05,07

Влияние постоянного магнитного поля на дислокационный ангармонизм в кремнии

© А.А. Скворцов, А.В. Каризин, Л.В. Волкова, М.В. Корячко

Московский государственный машиностроительный университет (МАМИ), Москва, Россия

E-mail: SkvortsovAA2009@yandex.ru

(Поступила в Редакцию 4 сентября 2014 г.)

Проведено исследование влияния постоянных магнитных полей на дислокационный ангармонизм монокристаллов кремния *p*-типа проводимости с удельным сопротивлением 6 $\Omega \cdot$ сm. Выявлено, что предварительная выдержка дислокационного кремния (плотность дислокаций $10^4 - 10^6$ cm⁻²) в постоянном магнитном поле (B = 0.7 T, t = 30 min) при комнатной температуре приводит к изменению нелинейного модуля упругости четвертого порядка β_d . Наблюдаемые изменения связаны с динамикой магниточувствительных комплексов структурных дефектов, и, как следствие, с изменением длины колеблющегося дислокационного сегмента L_d на 30% и оценены характерные времена релаксации наблюдаемых эффектов.

Работа выполнена при поддержке гранта РФФИ № 13-07-00514-а, а также НИР № 2290 в рамках государственного задания вузам.

Из литературы хорошо известно о влиянии дислокаций на модули упругости большинства материалов [1–3]. Как правило, такие материалы обладают нелинейностью, связанной, в том числе, с дислокационной составляющей [4,5]. Поэтому измеряя модули упругости высших порядков в кристаллах (и их изменение), можно проанализировать характер дислокационной структуры и динамику взаимодействия дислокационных сегментов с другими дефектами [4,5].

Эти вопросы представляются весьма актуальными при изучении так называемого магнитопластического эффекта (МПЭ), т.е. влияния магнитных полей (МП) на механические свойства диамагнитных кристаллов. Впервые эффект был обнаружен экспериментально на монокристаллах NaCl [6]. Впоследствии выяснилось, что МПЭ проявляется в различных материалах LiF, KCl, KBr, CsI, Al, Zn, NaNO₂, C₆₀, полимерах [7–9]. При обнаружении и исследовании МПЭ использовались различные виды МП, весьма широкий спектр методик исследования микроструктуры и механических свойств, различные виды нагружений и температур [7–9].

Природа магнитопластичности в диамагнитных кристаллах связывается со спинзависимыми реакциями в подсистеме структурных дефектов. Наблюдаемые в различных материалах кинетические особенности определяются, как правило, внутренней перестройкой дефектных комплексов в поле внутренних механических напряжений или при действии иных "внешних сил". Магнитопластичность элементарных полупроводников изучена не так подробно, как, например, ионных кристаллов, хотя в последнее время наблюдается заметная активность в изучении влияния МП на физикомеханические свойства полупроводников, в том числе и монокристаллического кремния [10–15]. Так, в [10] экспериментально обнаружено, что под действием постоянного магнитного поля в монокристаллах *n*-Si(111), выращенных по методу Чохральского, наблюдается изменение микротвердости, модуля Юнга и коэффициента пластичности кристаллов, что согласуется с изменением параметра кристаллической решетки и внутренних напряжений. Основную роль в наблюдаемых эффектах авторы отводят магнитостимулированному увеличению количества оксидной фазы SiO₂ и толщины пленки оксида кремния (приблизительно в четыре раза). Детальное исследование окисления кремния показало, что этот процесс является спин-селективной реакцией, в которой участвуют радикалы и радикальные пары как промежуточные парамагнитные частицы [11].

Влияние режимов пластической деформации на магнитные свойства монокристаллов Si (в т. ч. обогащенных изотопом ²⁹Si) рассмотрено в [12,13]. Обнаружено, что пластическая деформация полупроводника изгибом и кручением приводит к появлению парамагнитных центров со спектрами ЭПР, отличающимися от спектров центров, исследованных ранее при одноосной деформации.

Исследование влияния типа и концентрации легирующей примеси на динамику собственных и радиационностимулированных дефектов в Si при электронном облучении низкой интенсивности рассмотрено в [14,15]. Установлено, что основную роль в процессе радиационностимулированного разупрочнения кремния играют комплексы, содержащие две вакансии.

Влияние МП на диффузионные процессы в бездислокационном кремнии обнаружено в [16]. Экспериментально зафиксировано, что предварительная экспозиция кристаллов в постоянном МП (B = 1 T) приводит к увеличению глубины диффузии фосфора в кремнии *р*-типа (на 20%) по сравнению с контрольными образцами.

Таким образом, при рассмотрении магнитопластического эффекта в кремнии наиболее интересным и дискуссионным вопросом является вопрос о формировании и структуре магниточувствительных комплексов, их взаимодействии с дислокацией, а также изменении динамики этого взаимодействия после воздействия на среду магнитным полем.

Поэтому цель настоящей работы — анализ динамики магниточувствительных дефектов структуры в дислокационном кремнии по изменению нелинейных модулей упругости Si высших порядков после воздействия на кристаллы постоянного магнитного поля.

Нелинейность упругих свойств связана с асимметрией упругой энергии относительно знака деформации [4]:

$$\sigma = E_0 \varepsilon + \alpha \varepsilon^2 + \beta \varepsilon^3. \tag{1}$$

При этом объемная плотность упругой энергии W равна

$$W = \frac{1}{2}E_0\varepsilon^2 + \frac{1}{3}\alpha\varepsilon^3 + \frac{1}{4}\beta\varepsilon^4.$$
 (2)

Здесь и далее σ — механическое напряжение, ε — относительная деформация, E_0 — модуль Юнга, α и β — линейные комбинации модулей упругости третьего и четвертого порядка.

В рассматриваемом случае упругая энергия полупроводникового кристалла W определяется решеточным (α_p, β_p) и концентрационными (α_c, β_c) вкладами, а также дислокационной составляющей (α_d, β_d) :

$$\alpha = \alpha_p + \alpha_c + \alpha_d; \quad \beta = \beta_p + \beta_c + \beta_d. \tag{3}$$

Варьируя уровень легирования или плотность дислокаций в кристалле, можно изучить вклад тех или иных составляющих [4,5,17].

Следует также подчеркнуть, что модуль α в (2) является коэффициентом при нечетной степени упругой деформации, поэтому в случае прогиба кристалла "верхняя" половина пластины испытывает сжатие относительно нейтрального слоя ($\alpha \varepsilon^3 < 0$), а "нижняя" — растяжение ($\alpha \varepsilon^3 > 0$), так что усреднение по сечению дает нуль [4,5]. В отличие от этого, в слагаемом с β любая знакопеременная деформация приводит к одному и тому же изменению W.

Итак, если в подвергающейся трехточечному изгибу полупроводниковой кремниевой пластине длиной L и толщиной h возбудить продольные колебания, то полная деформация будет складываться из колебательной ε_k и статической ε_0 деформаций. Динамический модуль упругости с учетом нелинейности имеет вид:

$$E_d = d\sigma/d\varepsilon|_{\varepsilon=\varepsilon_0} = E_0 + 2\alpha\varepsilon_0 + 3\beta\varepsilon_0^2, \qquad (4)$$

где $\varepsilon_0 = \frac{y-y_0}{r(x)}$ характеризует статическую изгибную деформацию, y_0 — ордината нейтрального слоя, r(x) — радиус кривизны пластины. Усреднение (4) по толщине кремниевой пластины h дает

$$E_d = E_0 \left(1 + \left(\frac{3\beta}{2E_0} - \frac{\alpha^2}{E_0^2} \right) \frac{h^2}{6r(x)^2} \right), \tag{5}$$

причем r(x) при малом прогибе определяется второй производной профиля деформации [4]

$$y(x) = d(-|x|^3/\xi^3 + 6x^2/\xi^2 - 1).$$
 (6)

Здесь d — стрела прогиба, ξ расстояние между опорами (рис. 1).

При возбуждении в изогнутой пластине механических колебаний условие резонанса определяется балансом фазы в акусто-электрическом тракте [4]

$$\varphi_s = 2\pi f \int_{-L/2}^{L/2} \frac{dx}{c_l(x)} = \frac{2\pi f}{c_{l0}} \int_{-L/2}^{L/2} \frac{dx}{\sqrt{E_d/E_0}} = 2\pi N, \quad (7)$$

где N = 1, 2, 3... f — частота, L — длина пластины, $c_l(x), c_{l0}$ — скорости звука соответственно в деформированном кристаллах соответственно.

Проинтегрировав условие (7) с учетом (5) и (6), можно получить выражение для относительного изменения $\Delta f = f - f_0$ частоты генерации ультразвуковых сигналов в колебательной системе с деформируемой пластиной:

$$\frac{\Delta f}{f} \approx \frac{df}{f} = 4 \frac{h^2}{\xi^3 L} \left(\Delta d\right)^2 \left(\frac{3\beta}{2E_0} - \frac{\alpha^2}{E_0^2}\right). \tag{8}$$

Здесь f_0 , d_0 — частота генерации и стрела прогиба при отсутствии деформации, f, d — при деформации изгибом, $\Delta d = d - d_0$. Представим (8) с учетом (3) в виде:

$$\left\{\frac{\Delta f}{(\Delta d)^2}\right\}_p = 4\left(\frac{h^2}{\xi^3 L}\right)_p f_p\left[\frac{3\beta_p}{2E_0}\right],\tag{9}$$

$$\left\{\frac{\Delta f}{(\Delta d)^2}\right\}_{p+d} = 4\left(\frac{h^2}{\xi^3 L}\right)_{p+d} f_{p+d}\left[\frac{3\beta_{p+d}}{2E_0}\right] \tag{10}$$

для бездислокационного (нижний индекс p) и дислокационного (p+d) кремния, в которых учтено отсутствие слагаемого с коэффициентом α при изгибе образцов. В данном случае из рассмотрения исключен вклад β_c : в эксперименте нами использовались высокоомные пластины кремния с удельным сопротивлением $\rho \ge 5 \Omega \cdot$ ст. Как было показано ранее [5], в таких образцах вкладом свободных носителей заряда в нелинейный модуль β можно пренебречь.

Нетрудно видеть, что правые части уравнений (9) и (10) определяют тангенс угла наклона экспериментальных кривых, построенных в координатах $\Delta f \sim (\Delta d)^2$.

Для экспериментальной проверки соотношений (9), (10) использовались кремниевые пластины диаметром 76 mm, толщиной 450 μ m (*p*-тип, бор) с удельным сопротивлением $\rho \ge 5 \Omega \cdot$ ст и кристаллографической ориентацией (111). Из них вырезались пластины вдоль направления [110] длиной 60 mm и шириной 5–7 mm.

Рис. 1. Распределение дислокаций в деформированной пластине кремния при деформировании ее по трехточечной схеме при температуре 1273 К в течение 30 min. N_{ds} — среднее значение плотности дислокаций в пластине: I — схематичное изображение поверхности пластины с ямками травления 2 — гистограмма распределения N_d вдоль пластины.

Для введения объемных дислокаций в Si подготовленные пластины (1) помещали в кварцевую трубу (3) и фиксировали с помощью кварцевых ограничителей (2), имеющих форму цилиндров. После этого пластины отжигали в печи при температуре 1273 К в течение 20-30 минут.

При формировании объемных дислокаций этим методом наблюдается отчетливая связь [18] между плотностью дислокаций N_d , радиусом изгиба r_d и модулем вектора Бюргерса b: $N_d = \frac{1}{r_d b}$. В зависимости от стрелы прогиба средняя плотность линейных дефектов N_d , определяемая по числу ямок травления на единице поверхности кристалла, составляла $10^4 - 10^6$ сm⁻². При этом максимальная плотность дислокаций наблюдалась в области наибольшего прогиба пластины (рис. 1).

Подготовленные таким образом пластины использовались для изучения дислокационного ангармонизма.

Согласно проведенным экспериментам и данным [4,16], при наличии в кристалле дислокаций (со средней плотностью более 10^4 cm^{-2}) влияние решеточной составляющей на модуль упругости 4-го порядка становится незначительным: $\beta_p \ll \beta_d$.

Для измерения зависимости $\Delta f \sim (\Delta d)^2$ нами использовался метод составного вибратора [4,5,16]. К торцам пластин приклеивались пьезокерамические датчики с двумя металлизированными гранями, что позволяло возбуждать в пластине нулевые моды волн Лэмба в направлении [110]. Ширина датчиков максимально приближалась к ширине пластины и составляла 6–8 mm.

Изгиб образцов вдоль направления [111] производился на специально изготовленном приспособлении с шаровыми опорами диаметром 0.5 mm, расположенными друг от друга на расстоянии 55 mm. Прогиб пластин фиксировался микрометром с точностью ±2.5 µm. Максимальный прогиб кристалла в центре пластины составлял 880 µm при общей длине пластины 60 mm. При бо́льших деформациях наступало разрушение образцов.

Исследуемая пластина включалась в цепь обратной связи ВЧ-резонансного усилителя [4]. Для контроля амплитуды резонансной частоты использовались цифровой запоминающий осциллограф на базе платы АЦП ЛА-н10USB и частотомер РЧЗ-07-0002. Измерение деформационной зависимости скорости упругой волны полупроводника проводилось в диапазоне 3–9 МНz. Вначале колебательный контур настраивался на резонансную частоту с последующей трехминутной выдержкой во включенном состоянии для установления теплового равновесия и уменьшения дрейфа резонансной частоты (рис. 2). Далее регистрировались показания частотомера при нагрузке и разгрузке кристаллов.

Результаты исследования показали, что, как и ранее, наблюдается линейная зависимость изменения частоты составного осциллятора от квадрата стрелы прогиба $\Delta f \sim (\Delta d)^2$. Введение в образец дислокаций приводит к увеличению β_d , что проявляется в увеличении тангенса угла наклона прямых.

Исходя из (9) и (10) можно оценить величину дислокационного вклада в модуль β :

$$\beta_{d} = \beta_{p+d} - \beta_{p}$$

$$= \frac{E_{0}}{6f_{p+d}} \left(\frac{p^{3}L}{h^{2}}\right)_{p+d} \left(\frac{\Delta f}{\Delta d^{2}}\right)_{p+d} - \frac{E_{0}}{6f_{p}} \left(\frac{p^{3}L}{h^{2}}\right)_{p} \left(\frac{\Delta f}{\Delta d^{2}}\right)_{p}.$$
(12)

А с учетом взаимосвязи β_d с параметрами дислокационной структуры [4]:

$$\beta_d = -\frac{(1+3\nu-7\nu\sin^2\theta)N_d L_d^4 \Omega^4 E_0^4}{160(1+\nu-3\nu\sin^2\theta)^4 b^2 g^3 \mu^3},$$
 (13)

можно экспериментально проследить влияние параметров дислокаций (N_d, L_d^2, θ) на величину нелинейного

Рис. 2. Кривая стабильности частоты $\Delta f = f - f_s$ составного осциллятора, полученная сразу после его включения при температуре 300 К; здесь $f_s = 5243.054$ kHz — начальное значение частоты колебаний. На вставке — схема деформации кристалла при трехопорном нагружении: 1 — пластина Si, 2 — пьезодатчики; 3 — опоры.

Рис. 3. Влияние стрелы прогиба Δd на изменение частоты колебаний Δf легированных бором образцов ($\rho = 5 \Omega \cdot cm$) с различной средней плотностью дислокаций: $I - N_d = 0$; 2 — $8 \cdot 10^4 \text{ cm}^{-2}$; 3 — $2 \cdot 10^5 \text{ cm}^{-2}$; 4 — $8 \cdot 10^5 \text{ cm}^{-2}$; 5 — $2 \cdot 10^6 \text{ cm}^{-2}$.

модуля упругости. Здесь Ω — ориентационный фактор, μ -модуль сдвига; g — безразмерный коэффициент, характеризующий размеры упругого поля дислокации; N_d , L_d — средняя плотность дислокаций и средняя длина колеблющегося дислокационного сегмента соответственно; $\nu = 0.27$ — коэффициент Пуассона кремния; θ — угол между вектором Бюргерса b и осью дислокации [4].

Экспериментальные результаты приведены на рис. 3. Нетрудно видеть, что введение дислокаций в образцы увеличивает дислокационный модуль β_d . Эта зависимость носит линейный характер (рис. 4), что полностью согласуется с (13). Более того, экстраполяция зависимости в точку $N_d = 0$ дает значение $\beta_d = 1.4 \cdot 10^{13}$ Ра, что соответствует полученным ранее значениям β для бездислокационных образцов *p*-Si [5].

Что касается знака β_d : из (13) следует, что для краевой дислокации ($\theta = 90^\circ$) $\beta_d > 0$, а при преобладании винтовой компоненты — $\beta_d < 0$. Известно [19], что при деформировании кремния происходит образование сразу нескольких типов дислокаций и поэтому знак β_d определяется усредненным значением θ образующихся линейных дефектов. Таким образом, в первой части работы экспериментально обнаружено, что нелинейный модуль упругости четвертого порядка чувствителен к наличию дислокаций в монокристаллах *p*-Si, что позволяет использовать эту методику для анализа магнитостимулированных процессов в дислокационном кремнии.

При рассмотрении магнитопластических эффектов (как отмечалось выше) очень важно понять механизм взаимодействия колеблющейся дислокационной линии с различными типами стопоров после выдержки дислокационного кремния в МП [20].

Из (13) следует, что $\beta_d \sim N_d L_d^4$, поэтому если в условиях эксперимента N_d остается постоянной, то изменение нелинейного модуля β_d можно однозначно связать с изменением средней длины колеблющегося дислокационного сегмента.

С этой целью дислокационная пластина с наклеенными датчиками помещалась в деформационную установку.

Рис. 4. Зависимость нелинейного модуля упругости β_d от средней плотности дислокаций в образцах кремния *p*-типа.

Рис. 5. Эволюция нелинейного модуля $\beta_d(t)$ в процессе выдержки монокристаллического кремния (*p*-тип, $\rho = 5 \Omega \cdot \text{сm}$) в естественных условиях: AB — до обработки в МП, CD — после 30-минутной обработки в магнитном поле B = 0.7 Т при комнатной температуре: I — бездислокационный образец; 2 — образец со средней плотностью дислокаций $N_{ds} = 2 \cdot 10^6 \text{ cm}^{-2}$.

По зависимости $\Delta f \sim (\Delta d)^2$ рассчитывался модуль β_d пластины. Эксперимент повторялся в течение 300 min (участок *AB*, рис. 5). Затем средняя часть пластины помещалась в поле постоянного магнита (*B* = 0.7 T, диаметр постоянного магнита 35 mm). Экспозиция проходила на воздухе при комнатной температуре в течении 30 min. После этого пластина вновь помещалась в деформационную установку, и эксперимент повторялся (участок *CD*, рис. 5).

Из рис. 5 видно, что предварительная экспозиция дислокационного кремния в постоянном МП в течение 30 min (B = 0.7 T) при комнатной температуре приводит к трехкратному увеличению (участок BC) значения β_d . Поскольку выдержка дислокационного кремния в МП при комнатной температуре не меняет величину N_d , то наблюдаемая на рис. 5 зависимость $\beta_d(t)$ связана с изменением длины колеблющегося дислокационного сегмента и, следовательно, с изменением состояния Состояния стопоров после выдержки образцов в постоянном МП. Бездислокационная пластина кремния (свидетель) не проявляет чувствительности к выдержке в постоянном МП.

Следует подчеркнуть, что средняя длина колеблющегося дислокационного сегмента определяется взаимодействием дислокационной линии с рядом стопоров, среди которых есть и магниточувствительные. Предположительно это могут быть метастабильные термодоноры, включающие узловой кислород и атом акцепторной примеси (бор) [21]. Релаксация подобных дефектов является спин-зависимым процессом [21]. От атомарной структуры образовавшихся в результате релаксации комплексов сильно зависит эффективность их взаимодействия с колеблющимся дислокационным сегментом.

В нашем случае наблюдается увеличение средней длины колеблющегося дислокационного сегмента L_d на ~ 30% (*BC*, рис. 5). Обращает на себя внимание и время релаксации наблюдаемых эффектов, которое составляет ~ 60 часов. Это согласуется с полученными ранее данными [3,20] о разупрочняющем действии постоянных магнитных полей на монокристаллы кремния с дислокациями.

Список литературы

- [1] Jianfeng Zhang, Fu-Zhen Xuan. Eur. Lett. 105, 54005 (2014).
- [2] Xiang Yanxun, Deng Mingxi, Xuan Fu-Zhen. J. Appl. Phys. 115, 044 914 (2014).
- [3] Chen Zimu, Qu Jianmin. J. Appl. Phys. 114, 164 906 (2013).
- [4] К.Е. Никитин. ФТТ 36, 3587 (1994).
- [5] А.А. Скворцов, О.В. Литвиненко, А.М. Орлов. ФТП. 37, 17 (2003).
- [6] В.И. Альшиц, Е.В. Даринская, Т.М. Перекалина, А.А. Урусовская. ФТТ 29, 467 (1987).
- [7] Р.Б. Моргунов, УФН 174, 131 (2004).
- [8] В.И. Альшиц, Е.В. Даринская, М.В. Колдаева, Е.А. Петржик. Кристаллография **48**, 838 (2003).
- [9] Ю.И. Головин. ФТТ 46, 769 (2004).
- [10] О.В. Коплак, А.И. Дмитриев, Р.Б. Моргунов. ФТТ 54, 1350 (2012).

- [11] О.В. Коплак, Р.Б. Моргунов, А.Л. Бучаченко. Письма в ЖЭТФ 96, 107 (2012).
- [12] О.В. Коплак, А.И. Дмитриев, С.Г. Васильев, Э.А. Штейнман, Р.Б. Моргунов. ЖЭТФ 115, 709 (2014).
- [13] А.И. Дмитриев, А.А. Скворцов. О.В. Коплак, Р.Б. Моргунов, И.И.Проскуряков. ФТТ 53, 1473 (2011).
- [14] Ю.И. Головин, А.А. Дмитриевский, Н.Ю. Сучкова. ФТТ 48, 262 (2006).
- [15] Ю.И. Головин, А.А. Дмитриевский, В.Е. Иванов, Н.Ю. Сучкова, Н.Ю. Толотаев. ФТТ 49, 822 (2007).
- [16] А.А. Скворцов, А.В. Каризин. ЖЭТФ 140, 1 (2011).
- [17] А.А. Скворцов, А.М. Орлов, К.Е. Никитин, О.В. Литвиненко. Письма в ЖТФ 26, 82 (2000).
- [18] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. Наука, М. (1990). 688 с.
- [19] М.П. Шаскольская. Кристаллография. Высш. шк. М. (1976). 387 с.
- [20] А.А. Скворцов, А.М. Орлов, Л.И. Гончар. ЖЭТФ 120, 134 (2001).
- [21] Ю.А. Осипьян, Р.Б. Моргунов, А.А. Баскаков, А.М. Орлов, А.А. Скворцов, Е.Н. Инкина, Й. Танимото. Письма в ЖЭТФ 79, 158 (2004).