Тепловое сопротивление дисковых микролазеров сверхмалого диаметра

© А.Е. Жуков^{+*‡¶}, Н.В. Крыжановская^{+‡}, М.В. Максимов^{•+‡}, А.А. Липовский^{+‡}, А.В. Савельев^{+*‡}, И.И. Шостак⁺, Э.И. Моисеев⁺, Ю.В. Кудашова⁺, М.М. Кулагина[•], С.И. Трошков[•]

⁺ Санкт-Петербургский Академический университет —

научно-образовательный центр нанотехнологий Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский научный центр Российской академии наук,

199034 Санкт-Петербург, Россия

[‡] Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

• Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 6 ноября 2014 г. Принята к печати 12 ноября 2014 г.)

Обнаружено, что тепловое сопротивление микролазеров AlGaAs/GaAs типа "подвешенный диск" диаметром 1.7–4 мкм с квантовыми точками InAs/InGaAs в активной области обратно пропорционально квадрату диаметра микродиска с коэффициентом пропорциональности $3.2 \cdot 10^{-3} \, \mathrm{K} \cdot \mathrm{cm}^2/\mathrm{Br}$ и составляет $120-20^\circ \mathrm{C/MBT}$.

1. Введение

Обладающие осевой симметрией полупроводниковые микрорезонаторы позволяют реализовать режим лазерной генерации даже в тех случаях, когда размеры резонатора составляют лишь несколько микрометров. Это обусловлено формированием замкнутых мод типа моды шепчущей галереи, для которых благодаря полному внутреннему отражению от стенок резонатора достигается высокая добротность и при малом радиусе кривизны боковой поверхности. Стремление к предельной миниатюризации микролазеров продиктовано как снижением занимаемой площади и механических напряжений, возникающих при их переносе на инородную подложку, так и уменьшением абсолютного значения порога генерации, а также возможностью достижения одночастотной генерации.

Особенно перспективно использование в качестве активной области таких микролазеров "длинноволновых" квантовых точек (КТ) InAs/InGaAs. Такие КТ, с одной стороны, позволяют получить излучение в практически важном спектральном диапазоне вблизи 1.3 мкм, а с другой стороны, вклад безызлучательной рекомбинации на боковых стенках в таких структурах подавлен благодаря глубокой локализации носителей заряда в КТ. Так, для микролазеров на подложках GaAs с размерами < 3 мкм в случае использования КТ, излучающих вблизи 1.3 мкм, сообщалось о достижении лазерной генерации при комнатной температуре [1,2], тогда как для КТ более коротковолнового диапазона (0.9 и 1 мкм) генерация была реализована лишь при 10 и 77 К соответственно [3,4]. Недавно в кольцевых микролазерах диаметром D = 2 мкм на основе КТ InAs/InGaAs нами была продемонстрирована возможность генерации через основное состояние (~ 1.3 мкм) вплоть до 100°С [5].

Для стабильной работы лазера в непрерывном режиме требуется достижение низкого теплового сопротивления. Благодаря усилиям, предпринятым в последние годы по оптимизации конструкции вертикальноизлучающих лазеров (ВИЛ), в лучших ВИЛ на подложках GaAs спектрального диапазона 850-1060 нм было достигнуто тепловое сопротивление $R_{\rm th} = 1 - 2^{\circ} {\rm C/MBT}$ при диаметре апертуры < 10 мкм [6-10]. В то же время тепловые свойства микродисковых лазеров в литературе практически не освещены. Для микродисков диаметром 3 мкм на основе материалов GaInAsP на подложках InP сообщалось высокое значение теплового сопротивления, $R_{\rm th} = 150^{\circ} {\rm C/MBT}$; было высказано предположение об изменении теплового сопротивления $\propto D^{-1.5}$ [11]. В работе [12] для микродиска с КТ на подложке GaAs было получено $R_{\rm th} = 30^{\circ} {\rm C/MBr}$ при D = 4.5 мкм.

В настоящей работе нами исследованы микролазеры AlGaAs/GaAs с квантовыми точками InAs/InGaAs, имеющие конструкцию типа "подвешенный диск", позволяющую реализовать эффективное оптическое ограничение моды в вертикальном направлении. В то же время малый диаметр основания в таких микролазерах может ухудшать отвод тепла от активной области. Диаметр активной области исследованных микролазеров варьировался от 1 до 4 мкм. Обнаружено, что тепловое сопротивление подчиняется зависимости от диаметра $R_{\rm th} = C_{\rm th}D^{-2}$. Коэффициент $C_{\rm th}$ оценен равным $3.2 \cdot 10^{-3}$ K · см²/Вт, что в 1.5 раза меньше, чем для микродисков типа "планарная меза с подслоем AlGaO".

2. Эксперимент

Эпитаксиальная структура была синтезирована методом молекулярно-пучковой эпитаксии на полуизолирующей подложке GaAs (100). Активная область содержала 6 рядов KT InAs/InGaAs, разделенных спейсерами GaAs

[¶] E-mail: zhukale@gmail.com

Рис. 1. Микрофотография микродиска диаметром ~ 2.2 мкм, полученная с помощью сканирующего электронного микроскопа.

толщиной 30 нм. Активная область была помещена в волноводный слой GaAs, ограниченный с обеих сторон слоями $Al_{0.3}Ga_{0.7}As$ толщиной 10 нм. Полная толщина волновода с активной областью составила 0.28 мкм. Непосредственно под волноводом располагался буферный слой $Al_{0.7}Ga_{0.3}As$ толщиной 1.5 мкм. Длина волны излучения массива КТ при комнатной температуре (основное состояние) составила 1283 нм.

Микродисковые резонаторы были сформированы с помощью двухступенчатого химического травления. На первой стадии осуществлялось изотропное травление в смеси HBr: K₂Cr₂O₇: CH₃COOH с использованием маски из фоторезиста, сформированной с помощью фотолитографии. Диаметр маски примерно соответствовал желаемому диаметру микродиска. На второй стадии происходило формирование основания с помощью селективного травления буферного слоя Al_{0.7}Ga_{0.3}As в разбавленном растворе HF. Время селективного травления подбиралось таким образом, чтобы диаметр основания составлял не более 1/2 диаметра диска. На рис. 1 в качестве примера приведена микрофотография микродискового резонатора, имеющего диаметр D = 2.16 мкм. При этом диаметр основания d составляет приблизительно 0.7 мкм в месте непосредственного примыкания к микродиску, 0.83 мкм в средней части, и ~ 1.2 мкм в области контакта с подложкой. Таким образом, $(D/d)^2$ меняется от 9.5 до 3.2.

Микродиски подобной конструкции, получившей название suspended disk, т.е. подвешенный диск, обладают тем преимуществом, что вертикальное ограничение оптической моды на периферии диска, где и локализованы моды шепчущей галереи, реализуется за счет оптического контраста полупроводник-воздух. Это позволяет более чем на 30% увеличить фактор оптического ограничения по сравнению с мезаструктурой, в которой GaAs-волновод ограничен снизу полупроводниковым слоем Al_{0.7}Ga_{0.3}As. Учитывая, что максимальное усиление массива КТ ограничено эффектом насыщения усиления и, как правило, существенно меньше, чем в квантовых ямах, увеличение фактора оптического ограничения имеет решающее значение для возможности достижения лазерной генерации на основном оптическом переходе, особенно в случае микролазеров предельно малых размеров.

Следует отметить, что, хотя в настоящей работе исследовались микролазеры, работающие при оптической накачке, использованная конструкция с полупроводниковым основанием позволяет реализовать и инжекционную накачку. При этом благодаря сверхмалым размерам микродиска (< 4 мкм) можно ожидать высокую однородность распределения инжектированных носителей по активной области микродиска, в отличие от подвешенных микродисков большего диаметра.

Оптические исследования проводились при непрерывной накачке линией 532 нм YAG: Nd-лазера. Мощность накачки, падающая на поверхность образца, могла варьироваться приблизительно от 1 мкВт до 1 мВт. Диаметр возбуждающего луча составлял ~ 2 мкм. Детектирование проводилось с использованием объектива Olympus LMPlan IR 100 NA 0.8, монохроматора FHR 1000 и многоканального охлаждаемого InGaAs-фотодетектора Horiba Symphony с разрешением 0.05 нм.

3. Результаты

На рис. 2 приведен спектр излучения в режиме лазерной генерации одного из микродисков диаметром 2.6 мкм при мощности накачки 150 мкВт. В спектре наблюдаются три узких пика излучения от мод шепчущей галереи разных порядков на длинах волн 1301.7, 1289.4 и 1284.8 нм. Наиболее интенсивный (доминантный) пик 1301.7 нм имеет полную ширину на половине высоты 60 пм, коэффициент подавления боковых мод составляет 17.8 дБ. Зависимость интенсивности доминантного пика и его спектральной ширины от накачки позволяет определить порог генерации: (85 ± 5) мкВт.

На вставке к рис. 2 показан участок спектра вблизи доминантного пика при различной накачке. Как видно, с увеличением мощности накачки P_{pump} наблюдается длинноволновый сдвиг линии, обусловленный увеличением температуры T микродиска. На рис. 3 показана зависимость положения λ доминантного пика от P_{pump} для микродиска, данные по которому были представлены на рис. 2, а также для двух других микродисков номинально такого же диаметра. Коэффициент $d\lambda/dP_{\text{pump}}$, определенный с помощью линейной аппроксимации экспериментальных данных, лежит в диапазоне 1.6–3.8 нм/мВт.

Ранее проведенные исследования [5] микродисковых лазеров позволили установить, что в исследуемых структурах обусловленный температурой сдвиг длины волны моды шепчущей галереи $d\lambda/dT$ составляет (0.075 ± 0.005) нм/°С в температурном диапазоне 20–80°С. Используя это значение совместно с данными рис. 3, можно оценить коэффициент

Рис. 2. Спектр излучения одного из микродисков диаметром 2.6 мкм при мощности накачки 150 мкВт. На вставке — спектр вблизи доминирующего пика при различной мощности накачки.

Рис. 3. Положение доминирующего пика в зависимости от мощности накачки для нескольких микродисков диаметром 2.6 мкм.

Рис. 4. Тепловое сопротивление в зависимости от диаметра: I — GaAs-микродиск [12]; 2 — GaAs-микродиск, данная работа; $3 - R_{\rm th} = C_{\rm th}/D^2$, где $C_{\rm th} = 3.2 \cdot 10^{-3} \,\mathrm{K} \cdot \mathrm{cm}^2/\mathrm{Br}$; 4 — InP-микродиск [11]; 5 — GaAs-BИЛ [6-10,15].

 $dT/dP_{pump} = (d\lambda/dP_{pump})/(d\lambda/dT)$, описывающий рост температуры с мощностью накачки, как приблизительно равный для исследуемых микродисков (20–50)°С/мВт.

Тепловое сопротивление $R_{\rm th}$ по определению есть отношение приращения температуры прибора dT к вызвавшему этот разогрев приращению рассеиваемой мощности $dP_{\rm diss}$. Поскольку мощность излучения, выходящего из микродиска, пренебрежимо мала, можно считать, что рассеиваемая мощность $P_{\rm diss}$ равна той части мощности накачки, которая фактически поглощается в структуре. Доля поглощаемой мощности накачки была оценена как равная 0.55 с помощью выражения $P_{\rm diss}/P_{\rm pump} = (1 - R)[1 - \exp(-\alpha t)]$. Коэффициент отражения R от верхней поверхности диска мы полагали равным 0.3, коэффициент поглощения α лазерной накачки в GaAs-части волновода равным $6 \cdot 10^4$ см⁻¹ [13], толщину поглощающей области t = 0.26 мкм.

Таким образом, рассеиваемая мощность, которая приводит к увеличению температуры активной области, приблизительно в 2 раза меньше падающей мощности накачки, так что тепловое сопротивление, вычисляемое по формуле $R_{\rm th} = (P_{\rm diss}/P_{\rm pump})^{-1}(dT/dP_{\rm pump})$, оказывается примерно в 2 раза больше ранее определенного коэффициента $dT/dP_{\rm pump}$. Для описанных выше микродисков диаметром 2.6 мкм получаем значение в диапазоне $R_{\rm th} = 38-92^{\circ}$ С/мВт.

Аналогичные измерения и расчеты были выполнены для других изготовленных микродисков. Полученные данные систематизированы на рис. 4. Как видно, для дисков диаметром 1.7 мкм и более прослеживается тенденция снижения теплового сопротивления при уменьшении диаметра микродиска. Наклон зависимости $R_{\rm th}$ от диаметра диска D приблизительно соответствует закону $\propto D^{-2}$. Для наименыших из исследованных микродисков (1 мкм) тепловое сопротивление перестает убывать с диаметром.

Для сравнения на рис. 4 также приведены литературные данные по тепловому сопротивлению лучших ВИЛ на подложках GaAs в зависимости от диаметра их активной области (апертуры). Как видно, тепловое сопротивление наиболее крупных из исследованных микродисков (2.5–4 мкм) оказывается приблизительно на порядок выше теплового сопротивления ВИЛ близких размеров.

4. Обсуждение

Тепловое сопротивление определяется как теплопроводностью окружающей среды, так и формой и размерами теплового контакта. Наиболее существенным является определение характера зависимости теплового сопротивления от диаметра прибора. В работе [11] для микродисковых лазеров InGaAsP–InP была предложена аппроксимация законом $R_{\rm th} \propto D^{-1.5}$, хотя какого-либо обоснования для этого приведено не было, а вся совокупность экспериментальных данных была представлена двумя приборами (D = 3 и 5 мкм). Сами сообщенные значения $R_{\rm th}$ приблизительно в 5 раз выше теплового сопротивления, полученного в настоящей работе для микродисков соответствующего диаметра, что может быть объяснено меньшей теплопроводностью материалов InGaAsP по сравнению с AlGaAs.

Для описания теплового сопротивления вертикальноизлучающего лазера было предложено [14] простое выражение $R_{\rm th} \approx (2\kappa D)^{-1}$, которое может быть получено в предположении отвода тепла из активной области диаметром D, имеющим в данном случае смысл диаметра апертуры, в полубесконечную среду, обладающую теплопроводностью κ . Обратная пропорциональность теплового сопротивления ВИЛ на подложках GaAs диаметру апертуры экспериментально подтверждена в широком диапазоне диаметров от нескольких микрометров до 150 мкм [15].

Конструкция ВИЛ, как правило, позволяет реализовать эффективный отвод тепла от активной области не только вниз, но и вбок, так как активная область окружена с этих сторон полупроводниковыми слоями. Однако в случае микролазера типа "подвешенный диск" боковым отводом тепла можно пренебречь, поскольку теплопроводность воздуха мала. Таким образом, его тепловое сопротивление будет обратно пропорционально площади основания. В исследованных структурах типа "подвешенный диск" эффективный диаметр основания d масштабируется с диаметром самой активной области D и можно ожидать, что $R_{\rm th} = C_{\rm th} D^{-2}$. Для оценки величины коэффициента пропорциональности C_{th} будем полагать, что тепловое сопротивление полностью определяется теплопроводностью буферного слоя AlGaAs (κ_{AlGaAs}) , так что $C_{\rm th} \approx (D/d)^2 4h (\pi \kappa_{AlGaAs})^{-1}$, где h высота основания. Зависимость теплопроводности Al_xGa_{1-x}As от мольной доли AlAs в твердом растворе приближенно является квадратичной: $\kappa_{AlGaAs} \approx A + Bx$ $+Cx^2$, где коэффициенты A, B и C равны соответственно 0.44, -1.79 и 2.26 Вт/см К [16]. Для использованного химического состава (x = 0.7) $\kappa_{AlGaAs} \approx 0.3$ Вт/см · К. Полагая h = 1.5 мкм и $(D/d)^2 \approx 5$, получаем $C_{\mathrm{th}} \approx 3.2 \cdot 10^{-3} \,\mathrm{K} \cdot \mathrm{cm}^2/\mathrm{Bt}.$

Расчетная зависимость, описываемая выражением $R_{\rm th} = C_{\rm th} D^{-2}$ с найденным коэффициентом $C_{\rm th}$, показана на рис. 4. Она находится в хорошем согласии с экспериментальными значениями теплового сопротивления, оцененного в исследуемых микродисках с $D \ge 1.7$ мкм. Отклонение от закона $\propto D^{-2}$ в самых малых из исследованных структур обусловлено, на наш взгляд, тем, что диаметр диска становится меньше пятна возбуждения, так что отношение реально поглощаемой оптической мощности к мощности накачки, $P_{\rm diss}/P_{\rm pump}$, снижается. Разброс экспериментальных данных, который, в частности, наблюдается даже для дисков номинально одинакового диаметра, мы связываем в основном с невоспроизводимостью формы и размеров основания микродиска, что приводит к отклонению коэффициента $(D/d)^2$ от значения, взятого в расчетах.

Альтернативой использованию конструкции типа "подвешенный диск" является применение слоя Al_xGa_{1-x}As с высоким содержанием Al ($x \approx 0.97$), который в процессе изготовления микродиска селективно окисляется в насыщенной парами воды атмосфере. Образующийся окисел AlGaO обладает по сравнению полупроводниковыми слоями заметно меньшим С показателем преломления (~1.7), что обеспечивает высокое значение фактора оптического ограничения. Используя указанную конструкцию в микрокольцевых и микродисковых лазерах диаметром 6-7 мкм, мы ранее реализовали лазерную генерацию при рекордно высокой температуре 107°С [17]. Недостатком микродисков на окисном слое, помимо невозможности реализации инжекционной накачки, является почти на два порядка меньшая теплопроводность AlGaO ($\sim 7 \cdot 10^{-3}$ Bt/см \cdot K) по сравнению с полупроводниковыми слоями. Для такого микродиска диаметром 6 мкм, лежащего на окисле толщиной 0.4 мкм, нами было определено тепловое сопротивление 14°С/мВт, что соответствует коэффициенту $C_{\rm th} \approx 5 \cdot 10^{-3} \,\mathrm{K} \cdot \mathrm{cm}^2/\mathrm{Br}$. Это в ~ 1.5 раза хуже, чем для исследованных в настоящей работе структур.

5. Заключение

С помощью измерения зависимости длины волны моды шепчущей галереи от мощности накачки впервые исследовано тепловое сопротивление микролазеров AlGaAs/GaAs типа "подвешенный диск" сверхмалого диаметра с квантовыми точками InAs/InGaAs/GaAs в активной области. Обнаружено, что тепловое сопротивление масштабируется обратно пропорционально квадрату диаметра микродиска ($R_{\rm th} = C_{\rm th} D^{-2}$), что указывает на определяющую роль отвода тепла через относительно тонкое основание диска. Тепловое сопротивление для дисков с диаметром 1.7-4 мкм лежит в диапазоне 120-20°С/мВт, что соответствует перегреву в несколько градусов на пороге генерации; коэффициент C_{th} оценен равным $3.2 \cdot 10^{-3} \,\mathrm{K} \cdot \mathrm{cm}^2/\mathrm{Bt}$. Представляется, что тепловое сопротивление микролазеров типа "подвешенный диск" может быть улучшено в несколько раз за счет использования буферного слоя AlGaAs со ступенчатым или градиентным профилем состава, который обеспечивал бы малый диаметр основания в области непосредственного примыкания основания к микродиску при относительно малой толщине этого слоя (например, 0.2 мкм) и большой диаметр остальной части основания.

Работа выполнена при поддержке Российского фонда фундаментальных исследований.

Список литературы

- [1] K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna. Opt. Exp., **14**, 1094 (2006).
- [2] Н.В. Крыжановская, А.Е. Жуков, А.М. Надточий, М.В. Максимов, Э.И. Моисеев, М.М. Кулагина, А.В. Савельев, Е.М. Аракчеева, А.А. Липовский, Ф.И. Зубов, А. Kapsalis, С. Mesaritakis, D. Syvridis, A. Mintairov, D. Livshits. ФТП, 47, 1396 (2013).

- [3] F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hoefling, L. Worschech, A. Forchel. Appl. Phys. Lett., 97, 101 108 (2010).
- [4] Y.-H. Chen, Y.-K. Wu, LJ. Guo. Appl. Phys. Lett., 98, 131109 (2011).
- [5] A.E. Zhukov, N.V. Kryzhanovskaya, M.V. Maximov, A.A. Lipovskii, I.S. Mukhin, E.I. Moiseev, I.I. Shostak, A.V. Savel'ev, A.A. Bogdanov, D.V. Karpov, J. Laukkanen, J. Tommila, D. Livshits. *Int. Nano-Optoelectronics Workshop (iNOW)* (St.Petersburg & Luge, Russia, 2014).
- [6] A.N. Al-Omari, G.P. Carey, S. Hallstein, J.P. Watson, G. Dang, K.L. Lear. IEEE Photon. Technol. Lett., 18, 1225 (2006).
- [7] Y.-C. Chang, L.A. Coldren. Appl. Phys. A, 95, 1033 (2009).
- [8] N. Iwai, K. Takaki, H. Shimizu, S. Imai, Y. Kawakita, S. Kamiya, K. Hiraiwa, T. Takagi, T. Ishikawa, N. Tsukiji, A. Kasukawa. Furukawa Rev., 37, 1 (2010).
- [9] A. Demir, G. Zhao, D.G. Deppe. Electron. Lett., 46, 1147 (2010).
- [10] P.P. Baveja, B. Koegel, P. Westbergh, J.S. Gustavsson, A. Haglund, D.N. Maywar, G.P. Agrawal, A. Larsson. Opt. Exp., **19**, 15490 (2011).
- [11] M. Fujita, A. Sakai, T. Baba. IEEE J. Select. Topics Quantum Electron., 5, 673 (1999).
- [12] T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, Y. Arakawa. Opt. Exp., 13, 1615 (2005).
- [13] http://www.matprop.ru/GaAs_optic
- [14] W. Nakwaski, M. Osinski. Electron. Lett., 28, 572 (1992).
- [15] R. Michalzik, K.J. Ebeling. In: Vertical-Cavity Surface-Emitting Laser Devices, ed. by H.E. Li, K. Iga [Springer Series in Photonics, 6, 53 (2003).
- [16] Properties of Aluminium Gallium Arsenide, ed. by S. Adachi (INSPEC, London, 1993).
- [17] Н.В. Крыжановская, А.Е. Жуков, А.М. Надточий, И.А. Словинский, М.В. Максимов, М.М. Кулагина, А.В. Савельев, Е.М. Аракчеева, Ю.М. Задиранов, С.И. Трошков, А.А. Липовский. ФТП, 46, 1063 (2012).

Редактор Л.В. Шаронова

Thermal impedance of ultra-small disk microlasers

A.E. Zhukov^{+*‡}, N.V. Kryzhanovskaya^{+‡}, M.V. Maximov^{•+‡}, A.A. Lipovskii^{+‡}, A.V. Savelyev^{+*‡}, I.I. Shostak⁺, E.I. Moiseev⁺, Yu.V. Kudashova⁺, M.M. Kulagina[•], S.I. Troshkov[•]

+ St. Petersburg Academic University —
Nanotechnology Research and Education Centre, Russian Academy of Sciences,
194021 St. Petersburg, Russia
* St. Petersburg Scientific Center, Russian Academy of Sciences,
199034 St. Petersburg, Russia
* St. Petersburg State Polytechnical University,
195251 St. Petersburg, Russia
• Ioffe Physicotechnical Institute, Russian Academy of Sciences,
194021 St. Petersburg, Russia

Abstract Thermal impedance suspended disk AlGaAs/GaAs micorlasers of $1.7-4 \mu m$ in diameter with InAs/InGaAs quantum dot active region was found to be inversely proportional to the squared diameter of the microdisk with the proportionality factor of $3.2 \cdot 10^{-3} \text{ K} \cdot \text{cm}^2/\text{W}$, the thermal impedance being $120-20^{\circ}\text{C/mW}$.