Влияние спин-орбитального взаимодействия на электронную структуру *d*-зон антимонида индия

© В.В. Соболев[¶], Д.А. Перевощиков

Удмуртский государственный университет, 426034 Ижевск, Россия

(Получена 16 апреля 2014 г. Принята к печати 29 сентября 2014 г.)

Определены зоны и плотности состояний *d*-зон антимонида индия InSb с учетом и без учета спинорбитального взаимодействия. Установлено, что учет эффекта спин-орбитального взаимодействия приводит не только к дублетному расщеплению полосы остовных *d*-уровней на $\sim (0.79-0.86)$ эB, но и к существенному изменению дисперсии полученных зон. Установлено, что основной вклад в плотность состояний дают 4*d*-состояния индия с симметриями e_g и t_{2g} . Расчеты выполнены методом LAPW с обменно-корреляционным потенциалом в обобщенном градиентном приближении (LAPW + GGA).

1. Введение

Известны уникальные особенности антимонида индия, определяющие его многочисленные прикладные применения при изготовлении различных датчиков и приемников света [1,2]. Он кристаллизуется в структуре сфалерита с очень малой энергией запрещенной зоны $(E_g \approx 0.17 \text{ эВ} \text{ при } 300 \text{ K})$ и очень большой энергией спин-орбитального расщепления верхней валентной зоны в центре зоны Бриллюэна (ЗБ) $\Delta_{so}(\Gamma) \approx 0.80 \text{ эВ}.$

За последние годы изучению электронной структуры полупроводников посвящено огромное количество разнообразной литературы. По мере развития теории происходил переход от исследования "простых" sи р-уровней [3-10] к изучению существенно более сложных остовных зон, связанных с состояниями d- и *f*-типа [11–18]. Так как в рассмотрении оказался обширный круг различных материалов, величина спин-орбитального взаимодействия (СОВ) которых варьируется в широких масштабах, то необходимым шагом в развитии стало исследование влияния этого эффекта на свойства кристаллов [19-27]. Известно громадное количество расчетов, в которых электронная структура теоретически исследовалась с учетом СОВ [3-5,10,11,13,19,20,22], а также без его влияния [6-8,12,18]. Результаты этих работ указывают на его актуальность, без его учета экспериментальные и теоретические данные заметно различаются. Ранее исследования были направлены в основном на структуру нескольких верхних валентных зон и нижних зон проводимости.

Зонная структура остовных 4*d*-состояний InSb изучена в двух работах [12,13]. В первой из них расчеты проводились первопринципным методом ортогонализованных линейных комбинаций атомных орбиталей (OLCAO) без рассмотрения эффекта спин-орбитального расщепления для уровней энергий электронов. Во второй работе был использован метод LMTO (линейная комбинация маффин-тин орбиталей) с учетом СОВ. В результате расчетов была получена упрощенная структура *d*-зон в виде дублетной полосы с энергией расщепления $\Delta E_{so} \approx 0.88$ эВ.

В [19,20] изучены спектры фотоэмиссии при возбуждении светом с энергией 1486.6, 40.8 эВ и разрешением 0.6, 0.1 эВ соответственно. В первой работе центр *d*-зон находится при ~ 17.44 эВ со слабым дублетным расщеплением $\Delta E_{so} \approx 0.84(8)$ эВ. В работе [20] расщепление *d*-зон имеет более выраженный характер: два полученных максимума расположены при ~ 17.1 и 17.94 эВ ($\Delta E_{so} \approx 0.84 \pm 0.02$ эВ). Однако даже такое разрешение не позволяет разделить полностью спектр остовных уровней на две отдельные компоненты.

В работе [26] в интервале от 18 до 20 эВ исследована тонкая структура спектра отражения R(E) антимонида индия, возникающая из-за переходов из остовных 4*d*-зон индия в две нижние зоны проводимости. Остовные уровни заметно у́же зон проводимости, и именно поэтому естественно, что разность энергий между максимумами спектра R(E), образованными переходами из дублетно расщепленных 4*d*-состояний индия в первые две нижние зоны проводимости, соответствуют величине спин-орбитального расщепления остовных уровней. Таким образом, значение спин-орбитального расщепления остовных уровней в работе [26] составило $\Delta E_{so} \approx (0.88 \pm 0.03)$ эВ.

В области энергий E = 15-40 эВ в работе [27] при комнатной температуре исследованы спектры поглощения $\alpha(E)$ кристалла антимонида индия. В интервале от 18 до 22 эВ на кривой $\alpha(E)$ наблюдалось пять структур, связанных с переходами из остовных уровней индия в первые две нижние зоны проводимости. Оценка исходя из переходов в нижнюю зону проводимости дает значение расщепления остовных уровней $\Delta E_{so} \approx 0.9$ эВ, из переходов во вторую нижнюю зону проводимости — 0.7 эВ. Такое расхождение, по-видимому, связано с разрешением измерительного прибора, которое составило ± 0.1 зВ.

Цель работы — получить новую информацию о структуре *d*-зон и роли спин-орбитальной связи кристалла InSb.

[¶] E-mail: sobolev@uni.udm.ru

i	Γ			L			X			W			K		
	N_i	S_i^+	S_i^-	N_i	S_i^+	S_i^-	N_i	S_i^+	S_i^-	N_i	S_i^+	S_i^-	N_i	S_i^+	S_i^-
1	14.55	14.58	15.46	14.55	14.56	15.46	14.56	14.58	15.44	14.568	14.56	15.42	14.55	14.56	15.42
2	14.55	14.58	15.46	14.55	14.56	15.46	14.60	14.58	15.44	14.573	14.58	15.44	14.58	14.57	15.44
3	14.66	14.58	15.46	14.65	14.63	15.47	14.61	14.60	15.51	14.61	14.60	15.48	14.61	14.595	15.48
4	14.66	14.58	15.46	14.65	14.63	15.47	14.61	14.60	15.51	14.63	14.61	15.53	14.62	14.598	15.52
5	14.66	14.67	_	14.73	14.67	_	14.78	14.70	_	14.76	14.63	_	14.76	14.65	_
6	—	14.67	—	—	14.67	—	—	14.70	—	—	14.74	—	—	14.73	—

Энергии в (эВ) остовных 4d-зон InSb относительно максимума верхней валентной зоны в точке Г

2. Методика расчетов

Расчеты электронной структуры кристалла InSb выполнены линейным методом присоединенных плоских волн (LAPW) с использованием обобщенного градиентного приближения (GGA) в виде обменно-корреляционного потенциала [28,29]. Привлекательность этого современного метода состоит в том, что он не использует подгоночные параметры и сравнительно хорошо описывает электронную структуру неметаллов [28]. Во многих исследованиях полупроводников используют приближение локальной плотности (LDA) или же ее усовершенствованные варианты. Согласно нашим расчетам, значения таких фундаментальных параметров полупроводников, как ширина запрещенной зоны и энергия спин-орбитального расщепления, более близки к экспериментальным данным, если использовать методику GGA вместо LDA.

Расчеты выполнены с применением пакета программ WIEN2K [30]. Спектры плотности состояний (DOS) определялись методом тетраэдров [31]. Радиусы маффинтин сфер приняты равными 1.3754 Å (In) и 1.3794 Å (Sb), параметр решетки кристалла a = 6.362 Å [32].

3. Результаты расчетов зон

Квинтетная полоса остовных *d*-зон (N_i , i = 1-5) без учета спин-орбитального взаимодействия расположена в интервале –(14.78–14.55) эВ (рис. 1, таблица). Два верхних остовных уровня N1 и N2 находятся в очень узкой области, шириной < 0.05 эВ, имеют максимум в центре 3Б при $\sim (-14.55)$ эВ, ниже его на ~ 0.008 , ~ 0.005 и ~ 0.006 эВ расположены дополнительные максимумы в точках L, Z и K. Зоны N1 и N2 вырождены в направлении Λ , а в направлении WL их дублетность незначительна. Наибольшее расщепление состояний N₁ и N_2 происходит в точке $X~(\sim 0.04\, {
m sB})$. Ниже по энергии в области -(14.61-14.66) эВ находятся третья (N_3) и четвертая (N_4) остовные зоны. Они совпадают в высокосимметричных направлениях ЗБ Л и Д и незначительно (< 0.02 эВ) расщепляются в окрестности точки W. Самая нижняя остовная зона N₅ совпадает в центре 3Б с зонами N_3 и N_4 при $\sim (-14.66)$ эВ и заметно выделяется тем, что ее ширина ($\sim 0.12 \, \text{эB}$) больше суммарной ширины ранее рассмотренных зон.

Учет СОВ приводит к кардинальным изменениям в структуре *d*-зон: возникают две группы зон с весьма сложной структурой. Первая группа из шести зон $(S_i^+, i = 1-6)$ расположена в интервале от -14.74 до -14.56 эВ, нижняя группа из четырех зон (S_i^-, s_i^-)

Рис. 1. Электронная структура остовных 4*d*-зон InSb без учета СОВ, а также спектр плотности состояний (1) и вклады *d*-состояний с e_g - (2) и t_{2g} -симметрией (3).

Рис. 2. Электронная структура остовных 4*d*-зон InSb с учетом COB, а также спектр плотности состояний (1) и вклады *d*-состояний с e_g - (2) и t_{2g} -симметрией (3).

i = 1-4) расположена в интервале от -15.53 до -15.42 эВ (рис. 2, таблица).

Структуры S_1^+ , S_2^+ , S_3^+ и S_4^+ (особенно первые две) локализованы в очень узкой области около -14.58 эВ. Все они совпадают в точке Γ при ~ (-14.58) эВ, а в остальной области имеют довольно сложную дисперсию и общую ширину < 0.1 эВ. Зоны S_1^+ и S_2^+ вырождены в направлении Δ и в небольшой окрестности точки L, зоны S_3^+ и S_4^+ вырождены в направлениях Λ и Δ . Зоны S_2^+ и S_3^+ совпадают на небольшом участке направления Z. Следующие зоны S_5^+ и S_6^+ имеют менее сложное строение и, подобно S_3^+ и S_4^+ , являются вырожденными в направлениях Λ и Δ . Несмотря на то что S_5^+ и S_6^+ в направлениях $L\Gamma$ и ΓX являются почти горизонтальными, в точке Wони расщепляются заметно сильнее, чем зоны S_1^+ , S_2^+ , S_3^+ и S_4^+ . Следующие четыре структуры (S_1^-, S_2^-, S_3^-) и S₄) обладают одинаковой энергией в центре ЗБ. По мере удаления от Γ в сторону X(L) формируются две (три) различные структуры. В направлениях WL, XW и WK вырождение по энергии снимается у всех четырех зон. Усредненная энергия расщепления двух групп зон в различных точках ЗБ составляет $\overline{\Delta E} = (0.79 - 0.86)$ эВ. Данный интервал энергий меньше аналогичного значения, приводимого в работе [13].

Результаты расчетов плотности состояний

Без учета СОВ в спектре плотности *d*-состояний наблюдается одиночная сильно асимметричная полоса в интервале –(14.91–14.45) эВ с максимумом при ~ (-14.61) эВ и слабо выраженной ступенькой при $\sim (-14.8)\, \mathrm{ { { } { } { } B}}$ (рис. 1, кривая I). Вклады индия в интегральный спектр в ~ 100 раз больше вкладов сурьмы и образованы в основном 4d-состояниями (s- и p-состояния имеют интенсивность в ~ 1000 раз меньшую). Из рис. 1 видно, что формирование максимума при $\sim (-14.61)$ эВ в спектре DOS происходит за счет вкладов состояний электронов eg (d-орбитали с симметрией d_{z^2} и $d_{x^2-y^2}$, кривая 2) и t_{2g} (*d*-орбитали с симметрией d_{xy} , d_{yz} и d_{xz} , кривая 3) с максимумами при $\sim (-14.60)$ и $\sim (-14.66)$ эВ. Интенсивность максимума eg-состояний выше интенсивности максимума t2gсостояний, что связано с дисперсией зон N_1 , N_2 и N_3 , N_4 соответственно (см. таблицу). Ступенька в интегральной кривой DOS полностью образована t2g-состояниями зоны N₅.

В результате учета СОВ прежняя одиночная структура расщепляется на две полосы (рис. 3). Из них более интенсивная полоса расположена почти при той же энергии, что в случае без учета СОВ, но в ~ 1.5 раза она менее интенсивна. Форма данной полосы также асимметрична, с максимумом при ~ (-14.63) эВ и слабо выраженной ступенькой при ~ (-14.7) эВ. Как видно из рис. 2, асимметрия полосы (кривая *I*) возникает за счет того, что t_{2g} -состояния (кривая *3*) формируют более широкий максимум при ~ (-14.65) и ступеньку при

Рис. 3. Интегральный спектр плотности состояний остовных *d*-уровней InSb (1) и вклады Sb (2) и In (3) с учетом спинорбитального взаимодействия.

 $\sim (-14.7)$ эВ, тогда как e_g -состояния (кривая 2) — симметричный максимум при $\sim (-14.62)$ зВ. Далее, в области от -15.65 до -15.35 зВ, расположена почти симметричная полоса, возникновение которой непосредственно связано с влиянием эффектов спин-орбитального расщепления на электронную структуру кристалла. Максимум при $\sim (-15.50)$ зВ образован на 2/3 вкладами *d*орбиталей с t_{2g} -симметрией и на 1/3 — с e_g -симметрией. Как и в случае, когда СОВ не учитывалось, интегральный спектр DOS образован в основном 4*d*-состояниями индия (вклады *s*- и *p*-состояний индия меньше в ~ 1000 раз, а общий вклад сурьмы — в ~ 100 раз).

Значение спин-орбитального расщепления остовных *d*-уровней, по нашим расчетам, составило $\Delta E_{so} = 0.84 - 0.85$ эВ. Это находится в хорошем согласии с экспериментальными данными работ [19, 20,26,27], и некоторые различия лежат в пределах погрешности измерений.

5. Заключение

Итак, в настоящем сообщении для антимонида индия с учетом и без учета спин-орбитального взаимодействия рассчитаны электронная структура и плотности состояний остовных *d*-зон, в том числе парциальные вклады в спектр DOS *s*-, *p*- и *d*-состояний обоих компонент соединения. Установлено, что формирование рассмотренных остовных уровней в основном происходит за счет *d*-орбиталей индия. Поэтому были дополнительно получены парциальные вклады в *d*-состояния электронных орбиталей индия с e_g - и t_{2g} -симметрией. Выяснено, что СОВ приводит к существенным изменениям в электронной структуре остовных *d*-уровней антимонида индия: к дублетному расщеплению *d*-зон и их формированию в виде шести верхних и четырех нижних зон.

Работа выполнена при поддержке РФФИ, проекты № 11-02-07038 и 12-02-07007.

587

Авторы благодарны А.И. Калугину за помощь в расчетах.

Список литературы

- В.В. Соболев. Оптические фундаментальные спектры соединений А³B⁵ (Кишинев, Штиинца, 1979).
- [2] В.В. Соболев. Оптические свойства и электронная структура неметаллов. Том І. Введение в теорию (Москва–Ижевск, Изд-во Института компьютерных исследований, 2012).
- [3] J.R. Chelikowsky, M.C. Cohen. Phys. Rev. B, 14, 556 (1976).
- [4] R. Asahi, W. Mannstadt, A.J. Freeman. Phys. Rev. B, 59, 7486 (1999).
- [5] S.H. Rhim, M. Kim, A.J. Freeman, R. Asahi. Phys. Rev. B, 71, 045 202 (2005).
- [6] A.H. Reshak. Eur. Phys. J. B, 47, 503 (2005).
- [7] K. Nakamura, Y. Yoshimoto, R. Arita, S. Tsuneyuki, M. Imada. Phys. Rev. B, 77, 195 126 (2008).
- [8] Bağci, S. Duman, H.M. Tütüccü, G.P. Srivastava. Phys. Rev. B, 79, 125 326 (2009).
- [9] E.G. Gadret, G.O. Dias, L.C.O. Dacal, M.M. de Lima jr., C.V.R.S. Ruffo, F. Iikawa, M.J.S.P. Brasil, T. Chiaramonte, M.A. Cotta, L.H.G. Tizei, D. Ugarte, A. Cantarero. Phys. Rev. B, 82, 125 327 (2010).
- [10] X. Peng, A. Copple. Phys. Rev. B, 87, 115308 (2013).
- [11] G. Martinez, M. Schlüter, M.L. Cohen. Phys. Rev. B, 11, 660 (1975).
- [12] M.-Z. Huang, W.Y. Ching. Phys. Rev. B, 47, 9449 (1993).
- [13] M. Cardona, N.E. Christensen, G. Fasol. Phys. Rev. B, 38, 1806 (1988).
- [14] F. Aryasetiawan, O. Gunnarsson. Phys. Rev. Lett., 74, 3221 (1995).
- [15] T. Kotani, M. van Schilfgaarde, S.V. Faleev. Phys. Rev. B, 76, 165 106 (2007).
- [16] F. Fuchs, J. Furthmüller, F. Bechstedt. Phys. Rev. B, 76, 115 109 (2007).
- [17] H. Jiang, R.I. Gomez-Abal, P. Rinke, M. Scheffler. Phys. Rev. B, 82, 045 108 (2010).
- [18] X.-Zh. Li, R. Gomez-Abal, H. Jiaveg, C. Ambrosch-Draxl, M. Scheffler. New J. Phys., 14, 023 006 (2012).
- [19] L. Ley, R.A. Pollak, F.R. McFeely, S.P. Kowalczyk, D.A. Shirley. Phys. Rev. B, 9, 600 (1974).
- [20] N.J. Shevchik, J. Tejeda, M. Cardona. Phys. Rev. B, 9, 2627 (1974).
- [21] R.A. Vazquer-Nava, B.S. Mendoza, C. Castillo. Phys. Rev. B, 70, 165 306 (2004).
- [22] P. Carrier, S.-H. Wei. Phys. Rev. B, 70, 035212 (2004).
- [23] F. Nastos, J. Rioux, M. Strimas-Mackey, B.S. Mendoza, J.E. Sipe. Phys. Rev. B, 76, 205 113 (2007).
- [24] M.A. Toloza Sandoval, A. Ferreira da Silva, E.A. de Andradae Silva, G.C. La Rocca. Phys. Rev. B, 87, 081 304(R) (2013).
- [25] N.B. Clayburn, J.L. McCarter, J.M. Oreiling, M. Poelker, O.M. Ryan, T.J. Gay. Phys. Rev. B, 87, 035 204 (2013).
- [26] D.E. Aspnes, M. Cardona, V. Saile, M. Skibowski, G. Sprüssel. Sol. St. Commun., 31, 99 (1979).
- [27] W. Gudat, E.E. Koch, P.Y. Yu, M. Cardona, C.M. Penchina. Phys. Status. Solidi B, 52, 505 (1972).
- [28] В. Кон. УФН, 172, 336 (2002).
- [29] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett., 77, 3865 (1996).

- [30] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. WIEN2K (Techn. Univ. Wien, Austria, 2001) ISBN, 3-9501030-1-2.
- [31] P.E. Blöchl, O. Jepsen, O.K. Andersen. Phys. Rev. B, 49, 16 223 (1994).
- [32] S. Massida, A. Continenza, A.J. Freeman, T.M. de Pascale, F. Meloni, M. Serra. Phys. Rev. B, 41, 12079 (1990).

Редактор Л.В. Шаронова

The effect of the spin–orbit interaction on the electron structure of indium antimonide *d*-bands

V.V. Sobolev, D.A. Perevoshchikov

Udmurt State University, 426034 Izhevsk, Russia

Abstract The energy bands and density of states of indium antimonide *d*-states with and without spin–orbit interaction were calculated. The spin–orbit effect consideration was established to provoke not only the doublet splitting of core *d*-band at the energy 0.79-0.86 eV but also the considerable variance of the band dispersion. It is established that the main contribution to the density of states is caused by the In 4*d*-states with the e_g - and t_{2g} -symmetry. The calculations were carried out by the LAPW method with the exchange–correlation potential in the general gradient approximation (LAPW + GGA).