05

Структурная релаксация стеклообразного $GeSe_2$ при изотермическом отжиге ниже и выше T_g

© Е.В. Александрович,¹ В.С. Минаев,² С.П. Тимошенков²

¹ Институт механики УрО РАН, 426067 Ижевск, Россия ² Национальный исследовательский университет "МИЭТ", 124498 Москва, Россия e-mail: evalex@udman.ru

(Поступило в Редакцию 29 апреля 2014 г.)

Методами рамановского рассеяния, рентгеновской дифракции и дифференциально-сканирующей калориметрии в температурном диапазоне 300–800 К установлено, что после изотермического отжига порошков стекла GeSe₂ ниже температуры размягчения $T_g = 635 \pm 2$ К фрагменты высокотемпературных полиморфных модификаций, не имеющие дальнего порядка (полиморфоиды HTPM), распадаются и трансформируются в полиморфоиды низкотемпературной модификации (LTPM) с экзотермическим эффектом. Высокая концентрация в стекле полиморфоидов LTPM и их стабилизация при отжиге ниже T_g способствуют упорядочению и появлению областей когерентного рассеяния от низкотемпературной α -GeSe₂ (3D-формы). При отжиге выше T_g происходит обратная трансформация полиморфоидов LTPM — HTPM с эндотермическим эффектом, приводящая к доминированию в стеклообразном GeSe₂ полиморфоидов HTPM β -GeSe₂ (2D-формы), и их кристаллизация.

Введение

На протяжении многих лет стеклообразные халькогениды германия привлекают к себе внимание благодаря своим температурно-зависимым свойствам и широкому использованию в интегральных оптических приборах [1].

Диселенид германия имеет несколько кристаллических модификаций, определенных с помощью рамановского рассеяния и рентгенофазового анализа [2–9]: низкотемпературную (LT) α -GeSe₂ с комплексной трехмерной структурой [2], высокотемпературную (HT) β -GeSe₂ со слоистой двумерной структурой [3] и γ -GeSe₂ модификацию со структурой, подобной SnSe₂ [4]. Стеклообразный или аморфный GeSe₂ (a-GeSe₂) состоит из тетраэдрических структурных единиц GeSe₄, связанных друг с другом в различных областях и через общие вершины, как в LT-фазе, и через общие ребра, как в HT-фазе GeSe₂ [3].

Структурная релаксация стеклообразного GeSe₂ при его нагревании была изучена в [9–12]. В объемных стеклах GeSe₂ после их отжига выше T_g в течение ~ 100 h были обнаружены кристаллические LT- и HT-фазы с моноклинной структурой (2*D*-формой), отличающиеся друг от друга параметрами кристаллической решетки [9–11]. В аморфных пленках GeSe₂ в [12] после их отжига в течение 18 h при различных температурах была выявлена и HT-фаза (2*D*-форма), и LT-фаза α -GeSe₂ с орторомбической кристаллической решеткой (3*D*-формой).

Согласно концепции полимерно-полиморфоидного строения стекла и стеклообразующих жидкостей [13–15] утверждается, что полиморфоиды НТ- и LT-модификаций превращаются в стекле друг в друга, а общепринятая температура размягчения стекла T_g является температурой реверса T_{w-rev} направления взаимопревращения HTPM \leftrightarrow LTPM.

В настоящей работе методами рамановского рассеяния, рентгеновской дифракции и дифференциальносканирующей калориметрии исследовали структурную релаксацию в порошках стекла GeSe₂, отожженных при температурах ниже и выше $T_g(T_{w-rev})$. Результаты исследований были проанализированы с точки зрения концепции полимерно-полиморфоидного строения стекла и стеклообразующих жидкостей.

Методика эксперимента

Стекла GeSe₂ синтезировали из германия и селена ос. ст. ч. (германий марки ГПЗ-1 и селен марки ОСЧ 17-4, ТУ 6-09-2521-77) в кварцевых ампулах, вакуумированных до 10^{-2} Ра при постоянном перемешивании и температуре 1173 К в течение 20 h. Расплавы закаливали, опуская ампулы в проточную воду.

Опытные образцы в виде мелкодисперсного порошка стекла GeSe₂ (средний диаметр частиц составлял ~ 150 μ km), компактированного на кварцевом стекле размером 10 × 10 × 2 mm, вносили в разогретую до определенной температуры (593–753) ± 1 K диффузионную трубчатую печь IR-07 (Bruker). Каждый образец был подвергнут изотермическому отжигу в атмосфере азота в течение 20 min при различной температуре, после чего вынесен из печи и охлажден до комнатной температуры.

Все отожженные образцы прошли исследования на спектрометре Horiba LabRam HR800 при возбуждении излучением He–Ne-лазера с $\lambda = 632.8$ nm $(hv_{\rm exc} = 1.96 \, {\rm eV})$ и мощностью излучения ~ 20 mW при подобных спектральных параметрах при комнатной температуре. Луч лазера фокусировали в пятно диаметром 6 μ m. Для избежания в образцах фотоструктурных изменений плотность потока энергии при получении спектров Рамана была выбрана ~ 6 \cdot 10⁻² kWh/cm². Сбор рассеянного света осуществляли по схеме на отражение (180°). Спектральная ширина щели составляла 2 cm⁻¹.

Фазовый состав отожженных порошкообразных образцов был определен по данным рентгенофазового анализа на дифрактометре D2 Phaser (Bruker) (излучение — CuK_{α} , длина волны $\lambda = 0.1548$ nm).

Характеристические температуры стекла $GeSe_2$ были оценены из измерений методом дифференциальносканирующей калориметрии (ДСК) с погрешностью ± 2 К и со скоростью нагревания 10 К/min.

Экспериментальные результаты и их обсуждение

На рис. 1 приведена ДСК-кривая синтезированного стекла GeSe₂, полученная при нагревании до его полной кристаллизации со скоростью 10 К/тіп. Из рисунка следует, что при этих условиях имеют место два эндотермических (573–600 и 635–710 К) с минимумами при температурах 595 и 683 \pm 2 К соответственно и два экзотермических (600–635 и 710–780 К) с максимумами при температурах 635 и 754 \pm 2 К соответственно эффекта.

Согласно [16], эндотермический эффект на термограммах стекла при нагревании демонстрирует эффект его размягчения. Начало первого эндотермического эффекта при $T = 573 \pm 2 \text{ K}$ соответствует температуре размягчения стекла Таммана $T_g(T)$ (вязкость

Рис. 1. ДСК-кривая стекла GeSe₂ (скорость нагревания 10 K/min). T_g — общепринятая температура размягчения стекла (вязкость $\eta \sim 10^{12.3}$ Pa · s), являющаяся температурой реверса T_{w-rev} направления взаимопревращения фрагментов структуры различных высокотемпературных и низкотемпературных полиморфных модификаций данного вещества, не имеющих дальнего порядка (полиморфоидов) (НТРМ \leftrightarrow LTPM), $T_g(T)$ — температура размягчения стекла Таммана (вязкость $\eta \sim 10^{15} - 10^{16}$ Pa · s), T_c — температура кристаллизации *a*-GeSe₂.

Рис. 2. Рамановские спектры порошков стекол GeSe₂, отожкенных при различных температурах ниже (b-e) и выше (f-m) $T_{w-rev}(T_g) = 635 \pm 2$ К в течение 20 min, (a) — спектр Рамана неотожкенного порошка стекла GeSe₂. Температуры отжига показаны на рисунке. Спектры получены в частотном диапазоне 50–350 cm⁻¹ при комнатной температуре и нормализованы на максимальный пик. Возбуждение излучением He–Ne-лазера с $\lambda = 632.8$ nm ($hv_{exc} = 1.96$ eV) и мощностью излучения 20 mW. Линии A, B, C, D относятся к высокотемпературной (HT) фазе со слоистой структурой (2D-форме), а линии E и F — к низкотемпературной (LT) фазе (3D-форме) GeSe₂ [12].

 $\eta \sim 10^{15} - 10^{16} \,\mathrm{Pa} \cdot \mathrm{s})$, которая на кривой ДСК имеет более низкое значение, чем общепринятая T_g при $T = 635 \pm 2 \,\mathrm{K}$ (начало второго эндоэффекта, вязкость $\eta \sim 10^{12.3} \,\mathrm{Pa} \cdot \mathrm{s})$ [13,14]. Максимум экзотермического эффекта при $T = 754 \,\mathrm{K}$ соответствует температуре кристаллизации стекла T_c . Наши данные по T_g и T_c для стекла GeSe₂ коррелируют с данными, приведенными в [17].

В соответствии с концепцией полимерно-полиморфоидного строения стекла и стеклообразующих жидкостей [13–15] можно предположить, что при нагревании со скоростью 10 К/тіп в интервале температур ~ 600–635 К (рис. 1) (ниже $T_g(T_{w-rev})$) неустойчивые при этих температурах полиморфоиды НТРМ

Рис. 3. Разложение спектра Рамана порошка стекла GeSe₂ (без отжига) на гауссовские компоненты. I — экспериментальный, 2 — рассчитанный результирующий. A_G -мода — слабая связь Ge-Ge [19], A_1 — колебания тетраэдров GeSe_{4/2} в LT α -GeSe₂ с обобщенными вершинами (3*D*-форме), A_1^C (216 cm⁻¹) — колебания мостиковых битетраэдров Ge₂Se_{8/2} в HT β -GeSe₂ (2*D*-форме) [8].

распадаются и превращаются в полиморфоиды LTPM (HTPM \rightarrow LTPM) с выделением тепла (экзоэффект). За экзоэффектом следует эндоэффект (635–710 K) с экстремумом при T = 683 K, являющийся эффектом превращения полиморфоидов LTPM \rightarrow HTPM.

На рис. 2 показаны спектры Рамана образцов GeSe₂, отожженных при температурах ниже и выше $T_g(T_{w-rev}) = 635 \pm 2$ К. Спектры получены в диапазоне частот 50–350 сm⁻¹ при комнатной температуре. Все полученные Raman-спектры расшифрованы с помощью программы PeakFit путем разложения их на гауссовские компоненты.

В результате проведенных исследований на спектрах Рамана в спектральном диапазоне 150-350 cm⁻¹ замечены наиболее интенсивные колебательные моды: 178 (A_G) , 199–200 (A_1) , 216 (211) (A_1^C) сm⁻¹ (рис. 3, 4). Моды 178, 198, 216 cm^{-1} проявляются в стеклообразном GeSe₂ [18]. Мода A_G характеризует слабую связь Ge-Ge [19], а мода A₁ (рис. 2, пик E; рис. 3,4) колебания тетраэдров GeSe_{4/2} в LT-GeSe₂ с обобщенными вершинами (3D-форму) [8,12,20,21]. Согласно [5], *A*^{*C*}₁-мода (рис. 2, пик *A*; рис. 3) представляет собой 2 моды: сильную моду 211 ст⁻¹, относящуюся к колебаниям цепочек тетраэдров GeSe_{4/2}, связанных общими вершинами, и слабую моду 216 cm⁻¹, относящуюся к колебаниям мостиковых битетраэдров Ge₂Se_{8/2}, как в HT-GeSe₂ (2*D*-форме). Сосуществование мод A_1 и A_1^C в стеклообразном GeSe₂ свидетельствует о наличии в стекле полиморфоидов двух кристаллических форм GeSe₂ — HT и LT [8].

На рамановских спектрах отожженных образцов имеются также моды низкой интенсивности: 245 (одиночные кольца Se₈) и 290 (связи Ge–Se–Ge) [22], 250–256 (линия, характерная для высокой концентрации колец

Se₈) и 257–260 (растягивающие колебания в цепочках Se_n) [23], 252, 268, 297 и 307 cm⁻¹ (колебания связей в HT-GeSe₂) [24].

Рис. 4. Разложение спектров Рамана на гауссовские компоненты порошков стекла GeSe₂, отожженных в течение 20 min при различных температурах: a - 623, b - 673, c - 713 К. I -экспериментальный, 2 -рассчитанный результирующий. A_1^C -мода представляет собой 2 моды: сильную моду 211 сm⁻¹, относящуюся к колебаниям цепочек тетраэдров GeSe_{4/2}, связанных общими вершинами, и слабую моду 216 сm⁻¹, относящуюся к колебаниям мостиковых битетраэдров Ge₂Se_{8/2}, в HT β -GeSe₂ (2D-форме) [8].

Замечено, что порошкообразные образцы, отожженные до ~ 600 К в течение 20 min, имеют спектры Рамана, подобные спектру неотожженного образца (рис. 2, *a*), который, в свою очередь, идентичен рамановскому спектру стекла GeSe₂, приведенному в [9,25]. При температурах отжига ниже 600 К соотношение интегральных интенсивностей мод A_1 и A_1^C (концентрационное соотношение полиморфоидов (КСП) 3D- и 2D-форм) в стекле остается практически неизменным.

При $T_{\text{anneal}} \rightarrow T_g(T_{w-rev})$ (635 ± 2 K) на рамановских спектрах появляется линия *F*, приписываемая LT-фазе (3*D*-форме) [12] (рис. 2, *c*-*e*). Соотношение интегральных интенсивностей мод $I(A_1)/I(A_1^C)$, нормализованное на подобное отношение при T = 293 K, становится больше 1 (рис. 5). Это указывает на то, что в стеклообразном GeSe₂ полиморфоиды 3*D*-формы (мода A_1) начинают доминировать над полиморфоидами 2*D*-формы (мода A_1^C) в большей степени, чем в неотожженном образце. Концентрация полиморфоидов LTPM резко увеличивается (рис. 2, *d*-*e*; рис. 5) за счет распада неустойчивых при этих температурах полиморфоидов HTPM и превращения HTPM \rightarrow LTPM, имеющего экзотермический эффект (рис. 1).

На дифрактограммах порошкообразных образцов после изотермического отжига в течение 20 min при $T_{\text{anneal}} \rightarrow T_g(T_{w-rev})$ (635 ± 2 K) в угловом диапазоне $2\theta = 5-100^{\circ}$ на фоне аморфного галло появляются линии отражения, близкие к линиям отражения от кристаллической фазы орторомбического LT α -GeSe₂ (пространственная группа *Pmnm*, параметры кристаллической решетки: a = 0.6953 nm, b = 1.222 nm, c = 2.304 nm [PDF 00-016-0080] [2]) (рис. 6, a). Вероятно, высокая концентрация в стекле полиморфоидов LTPM и их стабилизация при отжиге ниже T_g (T_{w-rev})($T_{\text{anneal}} < T_c$)

Рис. 5. Отношение интегральных интенсивностей моды A_1 (LTPM) к моде A_1^C (HTPM) как функции температуры. Данные взяты из Рамановских спектров порошков стекла GeSe₂, полученных после их изотермического отжига. Отношения нормализованы к подобному отношению при T = 293 К. Ошибки находятся в пределах символов.

Рис. 6. Дифрактограммы порошков стекла GeSe₂, отожженных при различных фиксированных $(\pm 1 \text{ K})$ температурах в интервале 593-753 К (a-c) с шагом 10 К в течение 20 min в атмосфере азота. Температуры отжига показаны на рисунке. Дифрактограммы нормализованы на интенсивность максимального пика. * и • — линии отражений от кристаллических решеток LT (3D-формы) и HT (2D-формы) фаз GeSe₂, соответственно. Внизу показаны штрихрентгенограммы данных фаз ([PDF 01-071-0117] и [PDF 00-016-0080], соответственно).

способствуют упорядочению и появлению областей когерентного рассеяния. В [26] в наноразмерных аморфных пленках Ge—Se были также обнаружены неравновесные LT кристаллические фазы, застабилизированные в стеклообразной матрице.

Стабильность 3*D*-формы заметили также в [12] при отжиге аморфных пленок GeSe₂ ниже $T_g(T_{w-rev})$. Наши результаты коррелируют с результатами этой работы, где после отжига в течение 18 h при $T_{\text{anneal}} < T_g(T_{w-rev})$ в образцах была также обнаружена кристаллическая фаза LT α -GeSe₂ с атомным окружением, подобным окружению фазы α -GeS₂.

В [11] было установлено, что объемные стекла GeSe₂ являются устойчивыми к кристаллизации и, чтобы их закристаллизовать, необходим температурный отжиг в течение $\sim 60-100$ h. Авторами [9–11] при $T_{\text{anneal}} > T_g$ был осуществлен отжиг объемного стекла GeSe₂, при котором оно полностью кристаллизовалось в LT- и (или) HT-фазу GeSe₂ с моноклинными кристаллическими решетками (2*D*-формой).

При нагревании наших образцов при $T_{\text{anneal}} > T_g(T_{w-rev})$ (635 ± 2 K), как и в [9–11], стеклообразный GeSe₂ переходит в область стабильности полиморфоидов НТРМ и нестабильности полиморфоидов LTPM. До ~ 650 К полиморфоиды 3*D*-формы еще доминируют над полиморфоидами 2*D*-формы (рис. 2, *f*; рис. 5), как и в неотожженном образце (рис. 2, *a*), но уже активно переходят в последние (LTPM \rightarrow HTPM) с поглощением тепла (эндоэффект с экстремумом при T = 683 K) (рис. 1). При $T_{\text{anneal}} > 650$ К соотношение интегральных интенсивностей мод $I(A_1)/I(A_1^C)$ (КСП LTPM/HTPM) становится меньше, чем в неотожженном образце, и при $T_{\text{anneal}} = 653 \text{ K}$ интегральные интенсивности мод A_1 и A_1^C становятся равными друг другу (рис. 2, g).

При дальнейшем повышении T_{anneal} в стеклообразном GeSe₂ начинают преобладать полиморфоиды 2*D*-формы (A_1^C) (рис. 2, пик *A*; рис. 4, *b*–*c*; рис. 5). На рамановских спектрах появляются линии *B*, *C*, *D*, приписываемые [12] к НТ β -GeSe₂ (рис. 2, *g*–*m*). На дифракционных картинах отожженных образцов GeSe₂ (рис. 6, *b*–*c*) появляются отражения от моноклинного НТ β -GeSe₂ (пространственная группа P21/*c*, параметры кристаллической решетки: *a* = 0.7016 nm, *b* = 1.6796 nm, *c* = 1.1831 nm, β = 90.65° [PDF 01-071-0117] [3]). При $T_{\text{anneal}} > 710$ К на дифрактограммах имеются линии отражения только от НТ β -GeSe₂ (рис. 6, *c*). При $T_{\text{anneal}} \to T_c$ имеет место полная кристаллизация образцов (рис. 1, рис. 2, *m*).

Заключение

На основе концепции полимерно-полиморфоидного строения стекла и стеклообразующих жидкостей проведен сравнительный структурный анализ результатов исследований методами рамановского рассеяния, рентгеновской дифракции и дифференциальносканирующей калориметрии порошков стекла GeSe₂, отожженных при различных температурах ниже и выше $T_g (T_{w-rev}) = 635 \pm 2$ К.

Обнаружено, что температурная зависимость нормализованного соотношения интегральных интенсивностей $I(A_1)/I(A_1^C)$ (КСП НТРМ/LТРМ) в стекле является немонотонной. При изотермическом отжиге ниже $T_g(T_{w-rev})$ полиморфоиды НТРМ распадаются и трансформируются в полиморфоиды LTPM (НТРМ — LTPM) с выделением тепла (экзоэффект) вплоть до появления областей когерентного рассеяния LT-GeSe₂ (3*D*-формы). При этом нормализованное отношение $I(A_1)/I(A_1^C) > 1$.

При отжиге образцов при температурах выше $T_g(T_{w-rev})$ происходит обратная трансформация LTPM — HTPM с поглощением тепла (эндоэффект), вызывающая доминирование полиморфоидов HTPM (2*D*-формы) в стеклообразном GeSe₂ и их кристаллизацию (нормализованное отношение $I(A_1)/I(A_1^C) < 1$).

Авторы выражают благодарность Д.Г. Калюжному и К.Г. Михееву за помощь при проведении экспериментов.

Список литературы

- Ibrahim M.M., Balboul M.R., Fayek S.A., Soliman M.A. // J. Non-Cryst. Solids. 2011. Vol. 357. N 10. P. 2035–2038.
- [2] Лю Цюнь-хуа, Пашинкин А.С., Новосёлова А.В. // ЖНХ. 1962. Т. 7. N 9. С. 2159–2161.
- [3] Dittmar G., Schäfer H. // Acta Crystallogr. (B). 1976. Vol. 32.
 P. 2726–2728.
- [4] Блецкан Д.И., Герасименко В.С., Сичка М.Ю. // Кристаллография. 1979. Т. 24. N 1. С. 83–89.

- [5] Popovic Z.V., Stolz H.J. // Phys. Stat. Sol. B. 1981. Vol. 108. N 1. P. 153–163.
- [6] Popovic Z.V., Gajic R. // Phys. Rev. (B). 1986. Vol. 33. N 8.
 P. 5878–5879.
- [7] Inoue K.K., Matsuda O, Murase K. // Sol. Stat. Commun. 1991. Vol. 79. P. 905–910.
- [8] Bridenbaugh P.M., Espinosa G.P., Griffiths J.E., Phillips J.C., Remeika J.P. // Phys. Rev. B. 1979. Vol. 20. N 10. P. 4140-4144.
- Sakai K., Uemoto T., Yokoyama H., Fukuyama A., Yoshino K.T., Ikari T, Maeda K. // J. Non-Cryst. Sol. 2000. Vol. 266–269. P. 933–937.
- [10] Sakai K., Maeda K., Yokoyama H., Ikari T. // J. Non-Cryst. Sol. 2003. Vol. 320. P. 223–230.
- [11] Sakai K., Yoshino K., Fukuyama A., Yokoyama H., Ikari T., Maeda K. // Jpn. J. Appl. Phys. 2000. Vol. 39. P. 1058–1061.
- [12] Inoue K., Kawamoto K., Murase K. // J. Non-Cryst. Sol. 1987. Vol. 95–96. P. 517–524.
- [13] Minaev V.S., Timoshenkov S.P., Kalugin V.V., Kovalev S.I., Novikov S.N., Vasiliev V.P. // J. Optoelectron. Adv. Mater. 2009. Vol. 11. N 12. P. 1950–1953.
- [14] Minaev V.S., Timoshenkov S.P., Kalugin V.V. // J. Optoelectron. Adv. Mater. 2011. Vol. 13. N 11–12. P. 1393–1399.
- [15] Minaev V.S., Timoshenkov S.P., Kalugin V.V., Novikov S.N. // Adv. Mater. Research. 2008. Vol. 39–40. P. 123–125.
- [16] Тамман Г. Стеклообразное состояние. / М.-Л.: ОНТИ, 1935. 136 с.
- [17] Виноградова Г.З. Стеклообразование и фазовые равновесия в халькогенидных системах. Двойные и тройные системы / Под ред. В.Б. Лазарева. М.: Наука, 1984. 176 с.
- [18] Murase K., Inoue K. Desordered semiconductors / Ed. By M.A. Kastner, G.A. Thomas, S.R. Ovshinsky. NY: Plenum, 1987. 297 p.
- [19] Matsuda O., Inoue K., Nakane T. and Murase K. // J. Non-Cryst. Sol. 1992. Vol. 150. N 1–3. P. 202–206.
- [20] Kumagai N., Shirafuji J., Inuishi Y. // J. Phys. Soc. Jpn. 1977. Vol. 42. P. 1262–1268.
- [21] Inoue K., Matsuda O., Murase K. // J. Non-Cryst. Sol. 1992. Vol. 150. N 1–3. P. 197–201.
- [22] Goyal D.R., Maan A.S. // J. Non-Cryst. Sol. 1995. Vol. 183. P. 182–185.
- [23] Wang Y, Murase K. // J. Non-Cryst. Sol. 2003. Vol. 326–327.
 P. 379–384.
- [24] Popovic Z.V., Jaksic Z., Raptis Y.S., Anastassakis E. // Phys. Rev. (B). 1998. Vol. 57. N 6. P. 3418–3422.
- [25] Mitkova M., Kozicki M.N., Kim H.C., Alford T.L. // J. Non-Cryst. Sol. 2006. Vol. 352. P. 1986–1990.
- [26] Александрович Е.В., Степанова Е.В., Вахрушев А.В., Александрович А.Н., Булатов Д.Л. // ЖТФ. 2013. Vol. 83. N 9. P. 50–55.