжения ε_{aver} (*3*) от состава у карбида TaC_y и энергии размола E_{mill} . Поверхность представляет собой сглаженную зависимость $\varepsilon_{aver}(y, E_{mill})$. Штриховыми линиями показаны проекции экспериментальных точек на координатную поверхность энергия размола E_{mill} -состав у.

 E_{mill} показана на рис. 6. Поверхность представляет собой сглаженную зависимость $\varepsilon_{\text{aver}}(y, E_{\text{mill}})$ усредненного микронапряжения от состава карбида TaC_y и энергии размола E_{mill} .

На рис. 7 показано распределение микронапряжений ε_{hkl} по неэквивалентным направлениям [hkl] в нанопорошках TaC_{0.81}, полученных в течение 5 и 15 h размола

с энергией E_{mill} , равной 14.06 и 42.17 kJ, соответственно. Радиус сфер пропорционален микронапряжению ε_{aver} , усредненному по всем кристаллографическим направлениям, длина векторов пропорциональна величине ε_{hkl} . Как видно, в обоих нанопорошках микронапряжения ε_{111} , ε_{220} , ε_{331} и ε_{422} в направлениях [111], [220], [331] и [422] превышают усредненное микронапряжение ε_{aver} , равное 0.51 и 0.79% для энергии размола 14.06 и 42.17 kJ, соответственно. Микронапряжения ε_{200} и ε_{511} меньше, чем ε_{aver} , а микронапряжения ε_{311} и ε_{420} почти совпадают с усредненным микронапряжение ε_{aver} .

Влияние энергии размола $E_{\rm mill}$ и состава у нанопорошков карбида тантала ${\rm TaC}_y$ на размер частиц, определенный с учетом и без учета анизотропии микронапряжений, показано на рис. 8. Теоретическая зависимость $D_{\rm theor}(y, t)$ рассчитана для массы M = 10 g исходного крупнозернистого порошка с размером частиц $D_{\rm in} = 3 \,\mu$ m по формуле:

$$D(y, t, M) = \frac{M\{A(y) + B(y)\varepsilon(y, t, M)\ln[D_{in}/2b(y)]\}}{E_{mill}(t) + M\{A(y) + B(y)\varepsilon(y, t, M)\ln[D_{in}/2b(y)]\}/D_{in}} = \frac{M\{A(y) + B(y)\varepsilon(y, E_{mill}(t), M)\ln[D_{in}/2b(y)]\}}{E_{mill}(t) + M\{A(y) + B(y)\varepsilon(y, E_{mill}(t), M)\ln[D_{in}/2b(y)]\}/D_{in}}.$$
(16)

Параметры A(y) и B(y) являются сложными функциями энергии межатомных связей, параметров кристаллической решетки, упругих и других свойств размалываемого вещества [6,18–21,28] и не связаны с постоянными A и Bиз формул (6), (7), (10), (11) и (15).В случае нестехиометрических соединений MX_y параметры A(y) и B(y)

Рис. 7. Распределение микронапряжений ε_{hkl} по неэквивалентным направлениям [hkl] в нанопорошке TaC_{0.81}, полученном в течение 5 (*a*) 5 и 15 h (*b*) размола с энергией E_{mill} , равной 14.06 и 42.17 kJ соответственно. Радиус сферы пропорционален величине ε_{aver} , длина векторов в направлениях [hkl] пропорциональна величине микронапряжений ε_{hkl} .

8

Рис. 8. Влияние энергии размола E_{mill} и состава у карбида тантала TaC_y на размер частиц нанопорошков. Теоретическая зависимость $D_{\text{theor}}(y, t)$ рассчитана для массы исходного крупнозернистого порошка M = 10 g с размером частиц $D_{\text{in}} = 3 \, \mu \text{m}$. I, 2 — экспериментальные значения среднего размера частиц, определенные методом рентгеновской дифракции с учетом и без учета анизотропии микронапряжений соответственно.

зависят также от состава у. Зависимости параметров A(y), B(y) и вектора Бюргерса $b(y) = |\mathbf{b}(y)|$ от состава ТаС_у были найдены ранее [21,28].

Быстрое уменьшение размера частиц порошка до 100 nm и менее происходит в течение первого часа размола. Увеличение продолжительности размола до 15 h и более сопровождается медленным асимптотическим уменьшением размера частиц. Это согласуется с экспериментальными результатами, полученными при размоле карбидных порошков $TaC_{0.81}$, $TaC_{0.86}$, $TaC_{0.90}$ и $TaC_{0.96}$ в течение 5, 10 и 15 h (рис. 8).

Увеличение содержания углерода в карбидах TaC_y при одинаковой продолжительности размола приводит к слабому увеличению размера частиц в нанопорошках (рис. 9). Однако разница между размерами частиц, найденными разными методами, лежит, как правило, в пределах ошибок измерений.

Экспериментальные зависимости приведенного уширения $\beta^*(2\theta)$ дифракционных отражений нанопорошка TaC_{0.90}, полученного размолом в течение 15 h, показаны на рис. 10. Хорошо видно, что экспериментальные точки зависимости $\beta^*(2\theta)$ от вектора рассеяния s, построенной без учета анизотропии микронапряжений, разбросаны относительно аппроксимирующей линейной зависимости $\beta^*(s)$ (рис. 10, a). Аппроксимация тех же экспериментальных данных функцией (15) как зависимости от $s(A + BH)^{1/2}$ (рис. 10, b) с введением поправки на негомогенное уширение $\beta^*(2\theta)$ и учетом анизотропии микронапряжений дает более хорошее согласие эксперимента с аппроксимирующей линейной зависимостью. Заметим, что величины среднего размера D частиц и микронапряжений ε , оцененные по обеим зависимостям, совпадают в пределах ошибок расчета. Аналогичные зависимости $\beta^*(2\theta)$ от *s* и $[\beta^*(2\theta) - \beta_h^*(2\theta)]$ от $s(A + BH)^{1/2}$ наблюдаются для других нанопорошков TaC_y.

Рис. 9. Зависимости среднего размера D частиц нанопорошков от состава TaC_y. *1*, 2 — измерения методом рентгеновской дифракции с учетом и без учета анизотропии микронапряжений соответственно. 3 — измерения методом БЭТ. Нанопорошки получены размолом крупнозернистых порошков в течение 15 h с энергией $E_{mill} = 42.17$ kJ.

Рис. 10. Приведенное уширение $\beta^*(2\theta)$ дифракционных отражений нанопорошка TaC_{0.90}, полученного размолом в течение 15 h. *a* — зависимость приведенного уширения от вектора рассеяния *s* без учета анизотропии микронапряжений, *b* — зависимость приведенного уширения с поправкой на негомогенность [$\beta^*(2\theta) - \beta^*_h(2\theta)$] от $s(A + BH)^{1/2}$ с учетом анизотропии микронапряжений ε_{hkl} .

1157

Величина E_{mill} при продолжительности размола 5, 10 и 15 h составляет 14.06, 28.12 и 42.17 kJ. Удельная энергия размола $E_{\rm sp-mill}^{\rm mas}$, отнесенная на единицу массы порошка TaC_y , равна 1.41, 2.81 и 4.22 kJ $\cdot g^{-1}$, соответственно. Удельная энергия размола $E_{\rm sp-mill}^{\rm mol}$, отнесенная на 1 mol карбида TaC_{ν} , равна ~ 270, ~ 541 и ~ 811 kJ · mol⁻¹. В работах [18-21] показано, что измельчение твердых веществ связано с разрывом межатомных связей, энергию которых можно представить через энергию атомизации Eat. Согласно [21,29], энергия атомизации карбида TaC_y имеет вид $E_{at}(y) = 726.1 + 1060.1y$ $-144.4y^2 \,[\text{kJ} \cdot \text{mol}^{-1}]$ и для $\text{TaC}_{0.81}$, $\text{TaC}_{0.86}$, $\text{Ta}_{0.90}$ и ТаС_{0.96} равна 1490, 1531, 1563 и 1611 kJ ·mol⁻¹. Сравнение $E_{\rm sp-mill}^{\rm mol}$ и $E_{\rm at}$ показывает, что максимальная удельная энергия размола, достигнутая в данной работе, вдвое меньше энергии атомизации и недостаточна для разрыва всех межатомных связей и полного разрушения карбида тантала как соединения. Заметим также, что увеличение продолжительности размола до 20 h и более и соответствующий рост энергии размола Emil не приводят к уменьшению размера частиц порошков, так как дополнительно вводимая энергия расходуется уже на уплотнение нанопорошков, а не на их размол. Фактически максимальная энергия, расходуемая именно на размол порошка, для планетарной шаровой мельницы РМ-200 Retsch при угловой скорости $\omega = 8.333$ rps не превышает ~ 60 kJ.

5. Заключение

Впервые исследована анизотропия микронапряжений в нанокристаллических порошках кубического нестехиометрического карбида тантала TaC_y (0.81 $\ge y \ge 0.96$) со структурой типа В1. Нанокристаллические порошки TaC_{ν} со средним размером частиц от ~ 20 до ~ 40 nm получены высокоэнергетическим размолом крупнозернистых порошков. Наибольшие изменения микронапряжений и размера частиц происходят в течение первого часа размола. Последующее увеличение продолжительности t и энергии размола $E_{\text{mill}} = kt$ порошков приводит к асимптотическому росту микронапряжений и уменьшению среднего размера частиц. Увеличение относительного содержания углерода у в карбидах ТаС_у при одинаковой продолжительности и энергии размола сопровождается небольшим ростом микронапряжений и размера частиц порошков.

Для анализа рентгеновских данных по уширению дифракционных отражений нанопорошков предложена модель, включающая вклады размерного, деформационного и негомогенного уширений. Учет анизотропии микронапряжений ε_{hkl} в изученных нанопорошках TaC_y показал, что значения микронапряжений ε_{111} , ε_{220} , ε_{331} и ε_{422} в направлениях [111], [220], [331] и [422] превышают микронапряжение ε_{aver} , усредненное по объему, а микронапряжения ε_{200} и ε_{511} меньше, чем ε_{aver} .

Список литературы

- [1] А.А. Ремпель. Успехи химии 76, 5, 474 (2007).
- [2] V. Balzani. Pure Appl.Chem. 80, 8, 1631 (2008).
- [3] H.-E. Schaefer. Nanoscience. The science of the small in physics, engineering, Chemistry, biology and medicine. Springer, Heidelberg–Dordrecht–London–N.Y. (2010). 772 p.
- [4] Р.З. Валиев, И.В. Александров. Наноструктурные материалы, полученные интенсивной пластической деформацией. Логос, М. (2000). 272 с.
- [5] P. Balaz. Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin-Heidelberg (2008). 413 p.
- [6] A.S. Kurlov, A.I. Gusev. Tungsten carbides: structure, properties and application in hardmetals. Springer, Cham– Heidelberg–N.Y.–Dordrecht–London (2013). 256 p.
- [7] D.C. Gillies, D. Lewis. Powder Metall. 11, 22, 400 (1968).
- [8] T. Ungar, G. Tichy. Phys. Status Solidi A 171, 2, 425 (1999).
- [9] T. Ungar, A. Borbely. Appl. Phys. Lett. 69, 21, 3173 (1996).
- [10] T. Ungar. Powder Diffraction 23, 2, 125 (2008).
- [11] А.С. Курлов, И.А. Бобриков, А.М. Балагуров, А.И. Гусев. Письма в ЖЭТФ 100, 10, 712 (2014).
- [12] А.А. Ремпель, С.В. Ремпель, А.И. Гусев. ДАН 369, 4, 486 (1999).
- [13] А.А. Ремпель, А.И. Гусев. ФТТ 42, 7, 1243 (2000).
- [14] А.И. Гусев, А.А. Ремпель. Нестехиометрия, беспорядок и порядок в твердом теле. УрО РАН, Екатеринбург (2001). 580 с.
- [15] A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and order in strongly nonstoichiometric compounds: transition metal carbides, nitrides and oxides. Springer, Berlin–Heidelberg– N.Y.–London (2001). 607 p.
- [16] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. Физматлит, М. (2007). 856 с.
- [17] L.-M. Berger, M. Hermann, A.I. Gusev, A.A. Rempel. Verfahren zur Herstellung nichtstochiometrischer Carbide definierter Zusammensetzung. Offenlegungsshrift DE 198 07 589 A 1. Int. Cl.⁶: C 01 B 31/30 (C 04 B 35/36). Deutsches Patentamt, Bundesrepublik Deutschland Anmeldetag 23.02. 1998. Offenlegungstag 10.09.1998. P. 1–3.
- [18] A.I. Gusev, A.S. Kurlov. Nanotechnology 19, 26, 265 302, (2008).
- [19] А.С. Курлов, А.И. Гусев. ЖТФ 81, 7, 76 (2011).
- [20] A.S. Kurlov, A.I. Gusev. J. Alloys Comp. 582, 108 (2014).
- [21] A.S. Kurlov, A.I. Gusev. Int. J. Refr. Met. Hard Mater. 46, 125 (2014).
- [22] X'Pert Plus Version 1.0. Program for crystallography and rietveld analysis Philips analytical B. V. © Koninklijke Philips Electronics N. V.
- [23] W.A. Wood, W.A. Rachinger. J. Inst. Metals 75, 6, 571 (1949).
- [24] W.H. Hall. Proc. Phys. Soc. London A 62, 359A, 741 (1949).
- [25] G.K. Williamson, W.H. Hall. Act. Metal. 1, 1, 22 (1953).
- [26] A.R. Stokes, A.J.C. Wilson. Proc. Phys. Soc. 56, 3, 174 (1944).
- [27] P. Scardi, M. Ortolani, M. Leoni. Mater. Sci. Forum 651, 155 (2010).
- [28] А.С. Курлов, А.М. Бельков, Т.Д. Выродова, А.И. Гусев. ФТТ 57, 1, 66 (2015).
- [29] А.С. Курлов, А.И. Гусев. ФТТ 55, 12, 2398 (2013).