Спектрометрия ионного рассеяния и комбинационное рассеяние света в монокристаллах GaS, подвергнутых облучению водородом с энергией 140 кэВ

© А.А. Гарибов*, Р.С. Мадатов*+[¶], Ф.Ф. Комаров•, В.В. Пилько•, Ю.М. Мустафаев*, Ф.И. Ахмедов*, М.М. Джахангиров*

Институт радиационных проблем Национальной академии наук Азербайджана,

Az-1143 Баку, Азербайджан

+ Национальная авиационная академия Азербайджана,

Az-1045, Баку, Азербайджан

• ИТЦК "Нанотехнологий и физической электроники" Белорусский государственный университет, 220050 Минск, Белоруссия

(Получена 30 июня 2014 г. Принята к печати 20 октября 2014 г.)

Методами комбинационного рассеяния света и резерфордовского обратного рассеяния исследована степень структурного беспорядка слоистых кристаллов GaS до и после имплантации водородом (H_2^+) с энергией 140 кэВ. Показано, что распределение компонентов кристалла по глубине однородно и до доз $5 \cdot 10^{15}$ см⁻² стехиометрический состав компонентов соединения соблюдается. Экспериментальное значение критической дозы начала аморфизации составляет около $5 \cdot 10^{15}$ см⁻² и находится в соответствии с вычисленным значением. Результаты, полученные методом комбинационного рассеяния света, подтверждают сохранение кристалличности структуры и начала процесса аморфизации.

1. Введение

Соединения А^{III}В^{VI}, согласно данным [1-6], представляют интерес как перспективные материалы для создания оптоэлектронных приборов, а также детекторов элементарных частиц и жесткого электромагнитного излучения. Повышенный интерес к этим соединениям вызван тем обстоятельством, что, несмотря на их сильную дефектность, они обладают высокой фоточувствительностью к ультрафиолетовым, видимым, инфракрасным, рентгеновским и у-излучениям [6-9]. Слоистые полупроводники по своему кристаллическому строению являются промежуточными между ионными и молекулярными кристаллами, благодаря специфике химических связей. В слоистых кристаллах взаимодействие между атомами, входящими в слоевой пакет, является довольно сильным и носит ионный или ковалентный характер, тогда как взаимодействие между пакетами относится к типу ван-дер-ваальсовых. Слабое взаимодействие слоев допускает различные варианты упаковки атомов вдоль С-оси, перпендикулярной слоям. Поэтому многие слоистые соединения, в том числе и А^{III}В^{VI}, существуют в нескольких полиморфных модификациях [7,9]. Несмотря на существенные успехи в прикладных разработках оптоэлектронных приборов на основе слоистых полупроводников типа А^{III}В^{VI} [2], остается актуальной проблема управления суммарной концентрацией собственных дефектов в матрице. Одним из методов управления концентрацией дефектов в полупроводниках является метод радиационного легирования, под которым понимается направленное изменение свойств полупроводника под действием различных видов облучения [2,3,7,10]. Современная полупроводниковая технология базируется на

создании структур, легированных по глубине, и обеспечивает эффективное изменение свойств полупроводника на контролируемых глубинах. Поэтому, с этих позиций, оптимальным является использование заряженных частиц с коротким пробегом, так как контролируемое введение радиационных дефектов в сочетании с температурной обработкой позволяет в широких пределах изменять физические свойства полупроводника.

В многочисленных ранних исследованиях соединений $A^{III}B^{VI}$ радиационное дефектообразование широко изучалось [1–2,9], однако распределение атомов соединения по толщине для исходных кристаллов и их влияние на радиационное дефектообразование до сих пор мало изучено. Кроме того, известно сильное влияние неравномерного распределения атомов компонентов по глубине на физические параметры приборов [6]. Поэтому исследование распределения компонентов по глубине таких сложных по структуре кристаллов до и после облучения представляет интерес и, следовательно, является актуальным.

В настоящей работе представлены результаты диагностики изменения степени структурного беспорядка до и после облучения слоистых кристаллов GaS, проведенные методом Резерфордовского обратного рассеяния (POP) ионов гелия и методом комбинационного рассеяния света (КРС).

2. Методика эксперимента и обсуждение результатов

Исследуемые монокристаллы *p*-GaS были выращены методом Бриджмена в Институте радиационных проблем НАН Азербайджана. При выращивании GaS

[¶] E-mail: msrahim@mail.ru

Рис. 1. Энергетический спектр резерфордовского обратного рассеяния ионов гелия с энергией 1.5 МэВ, полученный для образца GaS.

использовали избыток серы (1.5%) с целью выяснения возможности заполнения вакансий атомами серы [1]. Удельное сопротивление полученных образцов вдоль и перпендикулярно оси с при комнатной температуре составляло $2 \cdot 10^9$ и $2 \cdot 10^7$ Ом \cdot см соответственно. Использовались образцы GaS размером $10 \times 10 \times 0.5$ мм. В эксперименте РОР использовался поток ионов Не⁺ с энергией 1.5 МэВ, а для регистрации рассеянных частиц использовался поверхностно-барьерный полупроводниковый детектор с разрешением 15 кэВ. Для ускорения ионов Не⁺ был использован ускоритель Ван-де-Граафа (тип AN 2500), при этом параметры пучка составляли: ток пучка 50 нА, а диаметр 1.5 мм [10,11]. Геометрия эксперимента: угол падения (α) и угол рассеяния (θ) были выбраны 0° и 170° соответственно. Результаты эксперимента обрабатывались с помощью программы SIMNRA 6.05 [12]. На рис. 1 показаны экспериментальные и смоделированные спектры РОР. Как видно из спектров, результаты экспериментальных и смоделированных данных хорошо согласуются друг с другом. Из экспериментальных спектров РОР определено, что в поверхностном слое слоистого кристалла GaS толщиной ~ 40 нм наблюдались три элемента с содержанием компонентов: Ga (38%), S (42%), O (20%). С ростом глубины слоя до ~ 300 нм содержание компонентов изменилось и составляло Ga ($\sim 50\%$) и S ($\sim 50\%$). На рис. 3 представлены энергетические спектры РОР, полученные на образцах GaS после имплатнации ионами H_2 с дозами $1 \cdot 10^{15}$ и $5 \cdot 10^{15}$ см⁻². В дальнейшем с увеличением толщины слоя содержание компонентов не изменялось (рис. 2, кривые 1 и 2).

Имплантация ионов H_2^+ проводилась на ускорителе Ван-де-Граафа (тип ЭСУ-2) с энергией 140 кэВ и плотностью ионного тока 0.15 мкА/см², а доза имплантации составляла $1 \cdot 10^{15}$ и $5 \cdot 10^{15}$ см⁻². Для анализа элементного состава образцов после имплантации использовали метод РОР ионов гелия с энергией 1.5 МэВ. После имплантации ионами H_2^+ с дозами $1 \cdot 10^{15}$ и $5 \cdot 10^{15}$ см⁻² энергетические спектры POP, полученные на образцах GaS, представлены на рис. 3. Как видно из спектров, после имплантации ионов H_2^+ дозой $1 \cdot 10^{15}$ не наблюдались изменения в спектрах POP. При имплантации ионов H_2^+ дозой $5 \cdot 10^{15}$ см⁻² в спектрах наблюдаются уменьшение выхода Ga и увеличение S. Этот эффект может быть обусловлен проявлением радиационноускоренной диффузии галлия и серы в сторону поверхности и селективным распылением этих компонент. Обработка полученных спектров в программе SIMNRA 6.05 позволила вычислить концентрацию элементов по

Рис. 2. Энергетический спектр резерфордовского обратного рассеяния ионов гелия с энергией 1.5 МэВ, полученный для образцов GaS: I — исходный, 2 — имплантированный ионами H_2^+ (140 кэВ) с дозой $1 \cdot 10^{15}$ см⁻², 3 — имплантированный ионами H_2^+ с дозой $5 \cdot 10^{15}$ см⁻².

Рис. 3. Профиль распределения Ga и S в исходной структуре GaS: 1 - Ga, 2 - S и в структуре, имплантированной ионами H_2^+ (140 кэВ) с дозой 5 · 10¹⁵ см⁻²: 3 - Ga, 4 - S.

Физика и техника полупроводников, 2015, том 49, вып. 5

Таблица 1. Результаты моделирования послойной концентрации элементов в образце GaS, имплантированном ионами водорода (доза $5 \cdot 10^{15}$ ат/см²)

Глубина, нм	Ga, %	S, %
105	40	44
210	42	45
315	44	47
420	45	48
525	46	49
1000	50	50

Таблица 2. Результаты измерения спектров КРС и сравнение с литературными данными образца GaS [13,14]

Экспериментальные частоты колебаний <i>v</i> , см ⁻¹	Литературные данные ν , см ⁻¹	Тип колебаний
22	22	E_{2g}^{2}
74	74.8	E_{1g}^2
188	187.9	A_{1g}^1
295	295	E_{2g}^{1}
360	360.2	$A_{1g}^{2^{\circ}}$

глубине образца (рис. 2, кривые 3 и 4). Как видно из результатов, представленных в табл. 1, вблизи поверхности и на глубине около 100 нм минимальная концентрация ионов S составляет около 44 ат%, а концентрация Ga составляет 40 ат%, а при 520 нм совпадает с концентрацией компонентов в объеме. Глубине x = 520 нм приблизительно соответствует проецированный пробег протонов с E = 70 кэВ.

Спектры КРС были получены с помощью микрорамановского спектрометра Ramanor U1000 с оптическим микроскопом Nikon Eclipse LV150 при комнатной температуре. В качестве источника возбуждения был использован лазер LCS-DTL-317 с излучением на длине волны ~ 532 нм.

Спектры КРС структур GaS представляют собой набор интенсивных линий, положение которых и относительная интенсивность полностью совпадают с данными (табл. 2), описанными в литературе [13,14]. На рис. 4 приведены спектры КРС образца GaS, снятые в двух разных точках. Спектры полностью совпадают, что говорит об однородном составе образца, за исключением области низких частот, где присутствует фон рэлеевского рассеяния от более шероховатой поверхности для точки 2 (рис. 4). Следует отметить, что на спектре линия (22 см⁻¹) обусловлена межслоевыми колебаниями, тогда как линии (74, 188, 295, 360 см⁻¹) характеризуются колебаниями в слоях [13]. На рис. 5 приведены спектры КРС образцов GaS после имплантации H_2^+ с энергией 140 кэВ дозами $1 \cdot 10^{15}$ и $5 \cdot 10^{15}$ см⁻². Из рис. 5 (кривыве 1 и 2) следует, что в спектрах

Физика и техника полупроводников, 2015, том 49, вып. 5

для исходного и облученного дозой $1 \cdot 10^{15} \, \text{сm}^{-2}$ образцов не наблюдается сдвига положения полос и их интенсивности не изменяются. Для образца, имплантированного ионами H₂⁺ дозой 5 · 10¹⁵ см⁻², наблюдается уменьшение интенсивности полос, что может быть связано с изменением степени структурного беспорядка. Изменения в спектре РОР для доз 5 · 10¹⁵ см⁻² также подтверждают этот факт [10]. Такое резкое изменение структурного беспорядка обусловлено началом процесса аморфизации кристалла. Согласно [10], расчетная доза начала аморфизации GaS для атомарных ионов водорода с энергией 70 кэВ составляет $\sim 1 \cdot 10^{15} \, \mathrm{cm}^{-2}$, что достаточно близко к дозе, наблюдаемой в эксперименте (рис. 5, кривая 3). Однако обнаруженное различие в критической дозе начала аморфизации может быть связано с наличием дефектности в исходных кристаллах [1], а также подвижностью создаваемых дефектов структуры при комнатной температуре, т.е. когда будет заметным вклад рекомбинации точечных дефектов.

Рис. 4. Спектры комбинационного рассеяния образца GaS в двух разных точках: *1* — точка 1, *2* — точка 2.

Рис. 5. Спектры комбинационного рассеяния исходной структуры (1) и структур, имплантированных ионами H_2^+ (140 кэВ) с дозами: $2 - 1 \cdot 10^{15}$ см⁻², $3 - 5 \cdot 10^{15}$ см⁻².

3. Заключение

РОР исследования показали, что распределение компонентов по глубине однородно и стехиометрический состав компонентов соединения соблюдается. Наблюдаемый в спектре РОР сигнал, относящийся к кислороду в приповерхностной области, может быть связан со степенью чистоты компонентов соединения. Имплантация ионами водорода, Н₂⁺ с энергией 140 кэВ и дозой до 5 · 10¹⁵ см⁻² показывает, что критическая доза начала аморфизации составляет около $5 \cdot 10^{15} \, \mathrm{cm}^{-2}$ и находится в удовлетворительном соответствии с вычисленным значением для такого структурно сложного кристалла. Из спектров КРС слоистых кристаллов GaS установлено, что при имплантации водорода с дозами ниже $5\cdot 10^{15}\,\mbox{cm}^{-2}$ положение и интенсивность полос сохраняются, что связано с устойчивостью кристаллической решетки. При дозе 5 · 10¹⁵ см⁻² наблюдается уменьшение интенсивности полос, что обусловлено увеличением степени структурного беспорядка. Определение критической дозы начала аморфизации позволяет использовать ионную имплантацию для создания квантовых точек в слоистых кристаллах GaS, когда при подпороговой дозе формируется материал, содержащий наноразмерные кристаллические и аморфные области.

Данная работа выполнена при финансовой поддержке Фонда Развития Науки при Президенте Азербайджанской Республики — Грант № EIF-BGM-2-BRTTE-1-2012/ 2013-07/06/1.

Список литературы

- А.З. Абасова, Р.С. Мадатов, В.И. Стафеев. Радиационностимулированные процессы в халькогенидных структурах (Баку, ЭЛМ, 2010) с. 352.
- [2] R.S. Madatov, T.B. Tagiyev, A.I. Najafov, I.F. Gabulov, Sh.P. Shekili. Semicond. Phys. Quant. Electron. Optoelectron., 9, (2), 8 (2006).
- [3] Р.С. Мадатов, А.І. Наджафов, Т.Б. Тагиев, Ш.П. Шекили. Неорг. матер., 44 (4), 396 (2008).
- [4] В.В. Соболев. Зоны и экситоны халькогенида галлия, индия и таллия (Кишинев, Шитиница, 1982) с. 272.
- [5] В.Е. Лашкарев, А.В. Любченко, М.К. Шейнкман. Неравновесные процессы в полупроводниках (Киев, Наук. думка, 1981) с. 264.
- [6] Ю.П. Гнатенко, З.Д. Ковалюк, П.А. Скубенко. УФЖ, 27 (6), 838 (1982).
- [7] Г.Л. Беленький, Э.Ю. Салаев, Р.А. Сулейманов. УФН, 155 (1), 89 (1988).
- [8] А.Г. Казымзаде, А.А. Агаева, В.В. Салманов, А.Г. Мохтари. ЖТФ, 77 (12), 80 (2007).
- [9] З.Д. Ковалюк, П.Г. Литовченко, О.А. Политанская, О.Н. Сидор и др. ФТП, 41 (5), 570 (2007).
- [10] Ф.Ф. Комаров. Ионная и фотонная обработка материалов (Минск, Белорус. гос. ун-т, 1998) с. 209
- [11] Х. Риссел, И. Руге. Ионная имплантация (М., Наука, 1983) с. 360.
- [12] www.simnra.software.informer.com/6.0/.

- [13] N.M. Gasanly, A. Aydonlo, H. OÉzkan, C. Kocabas. Sol. St. Commun., 116, 147 (2000).
- [14] K. Allakhverdiev, T. Baykara, S. Ellialtiog'lu, F. Hashimzade, D. Huseinova. Mater. Res. Bulletin, 41 (4), 751 (2006).

Редактор А.Н. Смирнов

Ion scattering and raman scattering spectrometry in GaS monocrystals exposed to irradiation by hydrogen with 140 keV

A.A. Garibov*, R.S. Madatov*+, F.F. Komarov•, V.V. Pilko•, Y.M. Mustafayev*, F.A. Ahmadov*, M.M. Jangirov*

* Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Az-1143 Baku, Azerbaijan
+ Azerbaijan State Aviation Academy, Az-1045 Baku, Azerbaijan
• RTCCU of "Nanotechnology and physical electronics" Belorussia State University, 220050 Minsk, Bellarus

Abstract By the methods of Raman scattering and Rutherford backscattering it has been studied the rate of structural disorder of layered GaS crystals before and after hydrogen implantation (H_2^+) with 140 keV energy. It is shown that distribution of crystal components on depth uniformly and observed stoichiometric composition of the components of the compound up to dose $5 \cdot 10^{15} \text{ cm}^{-2}$. Experimental value of critic dose of initial amorphization is approximately $5 \cdot 10^{15} \text{ cm}^{-2}$ and is in accordance with the calculated value. The results obtained by Raman scattering method, confirms maintenance of crystal structure and beginning of amorphization process.