04

Нестационарная фотоэдс в широкозонном диэлектрике MnO

© М.А. Брюшинин, А.А. Петров, Р.В. Писарев, И.А. Соколов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: mb@mail.ioffe.ru

(Поступила в Редакцию 19 ноября 2014 г.)

Несмотря на то, что оксид марганца является широкозонным диэлектриком с шириной запрещенной зоны $E_g \simeq 4 \,\mathrm{eV}$ и в нелегированном состоянии характеризуется высоким удельным сопротивлением, экспериментально обнаружено явление нестационарной фотоэдс на динамических решетках объемного заряда, формируемых в MnO светом с энергией фотонов 1.96 eV ($\lambda = 633 \,\mathrm{nm}$). Изучены зависимости амплитуды сигнала фотоэдс от частоты фазовой модуляции, интенсивности света и пространственной частоты интерференционной картины. Для объяснения необычной частотной зависимости сигнала использована двухуровневая модель полупроводника, учитывающая присутствие мелких ловушек в кристалле. Определены фотоэлектрические параметры материала.

Работа выполнена при частичной поддержке Правительства РФ (грант 14.В25.31.0025) и РФФИ (грант 15-02-04222).

1. Введение

Простые оксиды переходных металлов MnO, FeO, CoO, NiO и CuO рассматриваются как модельные объекты при изучении сильно коррелированных электронных систем [1-3]. Основной особенностью данного класса материалов является сильное кулоновское взаимодействие 3d электронов соседних ионов металла в кристаллической решетке в сочетании со слабым перекрытием их орбиталей. В результате зоны, образованные 3d-состояниями, оказываются настолько узкими, что эти состояния правильнее считать локализованными. Перенос заряда по ним требует значительной энергии активации ($U = 7.5 - 8.5 \,\mathrm{eV}$ для переходов Мотта-Хаббарда и $\Delta = 7.0 - 8.8 \,\text{eV}$ для переходов с переносом заряда [2]) и поэтому практически не реализуется при комнатных температурах. В результате кристалл, включающий атомы с частично заполненными электронными оболочками, оказывается не металлом, как предсказывает классическая зонная теория, а моттовским изолятором или изолятором с переносом заряда [1,2].

Оптические и электрические свойства оксидов переходных металлов, и в частности кристалла MnO, считаются уже достаточно хорошо изученными [1–7]. Интерес к исследованиям данных материалов вновь возрос с обнаружением новых нелинейных оптических эффектов. Среди них можно отметить двухфотонное и двухступенчатое поглощение света [8], генерацию второй гармоники в центросимметричном магнитном материале [9,10], сверхбыстрое намагничивание и обратный эффект Фарадея [11], стимулированное рассеяние света на магнонах [12,13], оптическое возбуждение спиновых колебаний в антиферромагнетике с полностью или частично компенсированным магнитным моментом [14–16].

В настоящей работе мы покажем возможность наблюдения еще одного нелинейного явления в кристалле MnO, а именно, нестационарной фотоэдс на динамических решетках объемного заряда. В отличие от оптических и магнитооптических явлений, нестационарная фотоэдс является фотоэлектрическим явлением, которое связано с переносом зарядов, возникающих в кристаллах под действием светового облучения. Эффект нестационарной фотоэдс проявляется в виде переменного электрического тока в образце, освещаемом колеблющейся интерференционной картиной. Возникновение тока связано с совместным действием эффектов фотопроводимости и поля пространственного заряда, а величина этого тока определяется дрейфовой компонентой, усредненной по межэлектродному промежутку [17].

Нелинейность рассматриваемого эффекта по отношению к полю световой волны становится очевидной уже при записи феноменологического выражения для плотности дрейфовой компоненты фототока [18,19]

$$j_i = \gamma_{ilmn} E_l \tilde{E}_m \tilde{E}_n^*, \tag{1}$$

где **E** — постоянное электрическое поле, **Ē** — напряженность поля световой волны. Фотопроводимость среды описывается симметричным тензором $\sigma_{il} = \gamma_{ilmn} \tilde{E}_m \tilde{E}_n^*$, следовательно тензор γ тоже симметричен по первой паре индексов. Так как векторы **j** и **E**, а также тензор σ вещественны, должно выполняться соотношение $\gamma_{ilmn} = \gamma_{ilnm}^*$, т.е. действительная часть тензора γ симметрична по второй паре индексов, а мнимая часть — антисимметрична. В пренебрежении поляризационными эффектами $\gamma_{ilmn} = \Gamma_{il}\delta_{mn}$, где δ_{mn} — символ Кронекера [19]. Будучи тензором четного ранга, γ инвариантен относительно операции инверсии.

Характерной особенностью нестационарной фотоэдс является то, что поле пространственного заряда E тоже формируется под действием облучения

$$E_l = -\frac{k_B T}{e} \frac{\nabla_l \xi_{mn} E_m E_m^*}{\xi_{mn} \tilde{E}_m \tilde{E}_n^*},\tag{2}$$

здесь подразумеваются диффузионный механизм записи [20] и линейная зависимость концентрации электронов от интенсивности света $n = \xi_{mn} \tilde{E}_m \tilde{E}_n^*$. Такой довольно сложный механизм возникновения нестационарной фотоэдс позволяет реализовать методику исследования полупроводников и диэлектриков, пригодную для измерения целого ряда фотоэлектрических параметров, таких как тип и величина проводимости, время жизни, диффузионная длина и подвижность носителей заряда. Важно отметить, что данное явление, определяемое тензором γ , может наблюдаться как в нецентросимметричных, так и в центросимметричных средах.

2. Экспериментальная установка

Эксперименты по изучению нестационарной фотоэдс в кристалле MnO были выполнены на установке (рис. 1), использовавшейся ранее для исследования широкозонных полупроводников, а также наноструктурированных материалов [21,22]. Излучение Не-Ne лазера $(hv = 1.96 \text{ eV}, P_{out} \simeq 30 \text{ mW})$ разделялось на два луча, которые затем формировали на поверхности образца интерференционную картину со средней интенсивностью І₀, пространственной частотой К и контрастом *m* = 0.97. Сигнальный луч, проходящий через электрооптический модулятор, подвергался фазовой модуляции с амплитудой $\delta = 0.49$ и частотой ω . Плоскость поляризации излучения была перпендикулярна плоскости падения. Фототок, возникающий в образце, приводил к появлению напряжения на нагрузочном сопротивлении. Этот сигнал усиливался и затем измерялся селективным (lock-in) вольтметром.

Для дополнительного исследования релаксации фотопроводимости мы применили стандартную методику, описанную, например, в [23] и заключающуюся в измерении частотной характеристики отклика фотопроводимости на амплитудно-модулированный свет. Синусоидальная модуляция интенсивности света создава-

Рис. 1. Экспериментальная установка для исследования эффекта нестационарной фотоэдс. ЕОМ — электрооптический модулятор, М — зеркала, BS — светоделитель, А — усилители.

лась электрооптическим модулятором и имела глубину $m_{AM} = 0.33$. К кристаллу прикладывалось постоянное напряжение смещения 1 kV.

Оксид марганца кристаллизуется в структуре NaCl с постоянной решетки 0.444 nm [2]. Связь атомов Mn и O обычно рассматривается как преимущественно ионная [6]. При комнатной температуре MnO является парамагнетиком, однако, при температурах ниже 118 K в кристалле возникает антиферромагнитный порядок, при котором спины ионов Mn²⁺ в соседних плоскостях (111) становятся противоположно направленными. Ширина запрещенной зоны оценивается величиной 3.6–4.2 eV [2]. Как уже было отмечено, кристалл обладает изолирующими свойствами, его удельное сопротивление достигает величины $10^{11} \Omega \cdot cm$ [5]. Диэлектрическая проницаемость материала составляет $\epsilon = 18.1$ ($\omega/2\pi = 10^2 - 10^7$ Hz) [24].

Образец MnO был эпитаксиально выращен на подложке MgO методом химического переноса в малом зазоре. Кристалл имел размеры $11 \times 5 \times 0.05$ mm. Толщина подложки MgO составляла 0.65 mm. Передняя поверхность площадью 11×5 mm, являющаяся плоскостью (001) кристалла MnO, не подвергалась шлифовке или полировке. На нее с использованием серебряной пасты были нанесены электроды в виде двух полос с межэлектродным расстоянием ~ 1.3 mm.

3. Результаты и обсуждение

Перед исследованием эффекта нестационарной фотоэдс в новом материале следует предварительно изучить его фотоэлектрические свойства с помощью хорошо известных и общепринятых методик. Спектр поглощения света в MnO, измеренный при комнатной температуре, представлен на рис. 2. В исследованном спектральном диапазоне отчетливо видны максимумы поглощения света с энергией квантов 2.00 eV (длиной волны 620 nm), 2.51 eV (493 nm) и 2.91 eV (426 nm). Вид зависимости и положение характерных максимумов хорошо соответствуют полученным ранее результатам [7]. Интенсивная полоса поглощения в области 2.00 eV обусловлена переходами из основного состояния ⁶A_{1g} в первое возбужденное состояние ${}^{4}T_{1g}$ иона Mn^{2+} [2,7]. Именно эта область спектра была выбрана нами для дальнейших экспериментов с лазерным излучением hv = 1.96 eV.

Для сравнения на рис. 2 показан спектр поглощения света, измеренный при низкой температуре T = 20 K в более тонком образце (~ $20 \,\mu$ m). С понижением температуры проявляется тонкая структура уже перечисленных максимумов, а также становятся различимы особенности для энергий квантов 3.20 eV и 3.48 eV. Также наблюдается небольшое смещение максимумов поглощения в область больших энергий (коротких длин волн). Для наглядности на рис. 3 приведена энергетическая диаграмма состояний ионов Mn^{2+} , соответствующая указанным полосам поглощения.

Рис. 2. Спектральные зависимости коэффициента поглощения света в кристалле MnO, измеренные при T = 20 K в образце толщиной ~ $20 \,\mu$ m и при T = 293 K в образце толщиной 50 μ m. На вставках подробно показаны максимумы поглощения света при T = 20 K.

Рис. 3. Энергетическая диаграмма состояний и переходов в кристалле MnO, поясняющая процессы поглощения света ионами Mn^{2+} и диссоциации экситонов с образованием дырок в 2p-зоне O^{2-} .

Надо сказать, что спектральные зависимости содержат некоторую фоновую компоненту, связанную с рассеянием света на необработанных поверхностях MnO, MgO и на интерфейсе MnO-MgO. Предположительно эта компонента дает наиболее существенный вклад в области больших энергий квантов излучения.

На рис. 4 показаны частотные зависимости отклика фотопроводимости в кристалле MnO. Нами была предпринята попытка рассчитать частотную зависимость, используя известное выражение для простейшей модели полупроводника с одним типом частично компенсированных донорных (акцепторных) центров [23]

$$G_{\sim}(\omega) = \frac{m_{AM}G_0}{1 + i\omega\tau},\tag{3}$$

где G_0 — средняя фотопроводимость образца и τ — время релаксации фотопроводимости, которое в простейшем случае равно времени жизни носителей заряда. Параметры G_0 и τ , полученные в результате аппроксимации экспериментальных зависимостей, оказались следующими: $G_0 = 2.8 \cdot 10^{-13} \Omega^{-1}$ и $\tau = 5.8$ ms.

Экспериментальная и теоретическая зависимости на рис. 4 заметно расходятся в области высоких частот. Это расхождение можно существенно уменьшить, если использовать двухуровневую модель полупроводника, в котором возбуждение электронов в зону проводимости (дырок в валентную зону) может происходить как с глубоких центров, так и с мелких ловушек [23]. При выполнении условий линейности генерации и рекомбинации для глубоких центров и слабого заполнения мелких ловушек мы можем использовать то же самое выражение (3), но с временем τ , зависящим от частоты [25]

$$\tau\left(\omega\right) = \tau_D\left(1 + \frac{\tau_T^{-1}B^{-1}}{1 + i\omega B^{-1}}\right),\tag{4}$$

где τ_D , τ_T — времена жизни носителей заряда по отношению к глубоким центрам и мелким ловушкам соответственно, $B = \beta + S_T I_0$ — полная скорость возбуждения носителей заряда с мелких ловушек, β — скорость теплового возбуждения с мелких ловушек, S_T — сечение ионизации мелких ловушек. Так как на частотных зависимостях наблюдается один спадающий

Рис. 4. Частотная зависимость отклика фотопроводимости на амплитудно-модулированный свет. Аппроксимация с использованием выражений для одно- и двухуровневой моделей полупроводника показана штриховыми и сплошными линиями, соответственно.

Рис. 5. Частотные зависимости амплитуды нестационарной фотоэдс, измеренные при различных интенсивностях света. Зависимости, рассчитанные с использованием выражений для одно- и двухуровневой моделей полупроводника, показаны штриховыми и сплошными линиями соответственно. Для наглядности пунктиром показан сдвиг максимумов при изменении уровня освещенности кристалла.

участок, выражение для $\tau(\omega)$ можно записать как

$$\tau(\omega) = \frac{\tau_D \tau_T^{-1} B^{-1}}{1 + i\omega B^{-1}}.$$
 (5)

Аппроксимация с использованием выражений (3) и (5) позволила оценить целый ряд фотоэлектрических параметров кристалла MnO: $G_0 = 2.9 \cdot 10^{-13} \,\Omega^{-1}$, $\tau_D/\tau_T = 3.8$, $B = 0.59 \,\mathrm{ms}^{-1}$. Из полученного значения G_0 с учетом геометрических размеров образца и области засветки была оценена удельная фотопроводимость материала: $\sigma_0 \simeq 4.7 \cdot 10^{-11} \,\Omega^{-1} \mathrm{cm}^{-1}$ ($I_0 = 360 \,\mathrm{mW/cm}^2$).

В экспериментах с нестационарной фотоэдс амплитуда детектируемого сигнала была в пределах $10^{-13}-10^{-11}$ А, что заметно меньше величины сигнала в таких хорошо изученных объектах, как кристаллы со структурой силленита Bi₁₂Si(Ti,Ge)O₂₀ [17]. Тем не менее, такой амплитуды достаточно для уверенного детектирования сигнала с отношением сигнал/шум 0–40 dB. Важно отметить, что фаза сигнала соответствует дырочному типу фотопроводимости кристалла MnO.

Нами были измерены амплитудно-частотные характеристики (АЧХ) сигнала нестационарной фотоэдс (рис. 5). Рост сигнала на низких частотах является важным проявлением адаптивности процесса формирования объемного заряда в фотопроводящих материалах. В этой области частот сигнал мал вследствие того, что решетка поля пространственного заряда и решетка свободных носителей (решетка фотопроводимости) отслеживают движения интерференционной картины. Пространственный сдвиг между решетками поддерживается примерно равным $\pi/2$, что и приводит к малой величине сигнала. При более высоких частотах решетка с бо́льшим временем релаксации становится практически неподвижной, периодические пространственные сдвиги решеток увеличиваются, и ток достигает максимума (частотнонезависимый участок). Сигнал в кристалле MnO демонстрирует необычное поведение, так как на AЧX имеются два частотно-независимых участка. Как и в случае с откликом фотопроводимости, мы сначала попытались описать зависимости выражением, полученным ранее для простейшей модели полупроводника с одним типом частично компенсированных донорных центров [17]:

$$i^{\omega} = \frac{-(m^2 \Delta/2)\sigma_0 E_D i \omega \tau_M}{1 - \omega^2 \tau \tau_M + i\omega [\tau + \tau_M (1 + K^2 L_D^2)]}, \qquad (6)$$

где $E_D = (k_B T/e)K$ — диффузионное поле, L_D — диффузионная длина электронов, $\tau_M = \epsilon_0 \epsilon / \sigma_0$ — время максвелловской релаксации [20]. Аппроксимация с использованием этого выражения оказалась, однако, не очень удачной (рис. 5, штриховые линии). Расчет с использованием двухуровневой модели полупроводника дает более приемлемый результат (рис. 5, сплошные линии). Для этого мы использовали выражение (6) с эффективным временем жизни τ , зависящим от частоты согласно выражению (5).

Частотная зависимость с двумя частотно-независимыми участками наблюдалась ранее в кристалле CdTe:Ge [26]. В качестве возможной причины такого поведения также указывался сложный характер релаксации зарядовых распределений из-за присутствия двух типов фотоактивных центров.

Рассмотрим теперь поведение сигнала нестационарной фотоэдс в зависимости от уровня освещенности (рис. 5). Зависимость амплитуды сигнала от интенсивности света І₀ оказалась примерно линейной, что характерно для кристаллов с линейной генерацией и рекомбинацией носителей заряда. При увеличении освещенности наблюдается сдвиг максимума (первого частотнонезависимого участка) в область высоких частот. Зависимости параметров τ_M , τ_D/τ_T и B от интенсивности света приведены на рис. 6. При расчете $\tau_M(I_0)$ было учтено, что этот параметр в общем случае определяется как фотопроводимостью $\sigma_0 \propto I_0$, так и темновой проводимостью σ_d , т. е. $\tau_M = \epsilon_0 \epsilon / (\sigma_d + \sigma_0)$. Соответствующие величины составили $\sigma_d = 1.6 \cdot 10^{-11} \, \Omega^{-1} \mathrm{cm}^{-1}$ и $\sigma_0 = (0.15 - 1.7) \cdot 10^{-11} \, \Omega^{-1} \mathrm{cm}^{-1}$. Параметр τ_D / τ_T слабо зависит от уровня освещения, и эта зависимость имеет вид $\tau_D/\tau_T \propto I_0^{-0.21}$. Для параметра *В* была получена ожидаемая зависимость $B(I_0) = \beta + S_T I_0$ со скоростью теплового возбуждения $\beta = 0.48 \, {\rm m s^{-1}}$ и сечением ионизации $S_T = 560 \, \mathrm{J}^{-1} \mathrm{cm}^2$.

Зависимость амплитуды сигнала от пространственной частоты интерференционной картины является еще одной характеристикой, измеряемой в экспериментах

Рис. 6. Зависимости параметров τ_M , τ_D/τ_T и *B* от интенсивности света.

Рис. 7. Зависимости амплитуды сигнала нестационарной фотоэдс в области первого (1) и второго (2) частотно-независимых участков (см. рис. 5) от пространственной частоты интерференционной картины.

с нестационарной фотоэдс (рис. 7). При наличии на АЧХ двух частотно-независимых участков имеет смысл измерить зависимости $|J^{\omega}(K)|$ для каждого из них, так как это дает принципиальную возможность оценить эффективную и истинную диффузионные длины носителей заряда [25]. Наблюдаемые линейные зависимости можно объяснить следующим образом. Увеличение сигнала в области малых *K* происходит вследствие увеличения амплитуды решетки поля пространственного заряда, пропорциональной диффузионному полю E_D [20]. Отклонения от линейных зависимостей при больших *K*, по всей видимости, связаны с уменьшением интенсивности света внутри кристалла, возникающим из-за увеличения коэффициента отражения света при больших углах падения.

При интерпретации результатов естественно возникает вопрос о микроскопической природе фотопроводимости и нестационарной фотоэдс в MnO. Следует отметить, что MnO является менее исследованным, чем NiO, поэтому в литературе зачастую используется аналогия между свойствами и процессами в данных материалах. Согласно существующим представлениям, можно выделить несколько основных типов возбуждений носителей заряда в широкозонных оксидах переходных металлов [2,6]. Во-первых, это возбуждение электрона в зону проводимости, образованную 4s-состояниями иона переходного металла (ТМ²⁺), и дырки в валентную зону, образованную 2*p*-состояниями аниона О²⁻. Этот процесс разрешен правилами отбора, но требует большой энергии (5.5-6 eV для NiO). Во-вторых, возможен процесс, при котором электрон с 3*d*-оболочки катиона ТМ²⁺ переходит в 4*s*-зону, т.е. имеет место переход $3d^n \rightarrow 3d^{n-1}4s$, при котором ион металла становится трижды заряженным (ТМ³⁺). Вообще говоря, переходы $d \rightarrow s$ запрещены в дипольном приближении, однако, ковалентная связь ионов частично снимает этот запрет. Этот тип переходов также требует значительной энергии (3.8 eV для NiO). В-третьих, возможен процесс возбуждения с образованием дырки в 2*p*-зоне и добавлением электрона в 3*d*-оболочку катиона: $TM^{2+} + O^{2-} \rightarrow TM^+ + O^-.$ Бо́льшая энергия активации делает этот процесс практически нереализуемым в оптическом диапазоне (14 eV для NiO). Еще два типа возбуждений характерны именно для электронных систем с сильной корреляцией. Это межионные переходы Мотта-Хаббарда $3d^n + 3d^n + U \to 3d^{n-1} + 3d^{n+1}$ и переход с переносом заряда $3d^nL + 3d^nL + \Delta \rightarrow 3d^nL^- + 3d^{n+1}L$, где U и Δ — энергии активации соответствующих переходов $U = 7.5 - 8.5 \,\text{eV}$ и $\Delta = 7.0 - 8.8 \,\text{eV}$ для MnO [2], а L и L^- — соседние ионы кислорода O^{2-} и O^- (ligands). Из-за больших энергий активации ни один из перечисленных процессов не должен давать вклад в фотопроводимость и нестационарную фотоэдс на выбранной длине волны света.

Тем не менее, наше исследование показало, что фотопроводимость и нестационарная фотоэдс присутствуют в MnO. В этой области спектра возможны внутриионные переходы $3d^n \to 3d^n$ между мультиплетными состояниями Mn²⁺, возникающими из-за кристаллического поля и обменного взаимодействия [2,7]. Внутриионные переходы не должны давать вклада в проводимость материала, однако, в легированных и нестехиометричных кристаллах безызлучательный переход из возбужденного состояния Mn²⁺ с неупругим рассеяния фононов может сопровождаться образованием дырки в 2*p*-зоне [6]. На возможность возбуждения дырок в процессе диссоциации 3*d*-экситонов на дефектах кристаллической решетки MnO (рис. 3) указывалось еще в работе [5]. Там же отмечалась роль прилипания неравновесных носителей заряда в динамике релаксации фотопроводимости. По всей видимости, процессы медленной релаксации с участием мелких ловушек, обнаруженные в нашей работе, также обусловлены наличием дефектов в структуре кристалла.

4. Заключение

Как уже было отмечено во введении, возросший в последние годы интерес к исследованию оксидов переходных металлов в основном обусловлен возможностью наблюдения сверхбыстрых оптически индуцированных явлений. Вместе с тем, в данных материалах наблюдаются также и процессы медленной релаксации фотовозбужденных носителей заряда. Эта особенность была отмечена, например, в работе [8], где наблюдалось не только двухфотонное, но и двухступенчатое поглощение света с участием промежуточных уровней-ловушек. В данной работе мы продемонстрировали возможности метода нестационарной фотоэдс в исследовании сравнительно медленной динамики зарядовых решеток в кристалле MnO. Мы обнаружили, что частотные зависимости отклика фотопроводимости и нестационарной фотоэдс не описываются в рамках одноуровневой модели полупроводника. Использование двухуровневой модели позволяет частично устранить это расхождение. Вместе с тем, из-за ограниченного диапазона изменения частоты ω и недостаточно выраженных особенностей передаточных характеристик возникает несоответствие полученных параметров. Так, например, значение фотопроводимости кристалла в эксперименте с откликом на амплитудно-модулированный свет в несколько раз превосходит значение этого параметра в эксперименте с нестационарной фотоэдс. Мы полагаем, что при увеличении чувствительности в видимом и ближнем инфракрасном диапазоне, например, за счет легирования [6] или термической обработки [7], кристалл MnO может найти применение в качестве материала для изготовления адаптивных фотоприемников оптических фазо- и частотно-модулированных сигналов [27-29].

Список литературы

- [1] J. Zaanen, G.A. Sawatzky, J.W. Allen. Phys. Rev. Lett. 55, 418 (1985).
- [2] B. Fromme. d-d Excitations in Transition-Metal Oxides. Springer Tracts in Modern Physics. V. 170. Springer, Berlin Heidelberg (2001). 147 p.
- [3] D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, K. Haule. Rev. Mod. Phys. 83, 471 (2011).
- [4] F.J. Morin. Bell Syst. Tech. J. 37, 1047 (1958).
- [5] И.А. Драбкин, Л.Т. Емельянова, Р.Н. Искендеров, Я.М. Ксендзов. ФТТ 10, 3082 (1968) [Sov. Phys. Solid State 10, 2428 (1969)].
- [6] D. Adler, J. Feinleib. Phys. Rev. B 2, 3112 (1970).
- [7] S. Mochizuki. J. Phys. C. 21, 5183 (1988).
- [8] С.И. Шаблаев, Р.В. Писарев. ФТТ 45, 1660 (2003) [Phys. Solid State 45, 1742 (2003)].
- [9] M. Fiebig, D. Fröhlich, Th. Lottermoser, V.V. Pavlov, R.V. Pisarev, H.-J. Weber. Phys. Rev. Lett. 87, 137 202 (2001).
- [10] I. Sänger, V.V. Pavlov, M. Bayer, M. Fiebig. Phys. Rev. B 74, 144 401 (2006).
- [11] T. Satoh, S.-J. Cho, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, M. Fiebig. J. Opt. Soc. Am. B 27, 1421 (2010).

- [12] A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev, V.N. Gridnev, A. Kirilyuk, Th. Rasing. Phys. Rev. Lett. 99, 167 205 (2007).
- [13] A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev, V.N. Gridnev, P.A. Usachev, A. Kirilyuk, Th. Rasing. Phys. Rev. B 78, 104 301 (2008).
- [14] T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B.A. Ivanov, F. Nori, M. Fiebig. Phys. Rev. Lett. 105, 077 402 (2010).
- [15] T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, R. Huber. Nature Photon. 5, 31 (2011).
- [16] J. Nishitani, T. Nagashima, M. Hangyo. Appl. Phys. Lett. 103, 081 907 (2013).
- [17] I.A. Sokolov, S.I. Stepanov. J. Opt. Soc. Am. B 10, 1483 (1993).
- [18] В.И. Белиничер, Б.И. Стурман. УФН 130, 415 (1980) [Sov. Phys. Usp. 23, 199 (1980)].
- [19] Б.И. Стурман, В.М. Фридкин. Фотогальванический эффект в средах без центра симметрии и родственные явления. Наука, М. (1992). 208 с.
- [20] М.П. Петров, С.И. Степанов, А.В. Хоменко. Фоторефрактивные кристаллы в когерентной оптике. Наука, СПб. (1992). 320 с.
- [21] M. Bryushinin, V. Golubev, Y. Kumzerov, D. Kurdyukov, I. Sokolov. Appl. Phys. B 95, 489 (2009).
- [22] M. Bryushinin, V. Kulikov, E. Mokhov, S. Nagalyuk, I. Sokolov. Phys. Rev. B 86, 085 209 (2012).
- [23] С.М. Рывкин. Фотоэлектрические явления в полупроводниках. Физматгиз, М. (1963). 496 с.
- [24] A.K. Chaudhury, K.V. Rao. Phys. Status Solidi B 32, 731 (1969).
- [25] M.A. Bryushinin, I.A. Sokolov. Phys. Rev. B 62, 7186 (2000).
- [26] T.O. dos Santos, J. Frejlich, K. Shcherbin. Appl. Phys. B 99, 701 (2010).
- [27] T.O. dos Santos, J. Frejlich, J.C. Launay, K. Shcherbin. Appl. Phys. B 95, 627 (2009).
- [28] I.A. Sokolov, M.A. Bryushinin, V.V. Kulikov, S.H. Khan, K.T.V. Grattan. Int. J. Lifecycle Perform. Eng. 1, 270 (2013).
- [29] M. Bryushinin, V. Kulikov, I. Sokolov, P. Delaye, G. Pauliat. J. Opt. Soc. Am. B 31, 723 (2014).