06

Особенности электрической проводимости кристаллов LiTaO₃ и LiNbO₃ в области температур 290–450 К

© А.В. Яценко¹, М.Н. Палатников², Н.В. Сидоров², А.С. Притуленко¹, С.В. Евдокимов¹

 ¹ Крымский федеральный университет им. В.И. Вернадского, Симферополь, Россия
 ² Институт химии и технологии редкоземельных элементов и минерального сырья им. И.В. Тананаева КНЦ РАН,

Апатиты, Россия

E-mail: lab2@crimea.edu

(Поступила в Редакцию 6 октября 2014 г.)

В интервале температур 290—450 К исследована удельная электрическая проводимость монокристаллов танталата и ниобата лития конгруэнтного состава, не подвергавшихся специальным термохимическим обработкам. Показано, что механизмы переноса заряда и типы носителей в этих кристаллах идентичны в исследованном температурном диапазоне. Установлено наличие анизотропии подвижности электронов проводимости и обсуждается ее влияние на процессы записи и хранения оптических фазовых голограмм в этих кристаллах.

1. Введение

Кристаллы ниобата лития LiNbO₃ (HЛ) и танталата лития LiTaO₃ (TЛ) являются сегнетоэлектрическими материалами, которые нашли широкое применение в электрооптических, акустооптических и нелинейных оптических устройствах [1]. Монокристаллические образцы ТЛ и НЛ с достаточно однородными физическими свойствами были синтезированы практически одновременно, и исследование их свойств первоначально шло одинаково интенсивно, однако в последующие годы изучению кристаллов НЛ уделялось гораздо больше внимания [2].

С началом практического применения периодически поляризованных структур [2,3] резко возрос интерес к монокристаллам ТЛ и керамике на их основе, так как по сравнению с кристаллами НЛ значение коэрцитивного поля при комнатной температуре и температура сегнетоэлектрического фазового перехода у ТЛ существенно ниже ($T_c \approx 900$ K). Кристаллы ТЛ долгое время оставлись "в тени" ниобата лития, поэтому некоторые их физические свойства были исследованы поверхностно. В частности, это относится к природе и механизмам электрической проводимости данного материала.

Анализ доступной нам литературы показал, что информация о электрической проводимости монокристаллических образцов ТЛ в сегнетоэлектрической фазе крайне противоречива и разрозненна. Так, исследования электрической проводимости номинально беспримесных монокристаллических образцов ТЛ методом импедансной спектроскопии были проведены в [4]. Было установлено, что в температурном диапазоне 773–973 К объемная электрическая проводимость подчиняется закону Аррениуса при энергии активации $E_a = 1.27 \pm 0.01$ eV. При этом предполагалось [4], что проводимость определяется диффузией ионов Li⁺. Измерения электрической проводимости вдоль полярного направления, выполненные в [5] для этого же интервала температур на образцах ТЛ, прошедших предварительный отжиг в газовых смесях со сменой изотопного состава H⁺/D⁺, характеризуются несколько меньшим значением энергии активации ($E_a = 1.18 \text{ eV}$).

Электрические свойства серии номинально беспримесных монокристаллов ТЛ в интервале температур 273–423 К были исследованы в [6]. Измерения выполнялись на частоте 0.08 Нz. Было установлено, что температурная зависимость как поверхностной, так и объемной электрической проводимости имеет сложный характер. Энергия активации объемной электрической проводимости монодоменизированного образца в диапазоне 288–348 К была равна 0.27 eV, а при T > 368 К отвечала значению 0.91 eV.

Совершенно другое значение энергии активации электрической проводимости (1.55 eV) было зарегистрировано в [7] при исследовании монодоменизированных монокристаллических образцов ТЛ при приложении к образцу постоянного напряжения в интервале температур 439–555 К.

Исследование электрических свойств монокристалла ТЛ с составом, близким к стехиометрическому (NSLT), и образцов с составом, близким к стехиометрическому с добавлением небольшого количества (до 1.0 mol.%) Мg, методом импедансной спектроскопии было проведено в [8]. Было установлено, что в области температур 416-525 К энергия активации проводимости не превышает значения 0.58 eV, однако она увеличивается с дальнейшим ростом температуры. Перечисленные результаты для наглядности сведены в таблицу.

Следует отметить, что в [4] был установлен факт анизотропии электрической проводимости кристаллов ТЛ: электрическая проводимость вдоль неполярного направления была почти на порядок больше, чем в полярном

Состав	Метод измерения	Интервал температур, К	E_a, eV	Предполагаемый тип носителей	Лит. ссылка
CLT	isp	773–973	1.27 ± 0.01	Li^+	[4]
CLT	dc	773–973	~ 1.18		[5]
CLT	ac, 0.08 Hz	288-348 368-423	0.27 0.91		[6]
CLT	dc	439-555	1.55		[7]
NSLT 0.5 mol.% Mg NSLT 1.0 mol.% Mg NSLT	isp	416-525 416-525 416-525	$\leq 0.5 \ \leq 0.58 \ \leq 0.44$		[8]
Li _{0.980} Ta _{1.004} O ₃	isp	773–923	1.10	Li ⁺	[9]
CLT	dc	400-500	1.04 ± 0.05	H^+	[10]

Энергия активации электрической проводимости монокристаллических образцов ТЛ вдоль полярного направления

Примечание. isp — импедансная спектроскопия, ас — измерения по переменному току, dc — измерения по постоянному току, CLT — кристалл конгруэнтного состава.

направлении, при одинаковом значении E_a . Совпадение в пределах погрешности значения энергии активации однозначно свидетельствует о доминировании одного типа носителей заряда.

Качественно противоположные результаты были получены в работе [9], где также был применен метод импедансной спектроскопии. Было установлено, что в диапазоне температур 773–923 К удельная электрическая проводимость вдоль полярного направления примерно в 1.6 раза больше, чем вдоль неполярного, а энергии активации проводимости вдоль соответствующих направлений составляют $E_{\parallel} = 1.10 \text{ eV}$ и $E_{\perp} = 1.20 \text{ eV}$.

Отметим, что в работах [4,9] отсутствуют данные о проводимости в области температур, близких к комнатной (т.е. об анизотропии электронного вклада в проводимость), что не дает возможности правильно и всесторонне интерпретировать эти результаты. Исследование температурной зависимости электрической проводимости монокристаллов ТЛ при температурах, близких к комнатной, проводилось только в [6,10], однако результаты [6] можно не принимать во внимание из-за некорректной методики проведения экспериментов, а в [10] использовался образец, прошедший восстановительный отжиг в водороде.

Несмотря на то что электрические свойства кристаллов НЛ изучены гораздо лучше, анизотропия их электрической проводимости ранее исследовалась также только при достаточно высоких температурах: 573–973 К [11] и 733–893 К [12]. Согласно [11], электрическая проводимость кристалла НЛ конгруэнтного состава имеет слабую анизотропию, причем $E_{\parallel} = 0.90 \text{ eV}$ и $E_{\perp} = 0.87 \text{ eV}$. Согласно [12], электрическая проводимость изотропна, а энергии активации E_{\parallel} и E_{\perp} в пределах погрешности совпадают и равны 1.23 ± 0.01 eV.

Из представленного выше обзора видно, что однозначная информация о влиянии температуры на электрическую проводимость монокристаллических образцов LiTaO₃ (особенно при температурах, близких к 300 K) отсутствует. Поэтому основной целью настоящей работы является исследование температурной зависимости удельной электрической проводимости и механизмов ее возникновения в кристаллах ТЛ с составом, близким к конгруэнтному, в области температур 290—450 К. Другой целью является исследование анизотропии электрической проводимости в изоструктурных кристаллах ТЛ и НЛ в этом же диапазоне температур.

2. Образцы и методика проведения эксперимента

Для проведения экспериментов нами были использованы два образца ТЛ с составом, близким к конгруэнтному. Образцы были вырезаны из одной були, выращенной по методу Чохральского в Институте химии и технологии редкоземельных элементов и минерального сырья КНЦ РАН, и содержали небольшое (~ 0.005 mass%) количество Rh. Размер ориентированных образцов составлял $7.0 \times 7.0 \times 5.0$ mm, полярная ось *z* направлена вдоль короткой грани. Номинально беспримесный монокристаллический образец НЛ конгруэнтного состава с размерами $5.7 \times 7.0 \times 5.7$ mm был выращен методом Чохральского в НПО "Карат" (Львов, Украина). Полярная ось кристалла НЛ была направлена вдоль одной из коротких граней.

Индиевые электроды наносились либо на полярные грани кристалла, либо на поверхности, нормаль к которым совпадает с осью *x* кристалла. При исследовании температурной зависимости электрической проводимости вдоль неполярного направления для минимизации влияния электрических полей пироэлектрической природы и исключения пробоев на полярные поверхности образца наносился аквадаг, эти дополнительные электроды соединялись между собой и заземлялись.

Непосредственно для электрических измерений использовалась универсальная установка, позволяющая проводить исследования импеданса в диапазоне $10^{-4}-10^5$ Hz и выполнять прецизионные измерения при постоянном напряжении. Основные измерения проводились двухэлектродным методом при приложении к образцу постоянного напряжения, а максимальная напряженность поля составляла 2.1 kV/cm.

Термостат и система регулирования температуры обеспечивали долговременную нестабильность температуры образца на уровне 0.3 K/h и кратковременную не более $\pm 0.006 \text{ K/min}$. Температура образца измерялась калиброванной дифференциальной термопарой. Поскольку кристаллы ТЛ и НЛ обладают достаточно сильными пироэлектрическими свойствами [1], для минимизации возможности локальной переполяризации образца под действием пироэлектрического поля скорость изменения температуры образцов при разогреве и охлаждении ограничивалась значением 2 K/min.

Для исключения влияния поверхностной проводимости за счет адсорбции паров H_2O [13] перед проведением экспериментов свободные от электродов поверхности обезжиривались и обезвоживались, после чего образец прогревался и выдерживался при температуре порядка 430 K в течение 3 h. После охлаждения в термостат вносился обезвоженный силикагель.

3. Результаты эксперимента

Экспериментально полученные температурные зависимости удельной электрической проводимости $\sigma(T)$ первого образца ТЛ вдоль полярного и неполярного направлений представлены на рис. 1. Видно, что зависимость $\sigma(T)$ в обоих случаях хорошо описывается законом Аррениуса при наличии двух типов носителей

$$\sigma(T) = \left[\frac{A}{T} \exp\left(-\frac{E_1}{k_0 T}\right) + \frac{B}{T} \exp\left(-\frac{E_2}{k_0 T}\right)\right], \quad (1)$$

где k_0 — постоянная Больцмана, A и B — параметры, которые пропорциональны объемной концентрации и подвижности (μ) первого и второго типа носителей, E_1 и E_2 — соответствующие энергии активации. Экспериментально полученные зависимости $\sigma(T)$ для второго образца ТЛ в пределах погрешности эксперимента совпадают с представленными на рис. 1.

Результаты оптимальной аппроксимации экспериментальных данных выражением (1) также приведены на рис. 1. Установлено, что для случая протекания тока

Рис. 1. Температурные зависимости удельной электрической проводимости первого образца ТЛ при приложении электрического поля вдоль полярного (z) и неполярного (x) направлений. Экспериментальные данные представлены точками, результаты оптимальной аппроксимации — сплошными линиями.

вдоль полярного направления $E_{1\parallel} = 1.01 \pm 0.02 \text{ eV}$ и $E_{2\parallel} = 0.29 \pm 0.04 \text{ eV}$, а при протекании тока в направлении оси x: $E_{1\perp} = 1.03 \pm 0.02 \text{ eV}$ и $E_{2\perp} = 0.29 \pm 0.03 \text{ eV}$. Отметим, что в случае кристаллов НЛ такие значения E_2 характерны для прыжковой электронной проводимости по примесным центрам, а значения E_1 — для протонной проводимости [2].

Полученные нами значения σ для полярного и неполярного направлений исследованных образцов ТЛ при T = 300 К на порядок меньше, чем значение σ для номинально беспримесных монокристаллов ТЛ конгруэнтного состава: $2.35 \cdot 10^{-15} (\Omega \cdot \text{cm})^{-1}$ [14]. Это свидетельствует об очень маленькой концентрации ионов переходных металлов в исследованных образцах.

Видно, что подвижность электронов μ_e вдоль полярного и неполярного направлений в кристалле ТЛ имеет небольшую анизотропию: $(\mu_e)_{\perp}/(\mu_e)_{\parallel} \sim 1.4$, а энергии активации, отвечающие за электронный и ионный вклады в проводимость, для полярного и неполярного направлений в пределах погрешности эксперимента совпадают. При этом подвижность протонов в исследованном образце близка к изотропной.

Аналогичная анизотропия наблюдалась у поляронной проводимости в кристаллах НЛ, прошедших восстановительный отжиг в водороде ($\sigma_{\perp}/\sigma_{\parallel} \sim 1.34$) [15]. Более того, ранее отмечалось [16], что коэффициенты диффузии дейтерия вдоль полярного и неполярного направлений в кристалле НЛ различаются только на 10%. Однако анизотропия электрической проводимости кристаллов НЛ, не подвергавшихся восстановительным обработкам, в области низких температур ранее не изучалась.

В связи с этим мы провели исследование температурной зависимости удельной электрической проводимости номинально беспримесного монокристаллического

Рис. 2. Температурные зависимости удельной электрической проводимости образца НЛ при приложении электрического поля вдоль полярного (z) и неполярного (x) направлений. Экспериментальные данные представлены точками, результаты оптимальной аппроксимации — сплошными линиями.

образца НЛ конгруэнтного состава вдоль полярного и неполярного направлений.

Результаты экспериментов по исследованию $\sigma(T)$ в кристалле НЛ представлены на рис. 2. Там же приведены результаты оптимальной аппроксимации этих данных выражением (1). Сравнение этих результатов с известными данными [17], как и в случае кристаллов ТЛ, указывает на очень малую объемную концентрацию примесей переходных металлов в исследованном образце.

Электрическая проводимость характеризуется следующими значениями энергий активации: $E_{1\parallel} = 1.05 \pm 0.02 \text{ eV}$ и $E_{2\parallel} = 0.34 \pm 0.05 \text{ eV}$, а в направлении оси *x*: $E_{1\perp} = 1.06 \pm 0.02 \text{ eV}$ и $E_{2\perp} = 0.35 + 0.03 \text{ eV}$. Из результатов эксперимента следует, что для данного образца $(\mu_e)_{\perp}/(\mu_e)_{\parallel} = 1.50 \pm 0.15$.

Таким образом, электрическая проводимость номинально беспримесных кристаллов ТЛ и НЛ конгруэнтного состава в диапазоне температур 290–450 К имеет одну природу. Анизотропия электронной компоненты проводимости определяется, очевидно, особенностями потенциального рельефа внутрикристаллического электрического поля в окрестности перезаряжающихся примесных центров. Кристаллы ТЛ и НЛ относятся к одной группе симметрии *R*3*c*, а постоянные элементарной ячейки и межионные расстояния очень близки, поэтому практически одинаковая анизотропия электрической проводимости конгруэнтных кристаллов НЛ и ТЛ является вполне ожидаемым результатом.

4. Заключение

Полученная выше информация имеет определенное значение для анализа процессов записи и релаксации

объемных фазовых голограмм (ОФГ). Известно, что подвижность носителей заряда играет существенную роль в процессах голографической записи в фоторефрактивных (ФР) кристаллах [18]. При этом хранение ОФГ в ФР-кристаллах определяется так называемым максвелловским временем релаксации $\tau = \varepsilon \varepsilon_0 \sigma^{-1}$ [2], где ε диэлектрическая проницаемость кристалла, ε_0 — электрическая (диэлектрическая) постояная. Кристаллы ТЛ и НЛ обладают анизотропными электрическими свойствами, поэтому время релаксации компонент фотоиндуцированного электрического поля E_z и $E_{x,y}$ априори будет разным. Для кристаллов НЛ при T = 300 К главные значения тензора диэлектрической проницаемости $\varepsilon_{11} \approx 84$ и $\varepsilon_{33} \approx 28$, а для ТЛ эти значения составляют $\varepsilon_{11} \approx 53$ и $\varepsilon_{33} \approx 43$ [19]. С учетом установленной нами анизотропии удельной электрической проводимости для кристаллов ТЛ и НЛ конгруэнтного состава с малым содержанием примесей переходных металлов в области температур 293—360 К значение τ_x/τ_z для кристаллов ТЛ составляет величину ~ 0.88 , а для кристаллов НЛ ~ 2.0 . Следовательно, в процессе темновой релаксации записанной ОФГ рельеф фотоиндуцированного электрического поля в кристаллах ТЛ будет более близок к исходному, чем в кристаллах НЛ.

Авторы благодарят И.М. Сольского (НПО "Карат", Львов, Украина) за предоставление для исследований образца номинально беспримесного монокристалла НЛ конгруэнтного состава.

Список литературы

- M.E. Lines, A.M. Glass. Principles and application of ferroelectrics and related materials. Clarendon Press, Oxford (1977). 680 p.
- [2] T.R. Volk, M. Wöhlecke. Lithium niobate. Defects, photorefraction and ferroelectric switching. Springer-Verlag, Berlin (2008). 250 p.
- [3] Ferroelectric crystalls for photonic applications / Eds
 P. Ferraro, S. Grilli, P. De Natale. Springer-Verlag, Berlin-Heidelberg (2009). 422 p.
- [4] D.C. Sinclair, A.R. West. Phys. Rev. B 39, 13486 (1989).
- [5] K. Ishibashi, Y. Okuyama, N. Kurita, N. Fukatsu. J. Jpn. Inst. Met. 75, 229 (2011).
- [6] Q. Wang, S. Leng, Y. Yu. Phys. Status Solidi B 194, 661 (1996).
- [7] V. Gopalan, M. Gupta. Appl. Phys. Lett. 68, 888 (1996).
- [8] I. Bhaumik, S. Ganesamoorthy, R. Bhatt, V. Wadhavan, P. Gupta, S. Kumaragurubaran, K. Kitamura, S. Takekava, M. Nakamura. J. Appl. Phys. 103, 074 106 (2008).
- [9] D. Ming, J. Reau, J. Ravez, J. Gitae, P. Hagenmuller. J. Solid State Chem. 116, 185 (1995).
- [10] Э.М. Авакян, К.Г. Белабаев, Л.А. Шувалов. Кристаллография 28, 1150 (1983).
- [11] R.H. Chen, L.F. Chen, C.T. Chia. J. Phys.: Cond. Matter 17, 086 225 (2007).

- [12] G.T. Niitsu, H. Nagata, A.C.M. Rodrigúes. J. Appl. Phys. 95, 3116 (2004).
- [13] M. Maeda, I. Suzuki, K. Sakiyama. J. Appl. Phys. 31, 3229 (1992).
- [14] T. Yan, H. Liu, J. Wang, F. Zheng. J. Alloys Comp. 497, 412 (2010).
- [15] А.В. Яценко, С.В. Евдокимов, А.С. Притуленко, Д.Ю. Сугак, И.М. Сольский. ФТТ **54**, 2098 (2012).
- [16] R. Gonsález, Y. Chen. J. Phys.: Cond. Matter. 14, R1143 (2002).
- [17] С.В. Евдокимов, А.В. Яценко. ФТТ 48, 317 (2006).
- [18] A. Adibi, K. Buse, D. Psaltis. Appl. Phys. B 72, 653 (2001).
- [19] J. Kushibiki, I. Takanaga, M. Arakawa, T. Sannomiya. IEEE Trans. Ultrason. Ferroelectrics Frequency Control. 46, 1315 (1999).