03,10

Температурная аномалия коэффициента поглощения ультразвука электронами гибридизированных состояний примесей кобальта в селениде ртути

© И.В. Жевстовских^{1,2}, В.И. Окулов¹, В.В. Гудков², В.Ю. Маякин², М.Н. Сарычев², М.Д. Андрийчук³, Л.Д. Паранчич³

¹ Институт физики металлов УрО РАН, Екатеринбург, Россия ² Уральский федеральный университет им. Б.Н.Ельцина, Екатеринбург, Россия ³ Черновицкий национальный университет им. Ю. Федьковича, Черновцы, Украина E-mail: zhevstovskikh@imp.uran.ru

(Поступила в Редакцию 25 августа 2014 г.)

Исследованы эффекты взаимодействия ультразвука с донорными d-электронами примесных атомов кобальта малой концентрации в кристаллах селенида ртути. В экспериментах наблюдались температурные зависимости электронного вклада в коэффициент поглощения на частоте 53 MHz в кристаллах с концентрациями кобальта от 10^{18} до 10^{20} cm⁻³, а также в нелегированном кристалле. В кристаллах с примесями обнаружена аномальная немонотонная температурная зависимость коэффициента поглощения медленной волны в узком интервале температур в окрестности 10 К. Для продольных и быстрых поперечных волн наблюдалась плавная монотонная температурная зависимость. На основе разработанной теоретической интерпретации установлено, что аномалия в температурной зависимости коэффициента поглощения в полосе проводимости кристалла. Сравнение теоретических и экспериментальных зависимостей позволило определить параметры, характеризующие гибридизированные электронные состояния.

Работа выполнена при поддержке РФФИ (грант № 12-02-00530-а) и программы ОФН РАН (грант № 12-Т-2-1016).

1. Введение

Для достижения прогресса в решении актуальных задач определения возможностей достижения магнитного упорядочения в кристаллах полупроводников с примесями переходных элементов необходимо детальное изучение электронной структуры примесного атома в кристаллической матрице. Объектом наибольшего внимания в преодолении связанных с этим проблем стали примеси марганца в широкозонных полупроводниковых системах [1,2]. Однако в широком круге проведенных исследований имеются результаты, которые позволяют считать актуальными объектами в данной области также узкозонные и бесщелевые полупроводники с 3*d*-примесями. Особый интерес представляют системы, в которых осуществляется гибридизация электронных 3d-состояний примесного атома с состояниями полосы проводимости кристалла. Цикл исследований целого ряда эффектов, в которых проявляется такого рода гибридизация [3-7], привел к обнаружению в кристаллах селенида ртути с примесями железа спонтанной спиновой поляризации электронов проводимости, проявляющейся в аномальном эффекте Холла [8]. Получены также надежные свидетельства спиновой поляризации в кристаллах с другими 3d-примесями. Однако форма и параметры плотности состояний донорных электронов и другие

характеристики примесной электронной структуры на количественном уровне в достаточной степени изучены пока только для примесей железа. Значение связанных с этим проблем возрастает в связи с обнаружением спонтанной спиновой поляризации, поскольку исследования теперь естественно нацелить на поиски механизмов усиления величины поляризации, наблюдаемая величина которой довольно мала. Именно к упомянутому кругу проблем и относится задача настоящей работы, которая состоит в изучении гибридизированных электронных состояний примесных атомов кобальта в кристаллах селенида ртути с помощью исследования температурных зависимостей электронного вклада в коэффициент поглощения ультразвука при низких температурах. Нами обнаружена локальная резко немонотонная аномалия в коэффициенте поглощения медленной поперечной звуковой волны, которая по имеющимся признакам связана с проявлением электронных гибридизированных состояний. На основе проведенного анализа в рамках разработанной теоретической интерпретации эффекта получены новые данные о гибридизированных состояниях.

2. Эксперимент

Кристаллы селенида ртути были выращены в Черновицком национальном университете методом Бри-

Рис. 1. Температурные зависимости изменения коэффициента поглощения ультразвуковых волн, распространяющихся в направлении (110) в кристалле HgSe:Co с $n_{\rm Co} = 5 \cdot 10^{20}$ cm⁻³, $\Delta \alpha = \alpha(T) - \alpha(4.2 \, {\rm K})$. Кривая *I* относится к медленной поперечной моде, 2 — к быстрой поперечной моде, 3 — к продольной моде.

джмена. Образцы для исследований имели форму параллелепипеда с размерами, приблизительно равными $7 \times 10 \times 4$ mm, и содержали примесь кобальта с концентрациями $5 \cdot 10^{18}$, $1 \cdot 10^{19}$ и $5 \cdot 10^{20}$ cm⁻³. Измерения проводились также и на нелегированном кристалле HgSe. Ультразвуковые волны возбуждались и регистрировались пьезопреобразователями из ниобата лития на частоте 53 MHz. Для измерений использовалась ультразвуковая установка, работающая по принципу перестраиваемого по частоте высокочастотного моста, подробно описанная в [9]. В температурном интервале 4.2-100 К измерялся коэффициент поглощения собственных волн кубического кристалла, распространяющихся в направлении (110), продольной и двух поперечных, поляризованных вдоль осей [001] и [-110]. Температурные зависимости коэффициента поглощения $\alpha(T)$ определялись по его изменению $\Delta \alpha(T)$ относительно первоначально измеренного значения при исходной температуре, в качестве которой была выбрана температура 4.2 К. Погрешность определения коэффициента поглощения ультразвуковых волн не превышала 0.02 dB.

На рис. 1 представлены результаты измерений температурных изменений коэффициента поглощения для всех трех поляризаций в кристалле HgSe:Со с концентрацией примеси кобальта $5 \cdot 10^{20}$ cm⁻³. Основная характерная особенность наблюдаемых зависимостей состоит в низкотемпературной аномалии, имеющей вид хорошо выраженного минимума коэффициента поглощения медленной поперечной волны при монотонном сравнительно плавном возрастании с температурой коэффициента поглощения продольной и быстрой поперечной волн. Измерения, выполненные на кристаллах с другими концентрациями кобальта, выявили аналогичные закономерности, характеризующиеся лишь более резкими, смещенными по температуре минимумами для медленной поперечной волны и подобными приведенным на рис. 1 монотонными температурными зависимостями для продольной и быстрой поперечной волн. Характер аномалий коэффициента поглощения медленной поперечной волны для образцов с различными концентрациями более детально показан на рис. 2 в интервале температур до 40 К, в котором поглощение звука определяется электронными механизмами. Убедительное обоснование того, что наблюдаемое аномальное поведение коэффициента поглощения медленной поперечной волны свя-

Рис. 2. Температурные зависимости изменения коэффициента поглощения медленной поперечной волны, $\Delta \alpha = \alpha(T) - \alpha(4.2 \text{ K})$. Кривая *1* относится к нелегированному HgSe, кривая 2 — HgSe:Co с $n_{\text{Co}} = 5 \cdot 10^{18} \text{ cm}^{-3}$, кривая 3 — $n_{\text{Co}} = 1 \cdot 10^{19} \text{ cm}^{-3}$, кривая 4 — $n_{\text{Co}} = 5 \cdot 10^{20} \text{ cm}^{-3}$.

Рис. 3. Температурные зависимости изменения коэффициента поглощения медленной поперечной волны, $\Delta \alpha = \alpha(T) - \alpha(80 \text{ K})$. Кривая I относится к нелегированному HgSe, кривая $2 - \text{HgSe}: \text{Со с } n_{\text{Co}} = 1 \cdot 10^{19} \text{ cm}^{-3}$, сплошная линия — функция $\alpha(T) = 0.8 \cdot 10^{-5} \cdot T^3 - 3.9$.

зано с электронным вкладом от примесей кобальта, демонстрирует рис. 3, на котором приведены полученные зависимости для легированного и нелегированного кристаллов в диапазоне температур до 100 К. В качестве начальной выбрана температура 80 К. Показано, что при температурах, превышающих 40 К, данные зависимости практически совпадают, а их монотонный ход отвечает пропорциональности $\alpha \propto T^3$, характерной для фононного вклада в поглощение поперечных ультразвуковых волн. Путем простого сравнения кривых на рис. 2 и 3 можно увидеть, что проявление примесей кобальта в поглощении данной звуковой волны состоит в наложении на простую температурную зависимость, наблюдаемую в нелегированном кристалле, характерных аномалий резонансного типа шириной порядка 10 К для определенных концентраций в общем интервале температур 5-20 К. Именно в этом интервале температур в кристаллах селенида ртути с примесями кобальта наблюдались эффекты, связанные с проявлением гибридизации донорных электронных *d*-состояний примесных атомов [10,11]. В электронном поглощении ультразвука эффекты гибридизации наблюдались в кристаллах селенида ртути с примесями железа [12] также в виде резко немонотонных аномалий (но максимумов) в температурных зависимостях коэффициента поглощения медленной поперечной волны. Таким образом, есть основания считать, что обнаруженные в настоящей работе температурные аномалии тоже связаны с проявлением вклада электронов гибридизированных состояний в поглощение ультразвука.

Объяснение и количественная интерпретация температурной аномалии коэффициента поглощения медленной поперечной звуковой волны электронами гибридизированных состояний

Основу теоретического рассмотрения коэффициента поглощения ультразвука составляют уравнения для амплитуд *и* смещений $u(r, t) = u \exp[-i(\omega t - \mathbf{kr})]$ атомов кристалла в определенной собственной волне. Вводя матрицу упругих констант кристалла c_{ij} (i, j = 1, 2, 3, 4, 5, 6) запишем уравнения для рассматриваемых волн:

– для продольной 2 $ho\omega^2 u = (c_{11} + c_{12} + 2c_{44})k^2 u$,

— для быстрой поперечной $\rho \omega^2 u = c_{44} k^2 u$,

– для медленной поперечной $2\rho\omega^2 u = (c_{11} - c_{12})k^2 u$, где ρ — плотность массы кристалла. В процессе с заданной частотой ω коэффициент поглощения волны α отождествляется с малой мнимой частью волнового вектора $k = \omega/\nu + i\alpha$, которая определяется приведенными выше уравнениями и порождается малыми мнимыми частями упругих констант, отражающими взаимодействие ультразвука с электронами в исследуемой системе.

Скорость волны ν из тех же уравнений выражается через вещественные части упругих констант. Таким образом, исходное выражение для коэффициента поглощения медленной поперечной волны α_{t2} , представляющего основной интерес для детального анализа, имеет вид

$$\alpha_{t2} = -[\omega/(4\rho v_{t2}^3)] \operatorname{Im}(c_{11} - c_{12}), \qquad (1)$$

где скорость волны $v_{t2} = [(c_{11}^0 - c_{12}^0)/2\rho]^{1/2}$ в силу малости влияния примесей задается упругими константами чистого кристалла.

Для теоретического описания температурной зависимости коэффициента поглощения воспользуемся подходом, развитым для аналогичной задачи по изучению коэффициента поглощения медленной поперечной волны в кристалле с примесями железа [12]. В рамках этого подхода сначала рассмотрим исходную формулу для электронного коэффициента поглощения звука. Энергию взаимодействия электрона со звуковой волной записываем в виде произведения электронного тензора деформационного потенциала Λ и тензора деформации колеблющегося кристалла. В соответствии с этим в уравнение движения кристалла включается сила, равная градиенту среднего значения деформационного потенциала, вычисляемого с возмущенной матрицей плотности электронной системы. Опуская формулы и преобразования, аналогичные изложенными в статье [12], приведем полученное выражение для мнимой части упругой константы

$$\operatorname{Im} c_{ij} = \hbar \omega \sum_{p,p'} \frac{f_p - f_{p'}}{\varepsilon_p - \varepsilon_{p'}} \Lambda^i_{pp'} \Lambda^j_{p'p} \frac{\gamma}{(\varepsilon_p - \varepsilon_{p'})^2 + \gamma^2}.$$
 (2)

Здесь р и ε_p — квантовые числа и энергия электронных состояний, $\Lambda^i_{pp'}$ — матричные элементы деформационного потенциала, $f_p = \{ [\exp(\varepsilon_p - \varepsilon_F)/T] + 1 \}^{-1}$ функция Ферми, в которой для рассматриваемого интервала низких температур полагаем химический потенциал равным энергии Ферми ε_F . В качестве исходной модели для описания релаксации электронов при получении формулы (2) принято простейшее приближение времени релаксации, *у* — частота релаксации в единицах энергии, которую считаем значительно большей ħω. В рамках этого приближения формула (2) позволяет описывать широкий круг закономерностей электронного поглощения звука. С помощью применения этой формулы и приведенного выше определения величины α рассматриваем коэффициенты поглощения изучаемых волн. В частности, для медленной поперечной волны, согласно равенству (1), получаем

$$\alpha_{t2} = -[\hbar\omega^{2}/(4\rho v_{t2}^{3})] \times \sum_{p,p'} \frac{f_{p} - f_{p'}}{\varepsilon_{p} - \varepsilon_{p'}} \Lambda_{pp'}^{1} (\Lambda_{p'p}^{1} - \Lambda_{p'p}^{2}) \frac{\gamma}{(\varepsilon_{p} - \varepsilon_{p'})^{2} + \gamma^{2}}.$$
 (3)

Для других волн аналогичные формулы содержат лишь другие комбинации компонент деформационного потенциала, для продольной волны $\Lambda^1 \Lambda^1 + \Lambda^1 \Lambda^2 + 2\Lambda^4 \Lambda^4$ и

для быстрой поперечной волны $2\Lambda^4\Lambda^4$. При этом оказывается важным следующее обстоятельство. Коэффициенты поглощения продольной и быстрой поперечной волн возрастают с ростом температуры. То же самое наблюдается и для медленной поперечной волны, как в нелегированном кристалле, так и в кристаллах с примесями железа, в которых при этом имеется температурная аномалия в виде максимума коэффициента поглощения, связанного с проявлением гибридизации электронных состояний. Потому для теоретического описания изучаемых температурных зависимостей в кристаллах с железом можно было не обращать внимание на конкретную структуру зависимостей коэффициента поглощения от деформационного потенциала и на его тензорный характер. В связи с этим могло бы возникнуть и представление о том, что возрастание электронного коэффициента поглощения звука с ростом температуры всегда имеет место для всех собственных волн. Однако эксперименты на кристаллах с примесями кобальта не подтвердили это представление. Согласно полученным нами данным, наблюдаемая температурная аномалия коэффициента поглощения медленной поперечной волны отвечает спаданию и минимуму при низких температурах. Для объяснения такого эффекта необходимо детально учесть зависимость коэффициента поглощения от различных компонент тензора деформационного потенциала, что и сделано в формуле (3). Конкретный анализ формул данной теории показывает, что величина входящей в коэффициент поглощения комбинации компонент деформационного потенциала определяет знак изменения коэффициента поглощения относительно значения при самой низкой температуре, т.е. общий характер (возрастание или спадание) температурной зависимости. В частности, если считать, что компоненты Λ^1 и Λ^2 положительны и для актуальных значений квантовых чисел $\Lambda^1 > \Lambda^2$, то коэффициент поглощения возрастает с температурой, как наблюдается в кристаллах с примесями железа. Если же, в основном, наоборот $\Lambda^2 > \Lambda^1$, то это отвечает спаданию коэффициента поглощения с температурой, т.е. поведению, наблюдающемуся в кристаллах с примесями кобальта. Возможны и другие особенности соотношений компонент деформационного потенциала или их структуры, приводящие к таким же закономерностям. При тех же условиях, когда наблюдается начальное возрастание с ростом температуры, взаимодействие звука с электронами гибридизированных состояний приводит к максимуму коэффициента поглощения, а в случае спадания с ростом температуры возникает минимум. Таким образом, теория позволяет объяснить обе наблюдающиеся закономерности, и в итоге можно видеть, что полученный экспериментальный факт существования двух типов зависимостей демонстрирует новые возможности изучения электронных состояний с помощью применения ультразвука.

Далее следует конкретизировать формулу (3) применительно к электронам гибридизированных состояний и произвести упрощения, позволяющие выполнить количественную интерпретацию температурных зависимостей. Выполняя при этом преобразования, аналогичные проведенным в работе [12], мы изложим лишь их основные моменты. Электронные гибридизированные состояния рассматриваемого типа характеризуются электронной плотностью, содержащей два вклада, отвечающие локализации и свободному движению. Этим вкладам соответствуют слагаемые в энергетической плотности состояний, причем доля локализации имеет вид узкого максимума, сосредоточенного в окрестности энергии ε_r донорного энергетического уровня. Здесь следует отметить, что в отличие от примесного атома железа, имеющего один донорный электрон, примесный атом кобальта имеет два донорных электрона и два донорных энергетических уровня. Однако данные по температурным зависимостям различных величин свидетельствуют, что два упомянутых уровня в кристаллах селенида ртути с примесями кобальта расположены достаточно близко, так что при рассмотрении таких зависимостей могут рассматриваться как один, занятый двумя электронами [11]. Именно такая аппроксимация нами и принимается. Учитывая изложенное, заменяем в выражении (3) суммирование по квантовым числам интегрированием по энергии с соответствующими плотностями состояний. В качестве главного предположения, обеспечивающего описание температурной аномалии, принимаем, что из матричных элементов деформационного потенциала основной вклад вносят те, которые отвечают переходам из компоненты свободного движения в локализованную, и наоборот. Значения этих компонент считаем константами, при этом полагая, что величина $\Lambda^1(\Lambda^1 - \Lambda^2)$, согласно изложенному выше, является отрицательной; такая аппроксимация предназначена для описания аномалии и непригодна для рассмотрения широкого интервала температур. Учитываем, кроме того, малость энергии перехода, позволяющей ввести вместо разности функций распределения производную функции распределения, а также возможность заменить одну из энергий на энергию донорного уровня, выполнив отдельно интегрирование вклада в плотность состояний, связанного с эффектом от локализации. В итоге выражение для коэффициента поглощения медленной поперечной волны записывается следующим образом:

$$\alpha_{t2} = \alpha_0 \int d\varepsilon \, \frac{df(\varepsilon)}{d\varepsilon} \, \frac{\gamma}{(\varepsilon - \varepsilon_r)^2 + \gamma^2} \\ = -\alpha_0 \int dx \, \frac{1}{[2 \operatorname{ch}(x/2)]^2 (xT + \varepsilon_0)^2 + \gamma^2}.$$
(4)

Пределы интегрирования по энергии в этой формуле ограничены интервалом гибридизции электронных состояний $\varepsilon_r \Gamma - \langle \varepsilon \rangle \langle \varepsilon_r + \Gamma; \varepsilon_0 = \varepsilon_F - \varepsilon_r;$ константа α_0 считается положительной. Результат подгонки теоретической зависимости, определяемой формулой (4), к экспериментальной для разных концентраций примеси кобальта показан на рис. 4. К теоретической формуле (4) при подгонке температурной зависимости добавлялся

2 а 0 $\Delta \alpha$, dB/cm -2 -4 10 0 20 30 40 6 b 4 $\Delta \alpha$, dB/cm 2 0 -2 10 20 30 40 0 С 2 $\Delta \alpha$, dB/cm 0 -2 0 10 30 20 40 *T*, K

Рис. 4. Температурные зависимости изменения коэффициента поглощения медленной поперечной волны в кристаллах HgSe : Co, полученные из эксперимента (кружки) с концентрацией Co: $5 \cdot 10^{18}$ cm⁻³ (*a*), $1 \cdot 10^{19}$ cm⁻³ (*b*), $5 \cdot 10^{20}$ cm⁻³ (*c*), и рассчитанные по формуле (4) (сплошные линии) со следующими параметрами: $\Gamma = 40$, $\gamma = 0.2$, $\varepsilon_0 = 14$ (*a*), $\varepsilon_0 = 22$ (*b*), $\varepsilon_0 = 33$ (*c*).

экспериментальной зависимости коэффициента поглощения для нелегированного кристалла, а константы в добавочном вкладе подбирались в ходе подгонки для разных концентраций. Итогом выполненной количественной интерпретации обнаруженной аномалии стало объяснение существования и определение положения температурных минимумов коэффициента поглощения. Положение минимума оказалось однозначно определенным расположением энергии Ферми внутри резонансного интервала (величиной ε_0), т.е. с концентрацией донорных электронов и тем самым с концентрацией примесей. Полученные значения величины ε_0 в минимумах для трех концентраций расположены в интервале 14-31 К и согласуются со значениями, отвечающими интервалу гибридизации, согласно существующим представлениям [11]. Также согласуется с известными данными и полученный вывод о том, что величина параметра Г, характеризующего протяженность интервала гибридизации, превышает 40 К. Важный новый результат состоит в определении параметра $\gamma = 0.2$ K, характеризующего частоту релаксации электронной системы гибридизированных состояний. Форму аномальных зависимостей в деталях воспроизвести не удается по понятным причинам - неточный учет энергетической зависимости деформационного потенциала и электронной плотности гибридизированных состояний. Однако количественное объяснение существования минимума и связи его положения с расположением уровня Ферми в интервале гибридизации может служить убедительным обоснованием справедливости предложенной интерпретации температурной аномалии коэффициента поглощения медленной поперечной звуковой волны в кристалле селенида ртути с примесями кобальта.

4. Заключение

Исследование температурных зависимостей коэффициента поглощения ультразвука в кристаллах HgSe : Со показало, что наблюдаемые аномалии поглощения медленной поперечной волны в интервале температур 10–20 К связаны с проявлением гибридизации примесных *d*-состояний в полосе проводимости кристалла. Сравнение экспериментальных зависимостей с теоретическими подтвердило обоснованность предложенной интерпретации и позволило оценить параметры гибридизированных состояний.

Список литературы

- [1] T. Dietl. Nature Mater. 9, 965 (2010).
- [2] M. Tanaka, S. Ohya, P.N. Hai. Appl. Phys. Rev. 1, 011102 (2014).
- [3] В.И. Окулов. ФНТ 30, 1194 (2004).
- [4] В.И. Окулов, Т.Е. Говоркова, В.В. Гудков, И.В. Жевстовских, А.В. Королев, А.Т. Лончаков, К.А. Окулова, Е.А. Памятных, С.Ю. Паранчич. ФНТ 33, 282 (2007).

вклад в виде линейной функции, описывающей в рассматриваемом интервале температур поглощение нелегированного кристалла. Наклон прямой определялся из

- [5] В.И. Окулов, Е.А. Памятных, В.П. Силин. ФНТ 35, 891 (2009).
- [6] В.И. Окулов, В.В. Гудков, И.В. Жевстовских, А.Т. Лончаков, Л.Д. Паранчич, С.Ю. Паранчич. ФНТ 37, 443 (2011).
- [7] В.И. Окулов, Т.Е. Говоркова, И.В. Жевстовских, А.Т. Лончаков, К.А. Окулова, Е.А. Памятных, С.М. Подгорных, М.Д. Андрийчук, Л.Д. Паранчич. ФНТ **39**, 493 (2013).
- [8] А.Т. Лончаков, В.И. Окулов, Т.Е. Говоркова, М.Д. Андрийчук, Л.Д. Паранчич. Письма в ЖЭТФ 96, 444 (2012).
- [9] V.V. Gudkov, J.V. Gavenda. Magnetoacoustic polarization phenomena in solids. Springer-Verlag, N.Y. (2000). 218 p.
- [10] В.И. Окулов, Г.А. Альшанский, Т.Е. Говоркова, В.Л. Константинов, А.В. Королев, Е.А. Памятных, С.Ю. Паранчич. ФММ 108, 124, (2009).
- [11] В.И. Окулов, Г.А. Альшанский, Т.Е. Говоркова, А.Т. Лончаков, К.А. Окулова, Е.А. Памятных, Л.Д. Паранчич, С.М. Подгорных. ФММ 113, 347 (2012).
- [12] В.И. Окулов, В.В. Гудков, Т.Е. Говоркова, И.В. Жевстовских, А.Т. Лончаков, С.Ю. Паранчич. ФТТ 49, 1971 (2007).