04,11

Структура и диэлектрические свойства твердых растворов $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$ (x = 0-0.5)

© В.Г. Власенко, С.В. Зубков, В.А. Шуваева

Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия

E-mail: v_vlasenko@rambler.ru

(Поступила в Редакцию 19 августа 2014 г. В окончательной редакции 20 октября 2014 г.)

> Исследованы структурные и электрофизические характеристики ряда твердых растворов слоистых перовскитоподобных оксидов Bi₇Ti_{4+x}W_xNb_{1-2x}O₂₁ (x = 0-0.5). Из данных порошковой рентгеновской дифракции установлено, что все соединения получились однофазными, имеющими структуру фаз Ауривиллиуса (m = 2.5) с орторомбической кристаллической решеткой (пр. группа I2cm, Z = 2). Рассмотрены изменения тетрагонального и ромбического искажений перовскитоподобных слоев в соединениях в зависимости от их химического состава. Измерены температурные зависимости относительной диэлектрической проницаемости $\varepsilon(T)$. Показано, что температура Кюри TC перовскитоподобных оксидов Bi₇Ti_{4+x}W_xNb_{1-2x}O₂₁ (x = 0-0.5) линейно уменьшается в зависимости от увеличения параметра x. Получены энергии активации носителей заряда в различных температурных интервалах. Обнаружено, что существуют три температурные области с сильно различающейся энергией активации, обусловленные различной природой носителей заряда в исследованных соединениях.

> Работа выполнена при финансовой поддержке внутреннего гранта ЮФУ "Особенности электронного строения элементов с незаполненными оболочками" № 213.01-07-2014/11.

1. Введение

Фазы Ауривиллиуса (ФА) [1–3] представляют собой большое семейство висмутсодержащих слоистых перовскитоподобных соединений, химический состав которых описывается общей формулой A_{m-1}Bi₂B_mO_{3m+3}. Кристаллическое строение ФА представляет собой чередующиеся слои $[Bi_2O_2]^{2+}$, между которыми находятся m перовскитоподобных слоев $[A_{m-1}B_mO_{3m+1}]^{2-}$, где ионы A с большими радиусами (Bi³⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Na⁺, K⁺, и Ln³⁺ (лантаниды)) имеют додекаэдрическую координацию, позиции В внутри кислородных октаэдров занимают ионы с малыми радиусами (Ti⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺, Mo⁶⁺, Fe³⁺, Mn⁴⁺, Cr³⁺, Ga³⁺ и др.). Интерес к ФА не ослабевает из-за их потенциальных практических применений, которые обусловлены их неординарными свойствами. ФА являются перспективными материалами для создания высокотемпературных пьезодатчиков, работающих в экстремальных условиях, а также рассматриваются как элементы для устройств с энергонезависимой сегнетоэлектрической памятью (FeRAM) [4,5] и как мультифункциональные материалы, обладающие магнитными свойствами (мультиферроики) [6,7], фотолюминесценцией [8-10] и др.

Значительная вариабельность состава путем замещения ионов A и B и кристаллического строения при изменении количества слоев m = 1 - 6 позволили получить к настоящему времени большое количество ФА [11,12]. Одной из приоритетных задач является определение корреляций между составом, строением и диэлектрическими характеристиками новых ФА. Как было показано ранее [13], модификация состава хорошо известных ФА путем добавок в небольших количествах донорских легирующих примесей, таких как W⁶⁺, V⁵⁺, Re⁷⁺ и др. позволяет снизить количество кислородных вакансий, уменьшить ток утечки, повысить пьезоэлектрические свойства ФА керамики. Также существенно изменяются в сторону увеличения диэлектрическая проницаемость и, в меньшей степени, температура Кюри допированных ФА. Например, W-допированая SBT керамика SrBi₂(W_x Ta_{1-x})₂O₉ (x = 0 - 0.2) продемонстрировала увеличение остаточной поляризации с увеличением концентрации вольфрама до x < 0.075 [14–18]. Для ФА Na_{0.5}La_{0.5}Bi₂Nb_{2-x}W_xO₉ исследовано влияние замещения ниобия на вольфрам на структуру и диэлектрические характеристики [19]. Показано, что температура Кюри уменьшается, а значение пика диэлектрической проницаемости увеличивается по мере увеличения концентрации вольфрама. Такие изменения в диэлектрических характеристиках ФА связывали с увеличением толерансфактора для допированных структур, так как W⁶⁺ имеет меньший ионный радиус (0.60 Å для координационного числа (КЧ), равного 6) по сравнению с Nb⁵⁺ (0.64 Å KY = 6 [20]).

Ві₇Ті₄NbO₂₁ относится к полуторным ФА с m = 2.5, в которых регулярно чередуются слои исходных ФА m = 2 (Bi₃TiNbO₉) и m = 3 (Bi₄Ti₃O₁₂). Ранее было обнаружено, что для этого соединения наблюдается значение остаточной поляризации большее, чем для обоих исходных ФА [21].

В настоящей работе исследуется взаимосвязь структурных характеристик и электрофизических свойств

Рис. 1. Экспериментальная кривая (сплошная линия), рассчитанные значения (крестики) и их разность для рентгеновских дифрактограмм порошка для образца Bi₇Ti_{4.1}W_{0.1}Nb_{0.8}O₂₁. На вставках показаны рефлексы 004 и 020, 200, характерные для дифрактограмм ФА с орторомбической ячейкой и изменение положения рефлекса 1112 для всех образцов.

ряда твердых растворов ФА $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$ (x = 0-0.5) в зависимости от модификации химического состава. Нами проведены рентгеноструктурные исследования и измерены температурные зависимости диэлектрических характеристик новых ФА в ряду: $Bi_7Ti_4NbO_{21}$, $Bi_7Ti_{4.1}W_{0.1}Nb_{0.8}O_{21}$, $Bi_7Ti_{4.2}W_{0.2}Nb_{0.6}O_{21}$, $Bi_7Ti_{4.3}W_{0.3}Nb_{0.4}O_{21}$, $Bi_7Ti_{4.4}W_{0.4}Nb_{0.2}O_{21}$, $Bi_7Ti_{4.5}W_{0.5}O_{21}$.

2. Методика эксперимента

Поликристаллические образцы ФА были синтезированы путем твердофазной реакции соответствующих высокочистых оксидов Bi_2O_3 , TiO_2 , Nb_2O_5 , WO_3 . После взвешивания в соответствии со стехиометрическим составом и тщательного измельчения исходных соединений с добавлением этилового спирта проводился обжиг прессованных образцов при температуре 850° C в течение 2 часов. Затем проводилось повторное измельчение, прессование таблеток диаметром 10 mm и толщиной 1-1.5 mm и окончательный синтез ФА при температуре 1150° C (4 часа).

Рентгеновские дифрактограммы получены на дифрактометре ДРОН-4 с приставкой для порошковой дифракции ГП-13 и рентгеновской трубкой БСВ21–Си. Си K_{α_1,α_2} — излучение выделялось из общего спектра

с помощью Ni-фильтра. Регистрация дифрактограмм осуществлялась в интервале 2θ -углов от 5 до 120° с шагом 0.02° и экспозицией в точке 20 s. Анализ профиля дифрактограммы, определение положений линий, их индицирование (hkl) и уточнение параметров элементарной ячейки были проведены при помощи программы PCW-2.4 [22].

Для проведения диэлектрических измерений на плоские поверхности образцов ФА в форме дисков диаметром 10 mm и толщиной ~ 1 mm наносили электроды, используя Ag–Pt пасту, которую отжигали при 700°С (в течение 1 часа). Для измерения температурных и частотных зависимостей диэлектрических характеристик использовали измеритель иммитанса E7-20 в частотном интервале 1 kHz–1 MHz и в области температур от комнатной до 950°С.

3. Обсуждение результатов

Порошковые дифрактограммы всех исследованных твердых растворов $\text{Bi}_7\text{Ti}_{4+x}W_x\text{Nb}_{1-2x}\text{O}_{21}$ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) соответствовали монофазным ФА с m = 2.5 и не содержали каких-либо дополнительных рефлексов. На рис. 1 показана типичная рентгеновская дифрактограмма порошка образца $\text{Bi}_7\text{Ti}_{4.1}W_{0.1}\text{Nb}_{0.8}\text{O}_{21}$.

-	Соединение	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	$V, Å^3$	Δb , %	Δc , %	<i>а</i> т, Å	t	<i>c</i> ₀ , Å
	Bi ₇ Ti ₄ NbO ₂₁	5.411(4)	5.444(9)	58.0131	1709.329	0.61	-1.43	3.8383	0.9770	3.7834
	Bi7Ti4.1W0.1Nb0.8O21	5.399(5)	5.433(8)	57.906	1698.950	0.63	-1.40	3.8301	0.9777	3.7764
	Bi7Ti4.2W0.2Nb0.6O21	5.397(7)	5.432(1)	57.8444	1696.047	0.63	-1.47	3.8289	0.9784	3.7724
	$Bi_7Ti_{4.3}W_{0.3}Nb_{0.4}O_{21}$	5.392(1)	5.420(4)	57.7603	1688.180	0.52	-1.46	3.8228	0.9792	3.7669
	Bi7Ti4.4W0.4Nb0.2O21	5.401(3)	5.404(1)	57.6529	1682.836	0.05	-1.57	3.8202	0.9799	3.7599

57.5455

5.387(7)

Таблица 1. Параметры элементарной ячейки a, b, c и объем V, параметры ромбической Δb и тетрагональной Δc деформаций, средняя величина тетрагонального периода a_T , толеранс-фактор t, c_0 — средняя толщина одинарного перовскитного слоя

1677.491

-0.4

На вставках к рис. 1 показаны рефлексы 004 и 020, 200, характерные для дифрактограмм ФА с орторомбической ячейкой. На вставке к рис. 1 также показано изменение положения основного рефлекса 1112 в зависимости от x в ряду образцов Bi₇Ti_{4+x}W_xNb_{1-2x}O₂₁. Из этой вставки видно, что с изменением x происходит систематическое смещение основного рефлекса 1112 в сторону больших углов, указывая на уменьшение параметров ячейки при допировании.

5.410(6)

Определено, что все полученные ФА кристаллизуются в орторомбической сингонии с пространственной группой элементарной ячейки І2ст (46). Параметры элементарных ячеек и их объем, полученные на основе рентгенодифракционных данных, приведены в табл. 1. Для хорошо известного образца ФА $Bi_7Ti_4NbO_{21}$ (x = 0) найденные параметры элементарной ячейки оказались близкими к полученным ранее a = 5.4469(4) Å, b = 5.4121(4) Å, c = 58.0429(47) Å [23]; a = 5.45 Å, b = 5.42 Å, c = 58.1 Å [24]; a = 5.44 Å, b = 5.40 Å, [25]; a = 5.442(1) Å, b = 5.404(1) Å, $c = 58.1 \,\text{Å}$ [26]. Структуру c = 57.990(12) Å (монокристалл) элементарной ячейки ФА Ві7Ті4NbO21 можно описать как чередование вдоль оси с полуячеек исходных фаз m = 2 (Bi₃TiNbO₉) и m = 3 (Bi₄Ti₃O₁₂), где составляющие блоки ВіТіNbO7 содержат равное количество ионов Ti⁴⁺ и Nb⁵⁺ в перовскитном слое и разделяются слоями Bi2O2 с блоками Bi2Ti3O10 без ионов ниобия. Эти составляющие блоки BiTiNbO7 и Ві₂Ті₃О₁₀ сдвинуты относительно направления [100] на 1/2 ячейки. В перовскитных слоях обоих блоков октаэдры имеют как искажения вдоль оси с (растяжение или сжатие), так и наклон вокруг оси а и поворот вокруг оси с [26].

На рис. 2 приведена зависимость параметров ячейки от параметра *a*. Как видно из рис. 2, величина изменения объема элементарной ячейки в указанном ряду составляет не более, чем 2%. Изменение параметров элементарных ячеек ФА Ві₇Ті_{4+x} W_xNb_{1-2x}O₂₁ обусловлено различием значений радиусов ионов в позициях перовскитоподобных слоев в *B*, где ионы Nb⁵⁺ ($R_{Nb}^{5+} = 0.64$ Å [20]) замещаются ионами Ti⁴⁺ и W⁶⁺ с меньшими радиусами ($R_W^{6+} = 0.60$ Å, $R_{Ti}^{4+} = 0.605$ Å [20]). Следует заметить, что все это уменьшение объема ячейки происходит исключительно за счет уменьшения параметров *b* и *c*, в то время как параметр *a* уменьшался при x = 0-03 и снова увеличивался при x = 0.4-0.5.

3.8178

0.9807

3.7529

-1.69

Таким образом, параметр a, соответствующий полярному направлению, демонстрирует заметное отрицательное отклонение от линейной зависимости, в то время как изменение параметров b, c и объема V происходит в более близком соответствии с законом Вегарда. Такие эффекты могут быть связаны, в том числе, с частичным упорядочением атомов в перовскитовой подрешетке вследствие значительных различий радиусов атомов, занимающих одинаковые позиции в перовскитовом слое.

Рис. 2. Зависимость параметров *a*, *b*, *c* и объема *V* элементарной ячейки синтезированных составов $\text{Bi}_7\text{Ti}_{4+x}\text{W}_x\text{Nb}_{1-2x}\text{O}_{21}$ (x = 0-0.5) от параметра *x*.

Bi7Ti4.5W0.5O21

С целью определения степени искажения идеальной перовскитовой структуры в ФА нами определены толеранс-фактор *t*, параметры ромбической и тетрагональной деформаций, которые приведены в табл. 1. Толеранс-фактор был введен Гольдшмидтом [27] как параметр, определяющий ионную упаковку в кубических ячейках:

$$t = \frac{R_A + R_O}{\sqrt{2}(R_B + R_O)}$$

где R_A и R_B — радиусы катионов в позициях A и Bсоответственно, R_O — радиус иона кислорода. При расчете *t* толеранс-фактора в настоящей работе были взяты значения ионных радиусов по Шеннону [20] для соответствующих координационных чисел (КЧ) (О²⁻ (КЧ=6) $R_{\rm O} = 1.40$ Å, W^{6+} (KY = 6) $R_{\rm W} = 0.6$ Å, Nb⁵⁺⁻ (KY = 6), $R_{\rm Nb} = 0.64$ Å, Ti⁴⁺ (KЧ = 6) $R_{\rm Ti} = 0.605$ Å). Ионный радиус Bi^{3+} для координации с КЧ = 12 у Шеннона [20] не приводится, и его значение определяют из радиуса иона с КЧ = 8 ($R_{\rm Bi}$ = 1.17 Å), умножая на аппроксимирующий коэффициент 1.18, тогда Bi^{3+} (KЧ = 12) $R_{Bi} = 1.38$ Å. Как видно из табл. 1, все значения толеранс-факторов t для синтезированных ФА находятся в достаточно узком диапазоне 0.9770-0.9807, располагающемся в центре области наибольшей устойчивости кубических структур, характеризующейся значениями $0.9 \le t \le 1.0$.

Одними из параметров, характеризующих различную степень искажения кислородных октаэдров перовскитного слоя могут служить полученные значения ромбической $\Delta b = (b-a)/a$ и тетрагональной $\Delta d = (c'-a_{\rm T})/a_{\rm T}$ (где $a_{\rm T} = (a+b)/a$ — средняя величина тетрагонального периода, c' = 3c/(8+6m) —средняя толщина одинарного перовскитного слоя) деформаций (табл. 1) [28].

Как видно из табл. 1 при изменении значения параметра x от x = 0-0.4 в ФА наблюдается существенное уменьшение ромбического искажения псевдоперовскитной ячейки по сравнению с недопированным Bi₇Ti₄NbO₂₁.

Для всего ряда ФА происходит увеличение толерансфактора t, обусловленное уменьшением количества ионов Nb⁵⁺ с наибольшим ионным радиусом, тогда как средняя величина тетрагонального периода $a_{\rm T}$ и средняя толщина одинарного перовскитного слоя $c_{\rm o}$ систематически уменьшается. Для ФА с x = 0 - 0.3 тетрагональное искажение изменяется мало, октаэдры находятся в сжатом состоянии вдоль оси c в псевдоперовскитных боках, для ФА с x = 04, 0.5 происходит значительное увеличение такого сжатия.

Наряду со структурными исследованиями получены температурные зависимости относительной диэлектрической проницаемости ε при различных частотах 50–1000 kHz и энергии активации E_a носителей заряда в широком температурном интервале. На рис. 3 показаны температурные зависимости относительной диэлектрической проницаемости $\varepsilon(T)$ для ФА Ві₇Ті_{4+x} W_xNb_{1-2x}O₂₁ (x = 0-0.5) при 100 kHz. Все зависимости $\varepsilon(T)$ демонстрируют две особенности при

Рис. 3. Температурная зависимость относительной диэлектрической проницаемости ε для ФА Ві₇Ті_{4+x} W_xNb_{1-2x}O₂₁ (x = 0-0.5) при 100 kHz: I — Ві₇Ті₄NbO₂₁, 2 — Ві₇Ті_{4.1}W_{0.1}Nb_{0.8}O₂₁, 3 — Ві₇Ті_{4.2}W_{0.2}Nb_{0.6}O₂₁, 4 — Ві₇Ті_{4.3}W_{0.3}Nb_{0.4}O₂₁, 5 — Ві₇Ті_{4.4}W_{0.4}Nb_{0.2}O₂₁, 6 — Ві₇Ті_{4.5}W_{0.5}O₂₁.

температурах T_1 и T_2 , соответствующие величины диэлектрической проницаемости для которых приведены в табл. 2.

Для Bi₇Ti₄NbO₂₁ величины T₁ и T₂ близки к значениям, полученным, например, в [24] (670 и 850°С), [25] (655 и 855°С), [29] (677 и 856°С). Как было показано в [29,30] первый пик $\varepsilon(T)$ при T_1 соответствует фазовому переходу из полярной в полярную фазу (сегнетоэлектрик -> сегнетоэлектрик). При данном переходе при температурах между T1 и T2 происходит снятие искажений для перовскитного блока с m = 3 $Bi_2Ti_3O_{10}$, тогда как в перовскитных слоях с m = 2ВіТіNbO7 октаэдры продолжают быть повернуты. При температурах выше Т₂ происходит снятие искажений в обоих перовскитоподобных блоках и симметрия ФА близка к І4/ттт [30]. Таким образом, температура T₂ соответствует переходу из полярной в неполярную фазу (сегнетоэлектрик -> параэлектрик), т.е. является температурой Кюри Тс.

Таблица 2. Диэлектрические характеристики $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$ (x = 0-0.5)

Соединение	$rac{arepsilon(T_1/T_2)}{(100\mathrm{kHz})}$	T_1 , °C	T_2 , °C	E_a , eV
$\begin{array}{c} Bi_{7}Ti_{4}NbO_{21}\\ Bi_{7}Ti_{4.1}W_{0.1}Nb_{0.8}O_{21}\\ Di Ti_{4.1}W_{0.1}Nb_{0.8}O_{21}\\ \end{array}$	765/1792 652/1575	664 677	849 826 786	1.74/0.75 1.52/0.76
$B_{17}T_{14,2}W_{0,2}Nb_{0,6}O_{21}$ $B_{17}T_{14,3}W_{0,3}Nb_{0,4}O_{21}$	1085/1682 921/1294	645 648	786 770	1.24/0.67
$\begin{array}{l} Bi_{7}Ti_{4.4}W_{0.4}Nb_{0.2}O_{21}\\ Bi_{7}Ti_{4.5}W_{0.5}O_{21}\end{array}$	909/1586 1579/1362	672 646	757 712	1.53/0.56 1.26/0.46

Замещение ионов B в ФА на ионы с меньшим радиусом обычно приводит к заметным изменениям диэлектрических характеристик этих соединений, хотя и в меньшей степени, чем замещения в кубооктаэдрах A. Соответственно следует ожидать также зависимость T_2 от значений толеранс-фактора t, обусловленную изменений средних ионных радиусов B.

На рис. 4 приведены зависимости T_1, T_2 от x, t для $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$ (*x* = 0-0.5), которые оказались практически линейными, что хорошо согласуется с результатами [23]. Однако следует обратить внимание, что уменьшение Т₂ при увеличении содержания вольфрама значительно сильнее (уменьшение почти на 137 К) по сравнению с $T_1(x)$ (уменьшение всего около 20 K). Одним из объяснений различий в зависимостях $T_1(x)$, $T_2(x)$ может быть предположение, что замещение в кислородных октаэдрах ионов Nb⁵⁺ и/или Ti⁴⁺ на W⁶⁺ происходит, в основном, в наиболее искаженном перовскитном слое m = 2 BiTiNbO₇ и, в меньшей степени, в более симметричном m = 3 Bi₂Ti₃O₁₀. Что характерно, в случае замещения ионов, находящихся в позициях А в ФА, поведение $T_1(x)$, $T_2(x)$ зависимостей прямо противоположное [31].

Рис. 4. Зависимости температур T_1 , T_2 диэлектрических максимумов $\varepsilon(T)$ от x и T_2 от толеранс-фактора t для $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$ (x = 0-0.5).

Рис. 5. Зависимость $\ln(\sigma)$ от 1/kT для образца Ві₇Ті_{4.1}W_{0.1}Nb_{0.8}O₂₁.

Величины максимумов диэлектрической проницаемости $\varepsilon(T)$ не проявляют какой-нибудь зависимости от состава ФА Ві₇Ті_{4+x}W_xNb_{1-2x}O₂₁ (x = 0-0.5) (табл. 2). Следует отметить, что в более ранних диэлектрических исследованиях такой системы твердых растворов [23] также не наблюдалось какой-либо зависимости. Так как величина $\varepsilon(T)$ зависит от многих факторов: состава, размера зерна, пористости, наличия вакансий и др., то совокупность всех этих факторов нивелирует такую зависимость.

Полученные значения энергии активации носителей заряда E_a в Ві₇Ті_{4+x} W_xNb_{1-2x}O₂₁ (x = 0-0.5) представлены в табл. 2. Энергия активации E_a определялась из уравнения Аррениуса: $\sigma = \left(\frac{A}{T}\right) \exp\left(\frac{-E_a}{kT}\right)$, где σ — удельная проводимость, k — постоянная Больцмана, A — константа. Типичная зависимость $\ln \sigma$ от 1/kT (на частоте 100 kHz) из которой определялись значения E_a показана на рис. 5 для ФА Ві₇Ті_{4+x}W_xNb_{1-2x}O₂₁.

Хорошо видно из рис. 5, что существуют три температурные области, в которых Еа имеет существенно различные значения. Для двух высокотемпературных областей, характеризующихся высокими значениями энергий активации носителей заряда, значения $E_a^{(1)} > E_a^{(2)}$ отличаются почти в два раза, причем граница изменения энергии активации близка к температуре фазового перехода T_2 . Необходимо отметить, что значения $E_a^{(2)}$, соответствующие проводимости в широкой области температур от 300°С до T₂ систематически уменьшаются при увеличении допирования W⁶⁺ для всех членов ряда $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$, тогда как в высокотемпературной области выше T_2 для $E_a^{(1)}$ такой зависимости не наблюдается. Как известно [32-34], для ФА в широкой области температур определяющим является ионная электропроводность, осуществляющаяся по механизму перескока ионов кислорода на существующие вакансии в кристаллической решетке. Такая собственная проводимость характеризуется относительно высокими значениями энергий активации $E_a^{(2)}$ носителей заряда около 1 eV. Допирование ФА различными катионами может приводить к изменению их проводимости как в сторону увеличения, когда образуются дополнительные кислородные вакансии, так и в сторону уменьшения, когда происходит связывание этих вакансий с допированными ионами металлов. Систематическое уменьшение $E_a^{(2)}$ в ряду $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$ с увеличением содержания катионов W⁶⁺, приводящее к увеличению проводимости, указывает на первый механизм изменения проводимости в этих ФА. Полученным значениям $E_a^{(2)}$ для исследованного ряда Bi₇Ti_{4+x}W_xNb_{1-2x}O₂₁ близки к характерным значениям энергии активации для кислородных вакансий в ФА около 0.5-1.0 eV [32-33]. Природа проводимости в ФА при температурах выше Т₂, с более высокими значениями $E_a^{(1)} > 1.5 \,\mathrm{eV}$ требует дополнительных исследований.

В области низких температур проводимость определяется, в основном, примесными дефектами, имеющими очень малые значения энергии активации $E_a^{(3)}$, порядка нескольких сотых eV.

4. Заключение

Методом твердофазной реакции получена серия перовскитоподобных слоистых оксидов висмута Bi₇Ti₄NbO₂₁, Bi₇Ti_{4.1}W_{0.1}Nb_{0.8}O₂₁, Bi₇Ti_{4.2}W_{0.2}Nb_{0.6}O₂₁, Bi₇Ti_{4.3}W_{0.3}Nb_{0.4}O₂₁, Bi₇Ti_{4.4}W_{0.4}Nb_{0.2}O₂₁, Bi₇Ti_{4.5}W_{0.5}O₂₁. Проведенные рентгеноструктурные исследования продемонстрировали, что все соединения имеют структуру фаз Ауривиллиуса (m = 2.5) с орторомбической кристаллической решеткой (пр. группа I2ст, Z = 2). Исследование деталей искажений в строении ФА показало, что при увеличении х от 0 до 0.4 наблюдается существенное уменьшение ромбического искажения псевдоперовскитной ячейки по сравнению с недопированным Bi₇Ti₄NbO₂₁. При этом октаэдры находятся в сжатом состоянии вдоль оси с и такое тетрагональное искажение изменяется мало вплоть до ФА с x = 04, 0.5, в которых происходит значительное увеличение такого сжатия. Температурные зависимости относительной диэлектрической проницаемости $\varepsilon(T)$ $Bi_7Ti_{4+x}W_xNb_{1-2x}O_{21}$ (x = 0-0.5) имеют две аномалии, низкотемпературная их которых соответствует фазовому переходу сегнетоэлектрик-сегнетоэлектрик, тогда как высокотемпературная ассоциируется с температурой Кюри, соответствующей переходу сегнетоэлектрикпараэлектрик. Обе эти аномалии линейно уменьшаются в зависимости от увеличения параметра x — степени допирования. Изучение особенностей проводимости ФА продемонстрировало, что во всех соединениях существуют три температурные области с сильно различающейся энергией активации, что обусловлено различной природой носителей заряда в исследованных соединениях.

Список литературы

- [1] B. Aurivillius. Arkiv. Kemi. 1, 463 (1949).
- [2] B. Aurivillius. Arkiv. Kemi. 1, 499 (1949).
- [3] B. Aurivillius. Arkiv. Kemi. 2, 512 (1950).
- [4] B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo. Nature 401, 682 (1999).
- [5] A.P. de Araujo, J.D. Cuchiaro, L.D. Mcmillan, M.C. Scott, J.F. Scott. Nature **374**, 627 (1995).
- [6] X. Chen, J. Xiao, Y. Xue, X. Zeng, F. Yang, P. Su. Ceram. Int. 40, 2635 (2014).
- [7] V.G. Vlasenko, V.A. Shuvaeva, S.I. Levchenkov, Ya.V. Zubavichus, S.V. Zubkov. J. Alloys Comp. 610, 184 (2014).
- [8] H. Zou, X. Hui, X. Wang, D. Peng, J. Li, Y. Li, X. Yao. J. Appl. Phys. 114, 223 103 (2013).
- [9] H. Nakajima, T. Mori, S. Itoh, M. Watanabe. Solid State Commun. **129**, 421 (2004).
- [10] F. Gao, G.J. Ding, H. Zhou, G.H. Wu, N. Qin, D.H. Bao. J. Electrochem. Soc. 158, 5, G128 (2011).
- [11] V.G. Vlasenko, A.T. Shuvaev, D.S. Drannikov. Powder Diffr. 20, 1 (2005).
- [12] А.Т. Шуваев, В.Г. Власенко, Д.С. Дранников, И.А. Зарубин. Неорган. материалы **41**, 1085 (2005).
- [13] И.А. Зарубин, В.Г. Власенко, А.Т. Шуваев, Г.П. Петин, Е.Т. Шуваева. Изв. РАН. Сер. физ. 72, 10, 1486 (2008).
- [14] I. Coondoo, S.K. Agarwal, A.K. Jha. Mater. Res. Bull. 44, 1288 (2009).
- [15] I. Coondoo, N. Panwar b, A.K. Jha. Phys. B 406, 374 (2011).
- [16] J.K. Kim, T.K. Song, S.S. Kim, J. Kim. Mater. Lett. 57, 4, 964 (2002).
- [17] W.T. Lin, T.W. Chiu, H.H. Yu, J.L. Lin, S. Lin, J. Vac. Sci. Technol. A 21, 787 (2003).
- [18] Y. Wu, S.J. Limmer, T.P. Chou, C. Nguyen, G.Z. Cao. J. Mat. Sci. Lett. 21, 947 (2002).
- [19] C. Long, H. Fan, M. Li, Q. Li. Cryst. Eng. Comm. 14, 7201 (2012).
- [20] R.D. Shannon. Acta Cryst. A 32, 75 (1976).
- [21] Z.G. Yi, Y. Wang, Y.X. Li, Q.R. Yin. J. Appl. Phys. 99, 114101 (2006).
- [22] W. Kraus, G. Nolze. PowderCell for Windows. Version 2.3. Federal Institute for Materials Research and Testing, Berlin, Germany. (1999).
- [23] A. Yokoi, H. Ogawa. Mater. Sci. Eng. B 129, 80 (2006).
- [24] S. Horiuchi, T. Kikuchi, M. Goto. Acta Cryst. A 33, 701 (1977).
- [25] P. Duran, F. Capel, C. Moure, M. Villegas, J.F. Fernandez, J. Tartaj, A.C. Caballero. J. Eur. Ceram. Soc. 21, 1 (2001).
- [26] D. Mercurio, G. Trolliard, T. Hansen, J.P. Mercurio. Int. J. Inorg. Mater. 2, 5, 397 (2000).
- [27] V.M. Goldschmidt. Geochemisca Veterlun. Norske Videnkap, Oslo, (1927).
- [28] В.А.Исупов. ЖНХ 39, 5, 731 (1994).
- [29] F. Chu, D. Damjanovic, O. Steiner, N. Setter. J. Am. Ceram. Soc. 78, 3142 (1995).
- [30] P. Boullay, D. Mercurio. Integ. Ferroelectr. 62, 149 (2004).
- [31] C. Shao, Y. Lu, D. Wang, Y. Li. J. Europ. Ceram. Soc. 32, 3781 (2012).
- [32] K.R. Kendall, J.K. Thomas, H.C. Zur Loye. Chem. Mater. 7, *I*, 50 (1995).
- [33] C. Navas, H.L. Tuller, H.-C. Zur Loye. J. Europ. Ceram. Soc. 19, 737 (1999).
- [34] Н.А. Ломанова, В.В. Гусаров. Наносистемы: физика, химия, математика **3**, *6*, 112 (2012).