03,04

Диэлектрические свойства монокристалла CulnS₂ в переменных электрических полях радиочастотного диапазона

© С.Н. Мустафаева¹, М.М. Асадов², Д.Т. Гусейнов¹, И. Касымоглу¹

¹ Институт физики НАН Азербайджана,

Баку, Азербайджан

² Институт катализа и неорганической химии им. акад. М. Нагиева НАН Азербайджана, Баку, Азербайджан

E-mail: solmust@gmail.com, mirasadov@gmail.com

(Поступила в Редакцию 15 декабря 2014 г.)

Приведенные экспериментальные результаты по изучению частотной зависимости диэлектрических коэффициентов и проводимости выращенных монокристаллов CuInS₂ позволили установить релаксационный характер дисперсии, природу диэлектрических потерь, прыжковый механизм переноса заряда, оценить параметры локализованных состояний, такие как плотность состояний вблизи уровня Ферми и их энергетический разброс, среднее время и расстояние прыжков, а также концентрацию глубоких ловушек, ответственных за проводимость на переменном токе.

1. Введение

Полупроводниковые соединения типа $A^{I}B^{III}C_{2}^{VI}$ привлекают интерес исследователей в силу своих фотовольтаических свойств для применений их в качестве материалов высокоэффективных фотоэлектрических устройств, а также активных элементов солнечных батарей. Одним из представителей этого типа соединений является CuInS₂. CuInS₂ является прямозонным полупроводником с шириной запрещенной зоны $E_g = 1.55 \text{ eV}$ и имеет высокий коэффициент оптического поглощения ($k \ge 10^4 \text{ cm}^{-1}$) [1–3].

Соединение α -CuInS₂ кристаллизуется в тетрагональной сингонии типа халькопирита с параметрами кристаллической решетки $a = (5.5220 \pm 0.0013)$ Å; $c = (11.1320 \pm 0.0026)$ Å [4]. Согласно приведенной в [5] фазовой диаграмме Cu₂S–In₂S₃ соединение CuInS₂ является фазой переменного состава и имеет три полиморфные модификации: γ -CuInS₂ (сфалерит), β -CuInS₂ (сфалерит–вюрцит) и α -CuInS₂ (халькопирит), соответственно с температурами фазовых переходов 1248, 1318 К и температурой плавления 1363 К.

Изучение диэлектрических свойств и электропроводности полупроводниковых кристаллов, в частности многокомпонентных халькогенидов [6,7], на постоянном и переменном токе дает информацию о природе процессов переноса заряда, о локализованных состояниях в запрещенной зоне, а также позволяет определить механизма диэлектрических потерь. Для установления механизма электропроводности на переменном токе весьма существенно знание частотной зависимости электрофизических параметров. В этом плане монокристаллы CuInS₂ до настоящего времени не изучены.

Целью работы явилось изучение электрических и диэлектрических свойств полученных нами монокристаллов α -CuInS₂ в переменных электрических полях, установление механизма переноса заряда, природы ди-

электрических потерь и определение параметров локализованных в запрещенной зоне состояний.

2. Эксперимент

В данном разделе рассматривается низкотемпературная α -модификация соединения CuInS₂. CuInS₂ получен нами методом двухтемпературного синтеза из особо чистых химических элементов: Cu — 5N (99.999%), In — 5N-7N (99.9999%) и S — ОСЧ 15-3 (99.99%); серу неоднократно очищали методом сублимации в вакууме. Синтез проводился в вакуумированных до 10⁻³ Ра кварцевых ампулах путем непосредственного сплавления компонентов (Cu, In и S), взятых в стехиометрическом количестве, соответствующем составу CuInS₂. Завершенность синтеза и гомогенность полученного слитка CuInS₂, а также его индивидуальность контролировали методами дифференциально-термического и рентгенофазового анализов (ДТА и РФА). Температура плавления синтезированного соединения CuInS₂ составляла 1365 ± 3 К.

Полученный слиток CuInS₂ измельчали в порошок и загружали в кварцевую ампулу с внутренним диаметром 14 mm. После этого ампулу эвакуировали, запаивали и размещали в вертикальную двухзонную печь с независимым управлением температурой зон установки для выращивания монокристаллов методом Бриджмена. В верхней зоне печи температуру поддерживали в интервале 1370–1350 K, а в нижней зоне 1230–1220 K. Градиент температуры между зонами был 120–50 K/cm. В установке ампула двигалась через зону градиента температур со скоростью 0.15 mm/h. Гомогенизацию полученных кристаллов CuInS₂ проводили из нижней зоны печи путем охлаждения кристаллов со скоростью $\sim 2 \text{ K/h}$ до 800 K, а затем выключенную печь охлаждали до комнатной температуры. Последний ре-

Рис. 1. Дифрактограмма порошкового образца CuInS₂ при комнатной температуре.

жим был применен для того, чтобы устранить тепловые напряжения, которые являются причинами образования трещин в монокристалле. Таким образом, были получены монокристаллы CuInS₂.

Ренгенографическое исследование полученных кристаллов CuInS₂ было проведено на порошковом автодифрактометре типа D8-ADVANCE в режиме $0.5^{\circ} < 2\theta < 80^{\circ}$ (Cu_{Ka}-излучение; $\lambda = 1.5418$ Å) при 40 kV и 40 mA. Полученные рентгено-дифракционные данные обработаны и уточнены по программам EVA и TOPAZ. Угловое разрешение записи составляло 0.1° . Ошибки определения углов отражений не превышали $\Delta\theta = \pm 0.02^{\circ}$. Типичная дифрактограмма порошкового образца CuInS₂ при комнатной температуре приведена на рис. 1.

Рентгенофазовый анализ показал, что кристаллическая структура полученных образцов CuInS₂ низкотемпературной модификации соответствует тетрагональной сингонии с параметрами кристаллической решетки: $a = b = 5.3317 \pm 0.0011$ Å; $c = 10.4130 \pm 0.0020$ Å; $\alpha = \beta = \gamma = 90^{\circ}$. Отличие этих параметров решетки от литературных данных [4,5] можно связать с отклонением состава соединения CuInS₂ от стехиометрии. В настоящей работе режимы кристаллизации для стехиометрического состава CuInS₂ подбирали, исходя из фазовой диаграммы Cu₂S–In₂S₃.

Образцы из монокристаллов $CuInS_2$ для электрических измерений были изготовлены в виде плоских конденсаторов. В качестве обкладок был использован вплавленный индий. Толщина монокристаллических образцов из $CuInS_2$ составляла 0.1 ст.

Диэлектрические коэффициенты монокристаллов CuInS₂ измерены резонансным методом с помощью измерителя добротности ВМ-560. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. В процессе электрических измерений образцы помещались в экранированную камеру. Все диэлектрические измерения проведены при 300 К. Амплитуда приложенного к образцам переменного электрического поля соответствовала омической области вольтамперной характеристики. Точность определения резонансных значений емкости и добротности ($Q = 1/ \operatorname{tg} \delta$) измерительного контура ограничена ошибками, связанными со степенью разрешения отсчетов по приборам. Градуировка конденсатора имела точность ±0.1 pF. Воспроизводимость положения резонанса составляла по емкости ± 0.2 pF, а по добротности $\pm 1.0-1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3-4% для ε и 7% для tg δ [6,7].

3. Результаты и обсуждение

На рис. 2 представлены экспериментальные результаты изучения частотно-зависимой *ac*-проводимости монокристалла CuInS₂ при 300 К. В частотной области $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz *ac*-проводимость CuInS₂ изменялась по закону $\sigma_{ac} \sim f^{0.8}$. Полученный нами закон $\sigma_{ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности

Рис. 2. Частотно-зависимая проводимость монокристалла $CuInS_2$ при T = 300 K.

уровня Ферми [8]

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 k T N_F^2 a^5 f \left[\ln\left(\frac{\nu_{\rm ph}}{f}\right) \right]^4, \tag{1}$$

где e — заряд электрона; k — постоянная Больцмана; N_F — плотность состояний вблизи уровня Ферми; $a = 1/\alpha$ — радиус локализации; α — постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-ar}$; $v_{\rm ph}$ — фононная частота.

Используя формулу (1) по экспериментально найденным значениям $\sigma_{ac}(f)$ вычислили плотность состояний на уровне Ферми N_F . Вычисленное значение N_F для кристалла CuInS₂ составляло $N_F = 2.1 \cdot 10^{19} \text{ eV}^{-1} \cdot \text{ cm}^{-3}$. При вычислениях N_F значение ν_{ph} взято равным 10^{12} Hz, а за радиус локализации принято значение a = 30 Å по аналогии с монокристаллом CdIn₂S₄ [9]. Как видно, для N_F было получено довольно высокое значение.

По теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по следующей формуле:

$$R = \frac{1}{2\alpha} \ln\left(\frac{\nu_{\rm ph}}{f}\right). \tag{2}$$

Вычисленное по формуле (2) значение R для кристалла CuInS₂ составляло 165 Å. Это значение R примерно в 5.5 раз превышает среднее расстояние между центрами локализации носителей заряда в монокристалле CuInS₂. Значение R позволило по формуле

$$t^{-1} = v_{\rm ph} \cdot \exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков в монокристалле CuInS₂: $t = 5.7 \cdot 10^{-8}$ с. По формуле [8]

$$\Delta E = 3/2\pi R^3 \cdot N_F \tag{4}$$

в CuInS₂ оценен энергетический разброс локализованных вблизи уровня Ферми состояний: $\Delta E = 0.005 \text{ eV}.$ А по формуле

$$N_t = N_F \cdot \Delta E \tag{5}$$

определена концентрация глубоких ловушек в CuInS₂, ответственных за *ac*-проводимость: $N_t = 10^{17}$ cm⁻³.

На рис. З приведены частотные зависимости действительной (ε') и мнимой (ε'') частей комплексной диэлектрической проницаемости ($\varepsilon = \varepsilon' - i\varepsilon''$) образца CuInS₂ (кривые 1 и 2 соответственно). Как видно из рис. З, обе составляющие претерпевают значительную частотную дисперсию, носящую релаксационный характер. По мере увеличения частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz значение ε' уменьшалось почти в 3 раза, а значение ε'' — более чем в 5 раз.

Поведение диэлектрической проницаемости полупроводников, в которых происходит прыжковый обмен зарядами между дефектами, теоретически было рассмотрено в работе [10]. В частности, для полупроводников с большими концентрациями дефектов была получена следующая зависимость диэлектрической проницаемости от частоты электрического поля

$$\varepsilon(f) \sim f^{-(\beta+2)} \tag{6}$$

где $(\beta + 2) = -\gamma$. При этом распределение дефектов по временам жизни подчиняется закономерности

$$n(\tau) \sim \tau^{\beta}. \tag{7}$$

Отсюда следует, что в полупроводниках с большой концентрацией глубоких центров должна наблюдаться дисперсия диэлектрической проницаемости. Как видно из формулы (6) при $\beta > -2$ должна наблюдаться нормальная дисперсия, а при $\beta < -2$ — аномальная дисперсия (при $\beta = -2$ дисперсия отсутствует). Величины β и γ можно определить из экспериментальной

Рис. 3. Частотная дисперсия действительной (1) и мнимой (2) составляющих комплексной диэлектрической проницаемости монокристалла CuInS₂.

Рис. 4. Зависимость $\lg \varepsilon'$ от $\lg f$ для образца CuInS₂.

Рис. 5. Представление диэлектрического спектра CuInS₂ на комплексной плоскости при различных частотах (T = 300 K).

Рис. 6. Частотная зависимость тангенса угла диэлектрических потерь в монокристалле CuInS₂.

зависимости $\varepsilon'(f)$. Перестроенная в двойном логарифмическом масштабе зависимость $\varepsilon'(f)$ для монокристалла CuInS₂ показана на рис. 4. Как видно из этого рисунка зависимость lg ε' от lg f во всей изученной области частот характеризуется одним наклоном $\gamma = -0.17$. В этом случае $\beta = -1.83$, т.е. в монокристалле CuInS₂ в частотном диапазоне $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz имеет место нормальная дисперсия, а распределение дефектов по временам жизни $n(\tau) \sim \tau^{-1.83}$.

На рис. 5 в виде диаграммы Дэвидсона—Коула представлена зависимость ε'' от ε' при изменении частоты для фиксированной температуры (T = 300 K). Форма этой диаграммы свидетельствует о наличии одного типа релаксаторов в образце CuInS₂ в диапазоне частот $2 \cdot 10^5 - 3.5 \cdot 10^7$ Hz.

В этой области частот на дисперсионной кривой тангенса угла диэлектрических потерь в CuInS₂ (рис. 6) при $f = 1.6 \cdot 10^6$ Hz наблюдался максимум, свидетельствующий о том, что в изученном монокристалле имеют место релаксационные потери [11]. Последующий спад tg δ с частотой обусловлен вкладом потерь сквозной проводимости при высоких частотах ($f \ge 10^7$ Hz).

4. Заключение

В выращенных монокристаллах CuInS₂ изучены частотные зависимости действительной (є') и мнимой (є") составляющих комплексной диэлектрической проницаемости, тангенса угла диэлектрических потерь и *ас*-проводимости (σ_{ac}) в области частот $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Установлено, что в указанном диапазоне частот в CuInS2 имела место релаксационная диэлектрическая дисперсия. В области частот $f = 5 \cdot 10^4 - 10^7 \, \text{Hz}$ наблюдались релаксационные потери, сменяющиеся при $f \ge 10^7 \, {
m Hz}$ потерями сквозной проводимости. Во всей изученной области частот *ас*-проводимость монокристалла CuInS₂ подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность (N_F) и энергетический разброс (ΔE) этих состояний $N_F = 2.1 \cdot 10^{19} \,\mathrm{eV}^{-1} \cdot \mathrm{cm}^{-3}, \Delta E = 0.005 \,\mathrm{eV},$ среднее время (t) и расстояние (R) прыжков $t = 5.7 \cdot 10^{-8}$ s и R = 165 Å.

Список литературы

- И.Х. Хабибуллин, В.Л. Матухин, В.Л. Ермаков, О.И. Гнездилов, Б.В. Корзун, Е.Б. Шмидт. ФТП 43, 1, 3 (2009).
- [2] K.M.A. Hussain, J. Podder, D.K. Saha, M. Ichimura. Ind. J. Pure Appl. Phys. 50, 117 (2012).
- [3] В.В. Брус, И.Г. Орлецкий, М.И. Илащук, П.Д. Марьянчук. ФТП 48, 8, 1075 (2014).
- [4] B. Tell, J.L. Shay, H.M. Kasper. Phys. Rev. B. 6, 3008 (1972).

- [5] Vasyl Tomashik. Cu–In–S (Copper–Indium–Sulfur) / Eds G. Effenberg, S. Ilyenko. Springer Materials — The Landolt–Bornstein Database. DOI:10.1007/10915981_24.
- [6] С.Н. Мустафаева, М.М. Асадов, Д.Т. Гусейнов. ФТТ 56, 2, 279 (2014).
- [7] С.Н. Мустафаева, М.М. Асадов, А.И. Джаббаров. ФТТ 56, 6, 1055 (2014).
- [8] Н. Мотт, Е. Дэвис. Электронные процессы в некристаллических материалах. Мир, М. (1974). 472 с.
- [9] С.Н. Мустафаева, М.М. Асадов, Д.Т. Гусейнов. Неорган. материалы 47, 8, 936 (2011).
- [10] П.В. Жуковский, Я. Партыка, П. Венгерэк, Ю. Шостак, Ю. Сидоренко, А. Родзик. ФТП **34**, *10*, 1174 (2000).
- [11] В.В. Пасынков, В.С. Сорокин. Материалы электронной техники. СПб-М.-Краснодар (2004). 368 с.