Влияние непараболичности энергетического спектра электронов и легких дырок на оптические свойства гетероструктур с глубокими квантовыми ямами AISb/InAs_{0.86}Sb_{0.14}/AISb

© Н.В. Павлов[¶], Г.Г. Зегря^{¶¶}

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 15 сентября 2014 г. Принята к печати 23 сентября 2014 г.)

Исследованы оптические характеристики гетероструктур с глубокими квантовыми ямами на примере структуры состава AlSb/InAs_{0.86}Sb_{0.14}/AlSb с учетом непараболичности энергетического спектра носителей заряда в рамках четырехзонной модели Кейна. Показано, что учет непараболичности приводит к увеличению количества уровней размерного квантования в зоне проводимости. При ширине квантовой ямы 100 Å в исследуемой гетероструктуре имеются 3 уровня размерного квантования в рамках параболической модели и 6 уровней в рамках четырехзонной модели Кейна. Причина этого заключается в том, что высокоэнергетичные электроны оказываются в несколько раз тяжелее, чем электроны на дне зоны проводимости. Также показано, что учет эффекта непараболичности слабо влияет на интеграл перекрытия между *s*- и *p*-состояниями, однако приводит к значительному увеличению плотности состояний в зоне проводимости, что становится причиной существенного роста коэффициента поглощения излучения.

1. Введение

Одними из наиболее перспективных элементов инфракрасной оптоэлектроники являются гетероструктуры с глубокими квантовыми ямами на основе твердых растворов InAsSb в качестве активной области, так как в них наблюдается эффект подавления процессов ожерекомбинации [1,2]. Данные соединения обладают минимальными значениями ширины запрещенной зоны и эффективной массы электронов среди полупроводников $A^{III}B^V$ [3,4], а также максимальным значением интеграла перекрытия между волновыми функциями электронов и тяжелых дырок [5].

Малая величина ширины запрещенной зоны E_g активной области является причиной существенной непараболичности энергетического спектра носителей заряда. Этот эффект приводит к значительным поправкам к энергии уровней размерного квантования по сравнению с параболическим законом дисперсии даже для основного состояния в зоне проводимости. Для высокоэнергетичных состояний поправки становятся еще более существенными, так как с ростом энергии эффективная масса электрона быстро увеличивается.

Цель настоящей работы — расчет коэффициента поглощения и скорости излучательной рекомбинации для межзонных оптических переходов между различными подзонами размерного квантования с учетом непараболичности энергетического спектра носителей заряда в гетероструктуре с глубокой квантовой ямой AlSb/InAs_{0.84}Sb_{0.16}/AlSb, которая является одним из перспективных элементов оптоэлектроники среднего инфракрасного диапазона [2,6]. Зонная диаграмма исследуемой гетероструктуры представлена на рис. 1.

2. Основные соотношения

Для вычисления коэффициента поглощения для межзонных оптических переходов и скорости излучательной рекомбинации в работе была использована четырехзонная модель Кейна, которая наиболее точно описывает волновые функции и энергетический спектр носителей заряда в узкозонных полупроводниках A^{III}B^V [7,8].

Рис. 1. Зонная диаграмма гетероструктуры с глубокой квантовой ямой AlSb/InAs_{0.84}Sb_{0.16}/AlSb и уровни размерного квантования электронов $E_{c1} - E_{c3}$, легких дырок E_{hl} , тяжелых дырок E_{hh1} , E_{hh2} . U_c , U_v — разрывы зоны проводимости и валентной зоны.

[¶] E-mail: Pavlovnv@mail.ioffe.ru

^{¶¶} E-mail: Zegrya@mail.ioffe.ru

В рамках данной модели волновая функция носителей ψ может быть представлена в виде

$$\psi = \psi_s |s\rangle + \Psi |p\rangle, \tag{1}$$

где Ψ_s и Ψ — спиноры, $|s\rangle$ и $|p\rangle$ — блоховские функции s- и p-типа. Вблизи Г-точки уравнения для огибающих Ψ_s и Ψ в сферическом приближении имеют вид

$$(E_c - E)\Psi_s - i\hbar\gamma\nabla\Psi = 0,$$

$$(E_{v} - \delta - E)\Psi - i\hbar\gamma\nabla\Psi_{s} + \frac{\hbar^{2}}{2m_{0}}(\gamma_{1} + 4\gamma_{2})\nabla(\nabla\Psi)$$
$$- \frac{\hbar^{2}}{2m_{0}}(\gamma_{1} - 2\gamma_{2})\nabla \times [\nabla \times \Psi] + i\delta[\sigma \times \Psi] = 0.$$
(2)

Здесь E_c и E_v — энергии краев зоны проводимости и валентной зоны, $\delta = \Delta/3$, Δ — константа спин-орбитального расщепления, $\gamma = \sqrt{(1/2m_c)[E_g(E_g + 3\delta)/(E_g + 2\delta)]}$ — кейновский матричный элемент, γ_1, γ_2 — обобщенные параметры Латтинжера, $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ — матрицы Паули, m_0 — масса свободного электрона.

В данной работе энергия электронов E отсчитывается от дна зоны проводимости, для легких и тяжелых дырок удобнее пользоваться энергией E', отсчитываемой вниз от потолка валентной зоны и связанной с E соотношением $E' = -E_g - E$. Система координат выбрана таким образом, чтобы ось x совпадала с направлением роста кристалла, а ось y совпадала с направлением волнового вектора свободного движения носителей заряда в плоскости квантовой ямы.

Энергетический спектр тяжелых дырок имеет вид

$$E'_{hh} = \frac{\hbar^2 (k_h^2 + q^2)}{2m_h},$$
(3)

где $m_h^{-1} = m_0^{-1}(\gamma_1 - 2\gamma_2)$ — эффективная масса тяжелых дырок, E'_{hh} , k_h — энергия и квантованная компонента волнового вектора тяжелых дырок, q — компонента волнового вектора тяжелых дырок в плоскости квантовой ямы.

Волновая функция тяжелых дырок внутри квантовой ямы (т. е. при |x| < a/2, где a — ширина квантовой ямы, а x отсчитывается от плоскости симметрии ямы) имеет вид [9]

$$\Psi_{h} = H_{1} \begin{pmatrix} q \sin k_{h} x \eta \\ i k_{h} \cos k_{h} x \eta \\ -q \sin k_{h} x \eta - k_{h} \cos k_{h} x \xi \end{pmatrix} + H_{2} \begin{pmatrix} q \cos k_{h} x \xi \\ -i k_{h} \sin k_{h} x \xi \\ -k_{h} \sin k_{h} x \xi + q \cos k_{h} x \eta \end{pmatrix}.$$
 (4)

В области барьера, при *x* > *a*/2, волновые функции выглядят следующим образом:

$$\Psi_{h} = \tilde{H}_{1} \begin{pmatrix} q\xi \\ -i\kappa_{h}\xi \\ -\kappa_{h}\xi + q\eta \end{pmatrix} e^{-\kappa_{h}(x-a/2)} + \tilde{H}_{2} \begin{pmatrix} q\eta \\ -i\kappa_{h}\eta \\ -q\xi + \kappa_{h}\eta \end{pmatrix} e^{-\kappa_{h}(x-a/2)}.$$
 (5)

Здесь $\xi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\eta = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $H_1, H_2, \tilde{H}_1, \tilde{H}_2$ — нормировочные коэффициенты (см. *Приложение* I), κ_h — модуль волнового вектора тяжелых дырок под барьером. Волновые функции при x < -a/2 можно получить, используя соотношения для компонент симметризированной волновой функции [8].

Энергетический спектр электронов имеет вид

$$\hbar^2 \gamma^2 (k_c^2 + q^2) = \frac{E_c [E_c^2 + E_c (2E_g + 3\delta) + E_g (E_g + 3\delta)]}{E_g + E_c + 2\delta}.$$
(6)

Волновая функция электронов внутри квантовой ямы есть

$$\Psi_{sc} = A_1 \cos k_c x \eta + A_2 \sin k_c x \xi,$$

$$\Psi_c = i \frac{\hbar \gamma}{Z} A_1 \begin{pmatrix} k_c \sin k_c x \eta - \lambda_c q \cos k_c x \xi \\ -iq \cos k_c x \eta + i\lambda_c k_c \sin k_c x \xi \\ -\lambda_c k_c \sin k_c x \xi + \lambda_c q \cos k_c x \eta \end{pmatrix}$$

$$+ i \frac{\hbar \gamma}{Z} A_2 \begin{pmatrix} -k_c \cos k_c x \xi - \lambda_c q \sin k_c x \eta \\ -i\lambda_c k_c \cos k_c x \eta - iq \sin k_c x \xi \\ -\lambda_c q \sin k_c x \xi - \lambda_c k_c \cos k_c x \eta \end{pmatrix}.$$
 (7)

Волновая функция электронов при x > a/2:

$$\Psi_{sc} = [\tilde{A}_{1}\eta + \tilde{A}_{2}\xi]e^{-\kappa_{c}(x-a/2)},$$

$$\Psi_{c} = i\frac{\hbar\tilde{\gamma}}{\tilde{Z}}\tilde{A}_{1}\begin{pmatrix}k_{c}\eta - q\tilde{\lambda}_{c}\xi\\-iq\eta + ik_{c}\tilde{\lambda}_{c}\xi\\-\kappa_{c}\tilde{\lambda}_{c}\xi + q\tilde{\lambda}_{c}\eta\end{pmatrix}e^{-\kappa_{c}(x-a/2)}$$

$$+i\frac{\hbar\tilde{\gamma}}{\tilde{Z}}\tilde{A}_{2}\begin{pmatrix}-k_{c}\xi - q\tilde{\lambda}_{c}\eta\\-i\kappa_{c}\tilde{\lambda}_{c}\eta - iq\xi\\-q\tilde{\lambda}_{c}\xi - k_{c}\tilde{\lambda}_{c}\eta\end{pmatrix}e^{-\kappa_{c}(x-a/2)}.$$
(8)

Здесь $A_1, A_2, \tilde{A}_1, \tilde{A}_2$ — нормировочные коэффициенты (см. Приложение I),

$$Z = \frac{E_c^2 + E_c (2E_g + 3\delta) + (E_g + 3\delta)E_g}{E_c + E_g + 2\delta},$$
$$\lambda_c = \frac{\delta}{E_c + E_g + 2\delta}, \quad \tilde{\lambda}_c = \frac{\tilde{\delta}}{E_c + U_v + E_g + 2\tilde{\delta}},$$
$$\tilde{Z} = \frac{E^2 + E(2E_g + 2U_v + 3\tilde{\delta}) + (E_g + U_v + 3\tilde{\delta})(E_g + U_v)}{E + E_g + U_v + 2\tilde{\delta}},$$

 E_c, k_c — энергия и квантованная компонента волнового вектора электрона внутри ямы, κ_c — модуль волнового

вектора электрона в области барьера, $\tilde{\gamma}$ — кейновский матричный элемент в области барьера, $\tilde{\delta} = \tilde{\Delta}/3$ — константа спин-орбитального расщепления в области барьера, U_v — величина разрыва валентной зоны.

Энергетический спектр легких дырок:

$$E_{lh}' = \frac{3\delta}{2} + \frac{\hbar^2 (k_l^2 + q^2)}{4} (m_l^{-1} + m_h^{-1}) - \sqrt{2\delta^2 + \left[\frac{\delta}{2} - \frac{\hbar^2 (k_l^2 + q^2)}{4} (m_l^{-1} - m_h^{-1})\right]^2}, \quad (9)$$

где введено обозначение $m_l^{-1} = 2\gamma^2/(E_{lh}' + E_g) + +m_0^{-1}(\gamma_1 + 4\gamma_2)$. Значение m_l совпадает с массой легких дырок при равенстве нулю константы спин-орбитального взаимодействия.

Волновая функция легких дырок внутри квантовой ямы:

$$\Psi_{l} = i \frac{\hbar \gamma}{Z_{l}} L_{1} \begin{pmatrix} k_{l} \sin k_{l} x \eta - \lambda_{l} q \cos k_{l} x \xi \\ -iq \cos k_{l} x \eta + i\lambda_{l} k_{l} \sin k_{l} x \xi \\ -\lambda_{l} k_{l} \sin k_{l} x \xi + \lambda_{l} q \cos k_{l} x \eta \end{pmatrix}$$
$$+ i \frac{\hbar \gamma}{Z_{l}} L_{2} \begin{pmatrix} -k_{l} \cos k_{l} x \xi - \lambda_{l} q \sin k_{l} x \eta \\ -i\lambda_{l} k_{l} \cos k_{l} x \eta - iq \sin k_{l} x \xi \\ -\lambda_{l} q \sin k_{l} x \xi - \lambda_{l} k_{l} \cos k_{l} x \eta \end{pmatrix},$$
$$\Psi_{sl} = [L_{1} \cos k_{l} x \eta + L_{2} \sin k_{l} x \xi]. \tag{10}$$

Волновая функция легких дырок при x > a/2:

$$\begin{split} \Psi_{l}(q,x) &= i \frac{\hbar \tilde{\gamma}}{\tilde{Z}_{l}} \tilde{L}_{1} \begin{pmatrix} \kappa_{l} \eta - \tilde{\lambda}_{l} q \xi \\ -iq\eta + i \tilde{\lambda}_{l} \kappa_{l} \xi \\ -\tilde{\lambda}_{l} \kappa_{l} \xi + \tilde{\lambda}_{l} q \eta \end{pmatrix} e^{-\kappa_{l}(x-a/2)} \\ &+ i \frac{\hbar \tilde{\gamma}}{\tilde{Z}_{l}} \tilde{L}_{2} \begin{pmatrix} \kappa_{l} \xi - \tilde{\lambda}_{l} q \eta \\ -iq\xi + i \tilde{\lambda}_{l} \kappa_{l} \eta \\ \tilde{\lambda}_{l} \kappa_{l} \eta - \tilde{\lambda}_{l} q \xi \end{pmatrix} e^{-\kappa_{l}(x-a/2)}, \end{split}$$

$$\Psi_{sl} = [\tilde{L}_1 \xi + \tilde{L}_2 \eta] e^{-\kappa_l (x - a/2)}.$$
 (11)

Здесь E'_{lh} , k_l — энергия и квантованная компонента волнового вектора легких дырок внутри квантовой ямы, κ_l — модуль волнового вектора лекгих дырок в области барьера, L_1 , L_2 , \tilde{L}_1 , \tilde{L}_2 — нормировочные коэффициенты (см. Приложение I),

$$Z_l = rac{\hbar^2 arphi^2 \Big(rac{\hbar^2 k^2}{2m_h} - E_{lh}' \Big) \Big(rac{\hbar^2 k^2}{2m_h} - E_{lh}' + 3\delta \Big)}{\Big(rac{\hbar^2 k^2}{2m_h} - E_{lh}' + 2\delta \Big) (E_{lh}' + E_g) rac{\hbar^2}{2} \Big(rac{1}{m_l} - rac{1}{m_h} \Big)},$$

$$\begin{split} \tilde{Z}_{l} &= \frac{\hbar^{2} \tilde{\gamma}^{2} \left(\frac{\hbar^{2} k^{2}}{2m_{h}} - E_{lh}' + U_{v}\right) \left(\frac{\hbar^{2} k^{2}}{2m_{h}} - E_{lh}' + 3\tilde{\delta} + U_{v}\right)}{\left(\frac{\hbar^{2} k^{2}}{2m_{h}} - E_{lh}' + 2\tilde{\delta} + U_{v}\right) (E_{lh}' + E_{gl} - U_{v}) \frac{\hbar^{2}}{2} \left(\frac{1}{\tilde{m}_{l}} - \frac{1}{m_{h}}\right)},\\ \lambda_{l} &= \frac{\delta}{\frac{\hbar^{2} k^{2}}{2m_{h}} - E_{lh}' + 2\delta}, \quad \tilde{\lambda}_{l} = \frac{\tilde{\delta}}{\frac{\hbar^{2} k^{2}}{2m_{h}} - E_{lh}' + 2\tilde{\delta} + U_{v}},\\ \tilde{m}_{l}^{-1} &= \frac{2\tilde{\gamma}^{2}}{E_{l}' + E_{gl} - U_{v}} + m_{0}^{-1}(\tilde{\gamma}_{1} + 4\tilde{\gamma}_{2}), \end{split}$$

 $\tilde{\gamma}_1, \tilde{\gamma}_2$ — значения параметров Латтинжера в широкозонном материале.

Модель Кейна является одним из наилучших приближений для энергетического спектра и волновых функций носителей заряда в соединениях $A^{III}B^V$. Однако часто для расчета характеристик гетероструктур с глубокими квантовыми ямами на основе соединений $A^{III}B^V$ используется простая параболическая модель. К данной модели можно перейти, если пренебречь подмешиванием *p*-состояний валентной зоны к *s*-состояниям зоны проводимости в выражениях (7) и (8) для волновых функций электронов и подмешиванием *s*-состояний зоны в выражениях (10) и (11) для волновых функций легких дырок. Тогда для энергетического спектра электронов получается следующее выражение:

$$E_c = \frac{\hbar^2 (k_c^2 + q^2)}{2m_c},$$
 (12)

Простая параболическая модель равносильна приближению ($\hbar \gamma k_c/Z$) « 1, или, подставляя численные значения параметров, получаем $k_c \ll 3.8 \cdot 10^6$ см⁻¹. В гетероструктуре AlSb/InAs_{0.84}Sb_{0.16}/AlSb данное условие выполняется для основного уровня размерного квантования при ширине квантовой ямы a > 200 Å. Таким образом, можно сделать вывод, что в рассматриваемой гетероструктуре параболическое приближение применимо только при большой ширине квантовой ямы.

Волновая функция электронов внутри квантовой ямы в параболическом приближении принимает вид

$$\Psi_{sc} = A_{1p} \cos k_c x \eta + A_{2p} \sin k_c x \xi. \tag{13}$$

Выражения для коэффициентов A_{1p}, A_{2p} приведены в Приложении I.

Выражение для энергетического спектра легких дырок в простой параболической модели можно получить, считая энергию E'_{lh} малой по сравнению с E_g и δ :

$$E_{lh}' = \frac{\hbar^2 (k_l^2 + q^2)}{2m_l},$$
(14)

где $m_l = (3/4)(E_g/\gamma^2)$ — эффективная масса легких дырок [7]. В гетероструктуре AlSb/InAs_{0.84}Sb_{0.16}/AlSb $m_l \approx 1.187m_c$.

Выражение для волновой функции легких дырок будет иметь следующий вид:

$$\Psi_{l} = i \frac{\hbar \gamma}{Z_{l}} L_{1p} \begin{pmatrix} k_{l} \sin k_{l} x \eta - \lambda_{l} q \cos k_{c} x \xi \\ -iq \cos k_{l} x \eta + i \lambda_{l} k_{l} \sin k_{l} x \xi \\ -\lambda_{l} k_{l} \sin k_{l} x \xi + \lambda_{l} q \cos k_{l} x \eta \end{pmatrix}$$
$$+ i \frac{\hbar \gamma}{Z_{l}} L_{2p} \begin{pmatrix} -k_{l} \cos k_{l} x \xi - \lambda_{l} q \sin k_{l} x \eta \\ -i \lambda_{l} k_{l} \cos k_{l} x \eta - i q \sin k_{l} x \xi \\ -\lambda_{l} q \sin k_{l} x \xi - \lambda_{l} k_{l} \cos k_{l} x \eta \end{pmatrix},$$
$$\Psi_{sl} = 0.$$
(15)

Выражения для коэффициентов L_{1p} , L_{2p} приведены в Приложении I.

3. Уровни энергии носителей заряда

Положение уровней размерного квантования носителей заряда может быть получено путем решения дисперсионных уравнений. Дисперсионные уравнения выводятся из граничных условий, к которым можно придти путем интегрирования уравнений (2) через интерфейс с учетом закона сохранения плотности потока вероятности. В итоге для компонент волновой функции электронов получаются следующие граничные условия:

$$\Psi_s\left(\frac{a}{2}-0\right) = \Psi_s\left(\frac{a}{2}+0\right),$$
$$\Psi_x\left(\frac{a}{2}-0\right) = \Psi_x\left(\frac{a}{2}+0\right);$$
(16)

для тяжелых дырок имеем:

$$\Psi_x \left(\frac{a}{2} - 0\right) = \Psi_x \left(\frac{a}{2} + 0\right),$$
$$\frac{d\Psi_x}{dx} \left(\frac{a}{2} - 0\right) = \frac{d\Psi_x}{dx} \left(\frac{a}{2} + 0\right); \tag{17}$$

для легких дырок *s*-компонента волновой функции и производная *x*-компоненты претерпевают разрыв, и граничные условия в этом случае выглядят следующим образом:

$$\Psi_{x}\left(\frac{a}{2}-0\right) = \Psi_{x}\left(\frac{a}{2}+0\right),$$

$$\frac{d\Psi_{x}}{dx}\left(\frac{a}{2}+0\right) - \frac{d\Psi_{x}}{dx}\left(\frac{a}{2}-0\right) =$$

$$= i\frac{m_{h}\gamma}{\hbar}\left[\Psi_{s}\left(\frac{a}{2}+0\right) - \Psi_{s}\left(\frac{a}{2}-0\right)\right].$$
(18)

При выводе (18) предполагалось, что масса тяжелых дырок и кейновский матричный элемент имеют одинаковые значения по обе стороны гетерограницы, что является довольно точным приближением. Для гетерострук-

Рис. 2. Зависимости положения уровней размерного квантования с учетом (a) и без учета (b) непараболичности в гетероструктуре AlSb/InAs_{0.84}Sb_{0.16}/AlSb от ширины квантовой ямы.

туры AlSb/InAs_{0.84}Sb_{0.16}/AlSb при ширине квантовой ямы > 30 Å можно считать, что $m_h \gamma / \hbar \gg (k_l, \kappa_l)$, тогда граничные условия для легких дырок будут идентичны граничным условиям для электронов.

Подставляя в граничные условия (16)-(18) волновые функции носителей заряда, можно получить дисперсионные уравнения. Для тяжелых дырок дисперсионные уравнения будут иметь следующий вид:

$$\operatorname{tg}\frac{k_h a}{2} = \frac{\kappa_h}{k_h} \tag{19a}$$

— для четных состояний,

$$\operatorname{ctg}\frac{k_h a}{2} = -\frac{\kappa_h}{k_h} \tag{196}$$

для нечетных состояний.

N/	Параболическая модель		Модель Кейна	
уровень размерного квантования	Энергия уровня <i>E</i> , эВ	Квантованная компонента волнового вектора k , 10^6 см ⁻¹	Энергия уровня <i>E</i> , эВ	Квантованная компонента волнового вектора k , 10^6 см ^{-1}
	a = 100 Å		$a=100{ m \AA}$	
c1	0.163	2.78	0.095	2.456
c2	0.632	5.481	0.284	5.206
<i>c</i> 3	1.17	7.458	0.501	8.052
hh1	0.006	2.66	0.006	2.66
hh2	0.026	5.3	0.026	5.3
hh3	0.057	7.88	0.057	7.88
lh1	0.046	1.608	0.020	1.377
	a = 50 Å		a = 50 Å	
c1	0.509	2.46	0.22	2.164
<i>c</i> 2	1.229	3.821	0.612	4.754
<i>c</i> 3			1.005	7.25
hh1	0.019	2.305	0.019	2.305
hh2	0.073	4.469	0.073	4.469
lh1	0.084	1.089	0.114	2.24

Таблица 1. Значение энергии и квантованной компоненты волнового вектора для различных уровней размерного квантования в гетероструктуре с глубокой квантовой ямой AlSb/InAs_{0.84}Sb_{0.16}/AlSb

Дисперсионное уравнение для электронов будет иметь вид

$$\begin{pmatrix} k_c \operatorname{tg} \frac{k_c a}{2} - \frac{Z \tilde{\gamma}}{\tilde{Z} \gamma} \kappa_c \end{pmatrix} \begin{pmatrix} k_c \operatorname{ctg} \frac{k_c a}{2} + \frac{Z \tilde{\gamma}}{\tilde{Z} \gamma} \kappa_c \end{pmatrix}$$
$$= -q^2 \left(\lambda_c - \tilde{\lambda}_c \frac{Z \tilde{\gamma}}{\tilde{Z} \gamma} \right)^2. \quad (20)$$

При $q \ll k_c$ спектр электронов также расщепляется на четные и нечетные состояния, определяемые уравнениями

$$k_c \operatorname{tg} \frac{k_c a}{2} - \frac{Z \tilde{\gamma}}{\tilde{Z} \gamma} \kappa_c = 0$$
 (21a)

— для четных уровней,

$$k_c \operatorname{ctg} \frac{k_c a}{2} + \frac{Z\tilde{\gamma}}{\tilde{Z}\gamma} \kappa_c = 0$$
 (216)

— для нечетных уровней.

Дисперсионное уравнение для легких дырок:

$$\left(k_{l} \operatorname{tg} \frac{k_{l}a}{2} + \frac{Z_{l}\tilde{\gamma}}{\tilde{Z}_{l}\gamma} \kappa_{l}\right) \left(k_{l} \operatorname{ctg} \frac{k_{l}a}{2} - \frac{Z_{l}\tilde{\gamma}}{\tilde{Z}_{l}\gamma} \kappa_{l}\right)$$
$$= q^{2} \left(\lambda_{l} - \tilde{\lambda}_{l} \frac{Z_{l}\tilde{\gamma}}{\tilde{Z}_{l}\gamma}\right)^{2}.$$
(22)

При $q \ll k_l$ спектр легких дырок выглядит следующим образом:

$$k_l \operatorname{tg} \frac{k_l a}{2} + \frac{Z_l \tilde{\gamma}}{\tilde{Z}_l \gamma} \kappa_l = 0$$
 (23a)

— для нечетных уровней,

$$k_l \operatorname{ctg} \frac{k_l a}{2} - \frac{Z_l \tilde{\gamma}}{\tilde{Z}_l \gamma} \kappa_l = 0$$
(236)

— для четных уровней.

Физика и техника полупроводников, 2015, том 49, вып. 5

На рис. 2, а, в представлены зависимости энергии уровней размерного квантования электронов от ширины квантовой ямы для модели с параболическим спектром электронов и с учетом непараболичности соответственно. Видно, что учет непараболичности приводит к существенному увеличению количества уровней размерного квантования. Это связано со значительным утяжелением электронов с ростом энергии. В области значений энергии, близких к U_c, эффективная масса электрона превышает эффективную массу вблизи дна зоны проводимости в несколько раз. Отсюда можно сделать вывод, что для расчета энергии уровней размерного квантования в гетероструктурах с глубокими квантовыми ямами необходимо учитывать подмешивание *p*-состояний к *s*-состояниям в выражениях для волновых функций электронов в зоне проводимости и непараболичность энергетического спектра электронов.

В табл. 1 приведены значения энергии некоторых уровней размерного квантования и соответствующие значения квантованной компоненты волнового вектора для обоих рассматриваемых приближений и значений ширины квантовой ямы 50 и 100 Å. Отметим, что учет непараболичности также приводит к уменьшению энергии уровня размерного квантования легких дырок более чем в 2 раза для a = 100 Å, однако для a = 50 Å происходит, напротив, даже незначительное увеличение энергии размерного квантования.

Следует отметить, что выражение (6) для энергетического спектра с учетом непараболичности в рамках модели Кейна можно привести к тому же виду, что и

Уровень размерного квантования	a = 50 Å		a = 100 Å	
	Энергия уровня <i>E</i> , эВ	Отношение эффективной массы электрона (легкой дырки) к эффективной массе электрона на дне зоны проводимости <i>m_i/m_{c0}</i>	Энергия уровня <i>E</i> , эВ	Отношение эффективной массы электрона (легкой дырки) к эффективной массе электрона на дне зоны проводимости <i>m_i/m_{c0}</i>
c1 c2 c3 c4 c5 c6	0.22 0.612 1.005	1.78 3.104 4.4	0.095 0.284 0.501 0.72 0.938 1.15	1.341 2 2.728 3.46 4.181 4.874
lh1	0.114	2.267	0.02	1.339

Таблица 2. Значения эффективной массы электронов и легких дырок на дне различных подзон размерного квантования в гетероструктуре AlSb/InAs_{0.84}Sb_{0.16}/AlSb

Таблица 3. Значение величин MI^2 и MII^2 для различных оптических переходов в гетероструктуре AlSb/InAs_{0.84}Sb_{0.16}/AlSb при a = 100 Å

Переход	Без учета непараболичности		С учетом непараболичности	
	$M \mathrm{I}_{ij}^2$, см 2	MII_{ij}^2 , cm ²	MI_{ij}^2 , cm ²	$M \Pi_{ij}^2$, см ²
c1-hh1	$3.3\cdot 10^{-13}$		$3.6 \cdot 10^{-13}$	
c2-hh1		$2.01\cdot 10^{-13}$		$2.1 \cdot 10^{-13}$
c3-hh1	$2.3\cdot 10^{-15}$		$2.7\cdot 10^{-17}$	
c1-hh2		$7.8\cdot10^{-14}$		$6.8 \cdot 10^{-14}$
c2-hh2	$3.2 \cdot 10^{-13}$		$3.3 \cdot 10^{-13}$	
c1-lh1	$7\cdot 10^{-13}$	$8.2\cdot 10^{-14}$	$5.2 \cdot 10^{-13}$	$5.3 \cdot 10^{-14}$
c2-lh1	$8.7\cdot 10^{-14}$	$3.4 \cdot 10^{-14}$	$7.2\cdot 10^{-14}$	$4.9\cdot 10^{-14}$

выражение (12), но тогда эффективная масса электронов будет зависеть от энергии:

$$m_{c}(E) = \frac{1}{2\gamma^{2}} \frac{(E + E_{g})(E + E_{g} + 3\delta)}{E + E_{g} + 2\delta}.$$
 (24)

В табл. 2 приведены значения эффективной массы электронов и легких дырок на дне различных подзон размерного квантования в гетероструктуре AlSb/InAs_{0.84}Sb_{0.16}/AlSb при ширине квантовой ямы a = 100 Å.

Расчет зависимости коэффициента поглощения от частоты оптического перехода

Значения коэффициента поглощения $\alpha_{ij}(\omega)$ для различных межзонных оптических переходов в глубокой квантовой яме можно найти из следующего

выражения [10]:

$$\alpha(\omega) = \sum_{i,j} \frac{4\pi}{\sqrt{\kappa_0}} \frac{e^2}{\hbar c} \frac{1}{a\hbar\omega} \\ \times \int q dq |P_{ij}|^2 \delta(E_i(q) - E_j(q) - \hbar\omega), \quad (25)$$

где индекс *i* относится к различным подзонам в зоне проводимости, а индекс *j* — в валентной зоне. Здесь κ_0 — статическая диэлектрическая проницаемость, ω — частота, $|P_{ij}|^2 = 2|P_{ij}^x|^2 + |P_{ij}^{\parallel}|^2$, а величина

$$P_{ij} = i\hbar\gamma S \int (\overline{\Psi}_{si}\Psi_j + \Psi_{sj}\overline{\Psi}_i)dx, \qquad (26)$$

где *S* — нормировочная площадь, представляет собой интеграл перекрытия между *s*- и *p*-состояниями. Следует отметить, что при подстановке в (25) E'_j вместо E_j аргументом δ -функции будет являться выражение $E_i(q) + E_g + E'_j(q) - \hbar\omega$.

Квадрат интеграла перекрытия между s- и p-состояниями $|P_{ij}|^2$ может быть легко найден с использованием

волновых функций носителей заряда (4), (7), (10) и оказывается пропорциональным величинам MI^2 и MII^2 , где

$$MI_{ij} = \frac{\sin(k_i + k_j)(a/2)}{k_i + k_j} + \frac{\sin(k_i - k_j)(a/2)}{k_i - k_j},$$

$$MII_{ij} = \frac{\sin(k_i + k_j)(a/2)}{k_i + k_j} - \frac{\sin(k_i - k_j)(a/2)}{k_i - k_j}.$$

Значения величин MI^2 и MII^2 в моделях с учетом и без учета непараболичности представлены в табл. 3. Видно, что для переходов c1-hh1, c2-hh1 и c2-hh2 учет непараболичности энергетического спектра носителей заряда приводит к незначительному увеличению, а для переходов c1-hh2 и c1-lh1 — к незначительному уменьшению значений MI^2 и MII^2 . Для перехода c3-hh1происходит уменьшение величины MI² на 2 порядка вследствие того, что в рамках модели Кейна оба слагаемых в MI^2 практически одинаковы по модулю, но имеют разные знаки; для перехода c2-lh1 происходит незначительное уменьшение величины MI² и незначительное увеличение величины MII². Таким образом, можно сделать вывод о том, что учет непараболичности практически не влияет на интеграл перекрытия между s- и p-состояниями.

Интеграл в выражении (25) можно легко вычислить, используя свойства δ -функции. Для переходов с участием тяжелых дырок можно положить $m_h \gg m_c$. Тогда для коэффициента поглощения получается следующее выражение:

$$\alpha(\omega)_{ij} = \frac{2\pi}{\sqrt{\kappa_0}} \frac{e^2}{\hbar c} \frac{1}{a\hbar\omega} |P_{ij}|^2_{E_i = \hbar\omega - E_g - E'_j} \\ \times \left(\frac{dq^2(E_i)}{dE_i}\right)_{E_i = \hbar\omega - E_g - E'_i}.$$
(27)

Для переходов с участием легких дырок вместо множителя $dq^2(E_i)/dE_i$ будет стоять выражение $\frac{1}{[dE_c/dq^2] + [dE'_j/dq^2]}$. Тогда выражение для коэффициента поглощения примет вид

$$\alpha(\omega)_{ij1} = \frac{2\pi}{\sqrt{\kappa_0}} \frac{e^2}{\hbar c} \frac{1}{a\hbar\omega} |P_{ij}|^2_{E_i = \hbar\omega - E_g - E'_{l1}} \\ \times \left\{ \frac{1}{[dE_c/dq^2] + [dE'_l/dq^2]} \right\}_{E_i = \hbar\omega - E_g - E'_{l1}}.$$
 (28)

Так как значения эффективных масс электронов и легких дырок близки, то можно считать $dE_c/dq^2 \approx dE'_l/dq^2$. Тогда выражение для коэффициента поглощения примет вид

$$\alpha(\omega)_{il1} = \frac{\pi}{\sqrt{\kappa_0}} \frac{e^2}{\hbar c} \frac{1}{a\hbar\omega} |P_{ij}|^2_{E_i = \hbar\omega - E_g - E'_{l1}} \\ \times \left(\frac{dq^2(E_i)}{dE_i}\right)_{E_i = \hbar\omega - E_g - E'_{l1}},$$
(29)

где производная $dq^2(E_i)/dE_i$ в рамках параболического приближения есть

$$\frac{dq^2(E_i)}{dE_i} = \frac{2m_c}{\hbar^2},\tag{30a}$$

Физика и техника полупроводников, 2015, том 49, вып. 5

Рис. 3. Зависимости коэффициента поглощения от частоты оптического перехода при ширине квантовой ямы a = 100 Å, рассчитанные без учета (a) и с учетом (b) непараболичности. Показаны зависимости суммарного коэффициента поглощения от частоты оптического перехода, а также вклады переходов, вносящих наибольший вклад в суммарный коэффициент поглощения.

с учетом непараболичности

$$\frac{dq^{2}(E_{i})}{dE_{i}} = \frac{1}{\hbar^{2}\gamma^{2}} \bigg[2E_{i} + E_{g} + \delta - \frac{2\delta^{2}(E_{g} + 2\delta)}{(E_{i} + E_{g} + 2\delta)^{2}} \bigg].$$
(306)

Величина $dq^2(E_i)/dE_i$ с точностью до постоянного множителя представляет собой двумерную плотность

	Без учета непараболичности		С учетом непараболичности	
Переход	Случай невырожденных электронов	Случай сильного вырождения	Случай невырожденных электронов	Случай сильного вырождения
c1-hh1 $c2-hh1$ $c3-hh1$	$\begin{array}{c} 8.1 \cdot 10^{-9} \\ 2.5 \cdot 10^{-8} \\ 4.3 \cdot 10^{-7} \end{array}$	$7.1 \cdot 10^{-9}$	$1.2 \cdot 10^{-8} \\ 2.2 \cdot 10^{-8} \\ 9.6 \cdot 10^{-5}$	$1.5 \cdot 10^{-8}$
c1-hh2 c2-hh2	$\begin{array}{c} 4.5\cdot 10^{-7} \\ 3.6\cdot 10^{-9} \end{array}$	$2.7\cdot 10^{-8}$	$2.9\cdot 10^{-7} \\ 1.1\cdot 10^{-8}$	$7.6 \cdot 10^{-8}$
c1-lh1	$1.02 \cdot 10^{-7}$	$1.8\cdot 10^{-7}$	$1.1 \cdot 10^{-7}$	$2\cdot 10^{-7}$

Таблица 4. Время излучательной рекомбинации τ_{phij} (в с) для различных оптических переходов в гетероструктуре AlSb/InAs_{0.84}Sb_{0.16}/AlSb при a = 100 Å, T = 300 K и $p = 10^{12}$ см⁻² для случая невырожденных электронов и для случая сильного вырождения ($n = 5 \cdot 10^{12} \text{ см}^{-2}$)

состояний в зоне проводимости. Вследствие значительного увеличения эффективной массы электронов с ростом энергии наблюдается существенный рост значений функции плотности состояний в зоне проводимости и, следовательно, рост коэффициента поглощения. Для высоковозбужденных состояний коэффициент поглощения, вычисленный с учетом непараболичности энергетического спектра, превышает коэффициент поглощения, вычисленный в рамках параболического приближения, почти на порядок.

 $5.8 \cdot 10^{-7}$

На рис. 3, а, в представлены зависимости коэффициента поглощения от частоты оптического перехода для

Рис. 4. Зависимость суммарного коэффициента поглощения от частоты оптического перехода при ширине квантовой ямы a = 100 Å, рассчитанная в рамках модели параболического спектра (пунктирная линия) и в рамках четырехзонной модели Кейна (сплошная линия).

модели с параболическим спектром носителей заряда и с учетом непараболичности соответственно. На рис. 4 представлены зависимости суммарного коэффициента поглощения от частоты для обоих приближений. Из рис. 4 можно сделать вывод, что при расчете коэффициента поглощения крайне важно учитывать непараболичность энергетического спектра носителей заряда, так как эффект непараболичности приводит к росту коэффициента поглощения в несколько раз, особенно для высоковозбужденных состояний.

5. Скорость излучательной рекомбинации

 $4.6 \cdot 10^{-7}$

Скорость излучательной рекомбинации R_{ph} в квантовых ямах вычисляется согласно выражению [10]

$$R_{\rm ph} = \frac{4\kappa_{\infty}}{\pi\sqrt{\kappa_0}} \frac{e^2}{\hbar c} \frac{1}{\hbar^3 c^2} \\ \times \sum_{i,j} \int q dq |P_{ij}|^2 f_i(q) f_j(q) [E_i(q) + E'_j(q) + E_g],$$
(31)

где κ_{∞} — высокочастотная диэлектрическая проницаемость, f_c, f_h — функции распределения электронов и тяжелых дырок. Здесь мы сразу учли, что $E' = -E_g - E$.

В случае невырожденных носителей интеграл в выражении (31) можно упростить, если считать, что характерное значение q равно модулю волнового вектора теплового движения электронов $q_T = \sqrt{2k_{\rm B}Tm_c}/\hbar$, где *Т* — абсолютная температура, $k_{\rm B}$ — постоянная Больцмана. Тогда множители $|P_{ii}(q_T)|^2$ и $E_{i}(q_{T}) + E'_{i}(q_{T}) + E_{g}$ можно вынести за знак интеграла, а интеграл примет вид $\int q dq f_c(q) f_h(q) =$ $=\pi [n_i p \exp(-\varepsilon_i / k_{\rm B}T) / N_i]$, где $N_i = m_i k_{\rm B}T / \pi \hbar^2$ — эффективная плотность состояний в *j*-й подзоне, *n*, *p* двумерные концентрации электронов и дырок, ε_j — расстояние между *j*-м подуровнем и основным подуровнем тяжелых дырок. В итоге для скорости излучательной

c2-lh1

рекомбинации получается следующее выражение:

$$R_{\text{ph}ij} = \frac{4\kappa_{\infty}}{\sqrt{\kappa_0}} \frac{e^2}{\hbar c} \frac{1}{\hbar^3 c^2} |P_{ij}(q_T)|^2$$
$$\times \left[E_i(q_T) + E'_j(q_T) + E_g\right] \frac{n_i p \exp(-\varepsilon_j/k_{\text{B}}T)}{N_j}.$$
(32)

В случае, когда электроны вырождены, в формулу (32) вместо q_T нужно подставить q_F (где q_F — волновой вектор, соответствующий энергии Ферми).

Для невырожденных носителей время излучательной рекомбинации для каждого отдельного перехода равно

$$\tau_{\text{ph}ij} = \frac{n_i}{R_{ij}}$$
$$= \frac{\sqrt{\kappa_0}}{4\pi\kappa_\infty} \frac{\hbar c}{e^2} \frac{\hbar c^2 m_j k_{\text{B}} T \exp(\varepsilon_j / k_{\text{B}} T)}{p |P_{ij}(q_T)|^2 [E_i(q_T) + E'_j(q_T) + E_g]}.$$
 (33)

В табл. 4 представлены результаты расчетов времени излучательной рекомбинации при температуре $T = 300 \,\mathrm{K}$ и концентрации дырок $p = 10^{-12} \,\mathrm{cm}^{-2}$ для невырожденных электронов и для случая сильного вырождения ($n = 5 \cdot 10^{12}$ см⁻²). Следует отметить интересный факт, что для перехода c1-hh1 в модели с учетом непараболичности и для перехода c1-lh1 в обеих моделях наблюдается даже некоторое увеличение времени жизни для вырожденных электронов. Это связано с тем, что квадрат интеграла перекрытия $|P_{ij}|^2$ для данных переходов зависит от q только через нормировочные коэффициенты, а $H_1(q_F)/H_1(q_T) \approx 0.7$. В модели с учетом непараболичности уменьшение коэффициента H₁ для перехода c1-hh1 компенсируется увеличением расстояния между уровнями $E_i(q_F) - E_j(q_F)$, поэтому время излучательной рекомбинации для обоих случаев получается практически равным. Для перехода c1-hh2 существенное уменьшение времени излучательной рекомбинации в обеих моделях связано с тем, что $|P_{ij}|^2 \propto q^2$, а $(q_{\rm F}/q_T)^2 \approx 10$. Для случая невырожденных электронов учет непараболичности приводит к увеличению времени излучательной рекомбинации для переходов с совпадающей четностью начального и конечного состояний и к уменьшению, если четности начального и конечного состояния различны. Отметим, что в обеих моделях минимальное время излучательной рекомбинации имеет переход c2-hh2.

6. Заключение

В данной работе исследована гетероструктура с глубокой квантовой ямой состава AlSb/InAs_{0.84}Sb_{0.16}/AlSb без учета непараболичности энергетического спектра носителей заряда и с учетом непараболичности в рамках четырехзонной модели Кейна. Были получены зависимости энергии уровней размерного квантования носителей заряда и соответствующих значений квантованных компонент волновых векторов в зоне проводимости и в валентной зоне от ширины квантовой ямы. Показано, что учет непараболичности энергетического спектра носителей заряда приводит к уменьшению энергии уровней размерного квантования вследствие значительного утяжеления электрона с ростом энергии. Также это приводит к увеличению количества уровней размерного квантования в зоне проводимости. При ширине квантовой ямы a = 100 Å количество энергетических уровней без учета непараболичности равно 3, а с учетом непараболичности в рамках модели Кейна — 6. Таким образом, учет непараболичности играет весьма существенную роль при расчете значений энергии уровней размерного квантования.

Рассчитаны значения матричных элементов для межзонных оптических переходов между различными подзонами размерного квантования и зависимости соответствующих этим переходам коэффициентов поглощения от частоты. Показано, что учет непараболичности энергетического спектра электронов приводит к увеличению коэффициента поглощения в несколько раз за счет увеличения значений функции плотности состояний.

Также рассчитана скорость излучательной рекомбинации для различных межзонных оптических переходов для случая невырожденных электронов и для случая сильного вырождения. Показано, что учет непараболичности приводит к увеличению времени переходов между уровнями одной четности и к уменьшению для переходов между уровнями различной четности. Минимальное время получено для перехода c2-hh2 и составляет $\tau_{phc2hh2} = 3 \cdot 10^{-9}$ с без учета непараболичности и 1.01 $\cdot 10^{-8}$ с с учетом непараболичности.

Работа выполнена при частичной поддержке гранта Президента № НШ-5062.2014.2.

Приложение І

Нормировочные коэффициенты

Из условия нормировки $\int \bar{\Psi} \Psi d^3 r = 1$ можно получить следующие выражения для нормировочных коэффициентов, принимая нормировочную площадь равной единице:

$$\begin{split} \frac{1}{A_1^2} &= \frac{a}{2} + \frac{\sin k_c a}{2k_c} \\ &+ \frac{\hbar^2 \gamma^2}{Z^2} \left(1 + 2\lambda_c^2\right) \left[\left(k_c^2 + q^2\right) \frac{a}{2} - \left(k_c^2 - q^2\right) \frac{\sin k_c a}{2k_c} \right] \\ &+ \frac{\cos^2(k_c a/2)}{\kappa_c} \left[1 + \frac{\hbar^2 \tilde{\gamma}^2}{\tilde{Z}} \left(\kappa_c^2 + q^2\right) (1 + 2\tilde{\lambda}_c^2) \right]; \\ \frac{1}{A_2^2} &= \frac{a}{2} - \frac{\sin k_c a}{2k_c} \\ &+ \frac{\hbar^2 \gamma^2}{Z^2} \left(1 + 2\lambda_c^2\right) \left[\left(k_c^2 + q^2\right) \frac{a}{2} - \left(k_c^2 - q^2\right) \frac{\sin k_c a}{2k_c} \right] \\ &+ \frac{\sin^2(k_c a/2)}{\kappa_c} \left[1 + \frac{\hbar^2 \tilde{\gamma}^2}{\tilde{Z}} \left(\kappa_c^2 + q^2\right) (1 + 2\tilde{\lambda}_c^2) \right]; \end{split}$$

$$\begin{aligned} \frac{1}{H_1^2} &= a(k_h^2 + q^2) + \frac{\sin k_h a}{k_h} (k_h^2 - q^2) \\ &+ \frac{2 \sin^2(k_c a/2)}{\kappa_c} (\kappa_c^2 + q^2); \\ \frac{1}{H_2^2} &= a(k_h^2 + q^2) - \frac{\sin k_h a}{k_h} (k_h^2 - q^2) \\ &+ \frac{2 \cos^2(k_c a/2)}{\kappa_c} (\kappa_c^2 + q^2); \\ \frac{1}{L_1^2} &= \frac{a}{2} + \frac{\sin k_l a}{2k_l} \\ &+ \frac{\hbar^2 \gamma^2}{Z_l^2} (1 + 2\lambda_l^2) \left[(k_l^2 + q^2) \frac{a}{2} - (k_l^2 - q^2) \frac{\sin k_l a}{2k_l} \right] \\ &+ \frac{\cos^2(k_l a/2)}{\kappa_l} \left[1 + \frac{\hbar^2 \tilde{y}^2}{\tilde{Z}_l} (\kappa_l^2 + q^2) (1 + 2\tilde{\lambda}_l^2) \right]; \\ \frac{1}{L_2^2} &= \frac{a}{2} - \frac{\sin k_l a}{2k_l} \\ &+ \frac{\hbar^2 \gamma^2}{Z_l^2} (1 + 2\lambda_l^2) \left[(k_l^2 + q^2) \frac{a}{2} + (k_l^2 - q^2) \frac{\sin k_l a}{2k_l} \right] \\ &+ \frac{\sin^2(k_l a/2)}{\kappa_l} \left(1 + \frac{\hbar^2 \tilde{y}^2}{\tilde{Z}_l} (\kappa_l^2 + q^2) (1 + 2\tilde{\lambda}_l^2) \right). \end{aligned}$$
(III.1)

В рамках параболического приближения нормировочные коэффициенты будут выглядеть следующим образом: $1 \qquad a \qquad \sin k \ a \qquad \cos^2(k \ a/2)$

$$\frac{1}{A_{1p}^2} = \frac{a}{2} + \frac{\sin k_c a}{2k_c} + \frac{\cos (\kappa_c a/2)}{\kappa_c};$$

$$\frac{1}{A_2^2} = \frac{a}{2} - \frac{\sin k_c a}{2k_c} + \frac{\sin^2(k_c a/2)}{\kappa_c};$$

$$\frac{1}{L_{1p}^2} = \frac{\hbar^2 \gamma^2}{(E_{lh} + E_g)^2} \Big[(k_l^2 + q^2) \frac{a}{2} - (k_l^2 - q^2) \frac{\sin k_l a}{2k_l} \Big]$$

$$+ \frac{\cos^2(k_l a/2)}{\kappa_l} \frac{\hbar^2 \tilde{\gamma}^2}{(E_{lh} + E_g + U_c)^2} (\kappa_l^2 + q^2);$$

$$\frac{1}{L_{2p}^2} = \frac{\hbar^2 \gamma^2}{(E_{lh} + E_g)^2} \Big[(k_l^2 + q^2) \frac{a}{2} + (k_l^2 - q^2) \frac{\sin k_l a}{2k_l} \Big]$$

$$+ \frac{\sin^2(k_l a/2)}{\kappa_l} \frac{\hbar^2 \tilde{\gamma}^2}{(E_{lh} + E_g + U_c)^2} (\kappa_l^2 + q^2).$$
(II.1.2)

Приложение II

Вычисление величины $|P_{ij}|^2$

Используя выражения для нормировочных коэффициентов (П.І.1) и (П.І.2), можно получить выражение

для величины $|P_{ij}|^2$. В (26) можно ограничиться интегрированием по области |x| < a/2, так как $U_c \gg E_c$ и проникновение волновых функций носителей под барьер мало. В итоге, используя приведенные выше волновые функции носителей заряда, можно получить:

$$\begin{split} |P_{c1hh1}|^{2} &= 2\hbar^{2}\gamma^{2}A_{1}^{2}H_{1}^{2}k_{hl}^{2}MI_{c1hh1}^{2}; \\ |P_{c2hh1}|^{2} &= 3\hbar^{2}\gamma^{2}A_{2}^{2}H_{1}^{2}q^{2}MII_{c2hh1}^{2}; \\ |P_{c3hh1}|^{2} &= 2\hbar^{2}\gamma^{2}A_{1}^{2}H_{1}^{2}k_{hl}^{2}MII_{c3hh1}^{2}; \\ |P_{c1hh2}|^{2} &= 3\hbar^{2}\gamma^{2}A_{1}^{2}H_{2}^{2}q^{2}MI_{c1hh2}^{2}; \\ |P_{c2hh2}|^{2} &= 2\hbar^{2}\gamma^{2}A_{2}^{2}H_{2}^{2}k_{h2}^{2}MII_{c2hh2}^{2}; \\ |P_{c1lh1}|^{2} &= 2\hbar^{4}\gamma^{4}A_{1}^{2}L_{2}^{2}k_{l1}^{2} \\ &\times \left(MI_{c1lh1}^{2}\frac{1+\lambda_{l}^{2}}{Z_{l}^{2}} + MII_{c1lh1}^{2}\frac{1+\lambda_{c}^{2}}{Z^{2}}\right); \\ |P_{c2lh1}|^{2} &= \hbar^{4}\gamma^{4}A_{2}^{2}L_{2}^{2}q^{2} \\ &\times MII_{c2lh1}^{2}\left(\frac{1+3\lambda_{l}^{2}}{Z_{l}^{2}} + \frac{1+3\lambda_{c}^{2}}{Z^{2}}\right). \quad (\Pi.II.2) \end{split}$$

Здесь

$$MI_{ij} = \frac{\sin(k_i + k_j)(a/2)}{k_i + k_j} + \frac{\sin(k_i - k_j)(a/2)}{k_i - k_j},$$
$$MII_{ij} = \frac{\sin(k_i + k_j)(a/2)}{k_i + k_j} - \frac{\sin(k_i - k_j)(a/2)}{k_i - k_j}.$$

Список литературы

- G.G. Zegrya. In: Antimonide-Related Strained-Layer Heterostructures, ed. by M.O. Manasreh (Gordon and Breach Science Publishers, Amsterdam, 1997) p. 273.
- [2] M.P. Mikhailova, L.V. Danilov, K.V. Kalinina, E.V. Ivanov, N.D. Stoyanov, G.G. Zegrya, Y.P. Yakovlev, A. Hospodkova, J. Pangrac, M. Zikova, E. Hulicius. In: *The Wonder* of Nanotechnology: Quantum Optoelectronic Devices and Applications, ed. by M. Razeghi, L. Esaki, K. von Klitzing (SPIE Press, Bellingham, WA, 2013) p. 105.
- [3] I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys., 89, 5815 (2001).
- [4] S.A. Cripps, T.J.C. Hosea, A. Krier, V. Smirnov, P.J. Batty, Q.D. Zhuang, H.H. Lin, Po-Wei Liu, G. Tsai. Appl. Phys. Lett., 90, 172 106 (2007).
- [5] L.V. Asryan, N.A. Gun'ko, A.S. Polkovnikov, G.G. Zegrya, R.A. Suris, P.-K. Lau, T. Makino. Semicond. Sci. Technol., 15, 1132 (2000).
- [6] Л.В. Данилов, Г.Г. Зегря. ФТП, 42, 573 (2007).
- [7] В.Н. Абакумов, В.И. Перель, И.Н. Яссиевич. Безызлучательная рекомбинация в полупроводниках (СПб., Издво ПИЯФ, 1997).
- [8] Г.Г. Зегря, А.С. Полковников. ЖЭТФ, 113, 1491 (1998).
- [9] Л.В. Данилов, Г.Г. Зегря. ФТП, 42, 566 (2008).
- [10] Л.Е. Воробьев, С.Н. Данилов, Г.Г. Зегря, Д.А. Фирсов, В.А. Шалыгин, И.Н. Яссиевич, Е.В. Берегулин. Фотоэлектрические явления в полупроводниках и размерноквантованных структурах (СПб., Наука, 2001).

Редактор Л.В. Шаронова

Influence of electrons and light holes energy spectrum nonparabolicity on optical properties of heterostructures with deep quantum wells AISb/InAs_{0.86}Sb_{0.14}/AISb

N.V. Pavlov, G.G. Zegrya

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract In this paper the optical properties of heterostructures with deep quantum well AlSb/InAs_{0.86}Sb_{0.14}/AlSb are investigated with taking into account the energy spectrum nonparabolicity in the frame of four-band Kane model. It is shown that taking into account energy spectrum nonparabolicity affects on the quantity of levels. There are 3 dimensional quantization levels for quantum well width 100 Å in the simple parabolic model and 6 levels in the four-band Kane model because high energy electrons effective mass in the Kane model 4 times exceeds the one in simple parabolic model. It is also shown that the energy spectrum nonparabolicity weakly influences on the overlap integral between *s*- and *p*-states but leads to sufficient increase of density states function value that causes the absorption coefficient considerable rising.