Исследование солнечных элементов на основе слоев GaPNAs методом спектроскопии полной проводимости

© А.И. Баранов[¶], А.С. Гудовских, К.С. Зеленцов, Е.В. Никитина, А.Ю. Егоров

Санкт-Петербургский Академический университет — научно-образовательный центр нанотехнологий Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 20 мая 2014 г. Принята к печати 30 мая 2014 г.)

С помощью метода спектроскопии полной проводимости проведены исследования уровней дефектов в слоях четверного раствора GaPNAs. В легированных слоях *n*-GaPNAs, выращенных на подложках GaP, обнаружены центры с энергией активации 0.22 эВ и площадью сечения захвата $\sim 2.4 \cdot 10^{-15}$ см², которые соответствуют ранее известным дефектам в *n*-GaP Si_{Ga} + *V*_P; после отжига их концентрация уменьшается в несколько раз. Для нелегированных слоев GaPNAs, выращенных на подложках Si и GaP, был обнаружен уровень с глубиной залегания 0.23–0.24 эВ и площадью сечения захвата $\sim 9.0 \cdot 10^{-20}$ см², концентрация этих центров существенно уменьшается в результате отжига, и при температурах отжига > 600°C отклик данных дефектов полностью отсутствует. Для нелегированных слоев GaPNAs, выращенных на подложках GaP, также был обнаружен уровень с энергией активации 0.18 эВ и площадью сечения захвата $\sim 1.1 \cdot 10^{-16}$ см², концентрация этих центров не изменяется после отжига.

1. Введение

Разбавленные нитриды — новый класс материалов, представляющих большой интерес для создания новых оптоэлектронных приборов, в частности высокоэффективных фотоэлектрических преобразователей солнечной энергии (солнечных элементов). Добавление азота в решетку фосфида галлия (GaPN) приводит к значительному уменьшению ширины запрещенной зоны и к изменению зонной структуры материала на прямозонную начиная с очень малых концентраций азота (0.43%) [1,2]. Данный факт создает возможность варьировать ширину запрещенной зоны раствора GaPN в широком диапазоне, 1.5-2.0 эВ, а добавление мышьяка позволяет получить решетку, которая может быть изопериодичной к GaP и Si, что в свою очередь открывает перспективы для создания многопереходных солнечных элементов (СЭ) на основе твердых растворов GaPNAs, выращенных на Si-подложках. В работе [3] был проведен теоретический расчет потенциально достижимого значения кпд трехпереходного СЭ на основе системы GaPNAs/GaPNAs/Si (ширина запрещенной зоны 2.0/1.5/1.12 эВ), которое составляет 44.5% при достижении времени жизни неосновных носителей заряда в GaPNAs ~ 1 нс. Возможность создания СЭ на основе GaPNAs была показана экспериментально в работах [4,5] с помощью метода газофазной эпитаксии из металлоорганических соединений на подложках GaP и Si, а также в работе [6], где с помощью метода молекулярно-пучковой эпитаксии на подложке GaP были выращены p-n- и p-i-n-структуры. Однако результаты этих работ свидетельствуют о недостаточных значениях времени жизни неосновных носителей заряда для создания высокоэффективных СЭ, что в первую очередь связывается с высокой дефектностью полученных слоев GaPNAs. Таким образом, исследование дефектов в

слоях GaPNAs является важной задачей для оптимизации условий роста с целью повышения качества слоев.

В настоящее время количество работ по исследованию дефектов в четверном растворе GaPNAs очень ограниченно. Большая часть работ посвящена исследованию тройных растворов разбавленных нитридов GaAsN [7] и GaPN [8,9]. С помощью метода оптически-детектируемого магнитного резонанса (ОДМР) был обнаружен и описан ряд дефектов типа Ga_i в слоях GaPN [8,9] и GaPNAs [10]. Также с использованием нестационарной спектроскопии глубоких уровней исследовались дефекты в слоях GaP:N (с концентрацией азота $(3-8) \cdot 10^{18}$ см⁻³ [11–13]), а в работе [14] в структурах на основе GaP с квантовыми ямами GaPN и GaPNAs.

В данной работе приводятся результаты исследований дефектных уровней в слоях GaPNAs с помощью спектроскопии полной проводимости.

Исследуемые структуры и методика эксперимента

Фотопреобразовательные гетероструктуры с активным слоем четверного раствора GaPNAs были выращены с помощью метода молекулярно-пучковой эпитаксии на установке Veeco с плазменным источником азота. Изготавливались структуры двух типов: с анизотипным p-n-гетеропереходом на подложке GaP и p-i-n-типа на подложках GaP и Si. Во всех активных слоях GaPNAs доля азота была одинакова и составляла 1.8%, но при этом концентрация мышьяка различалась. В p-n-структуре на подложке фосфида галлия она составляла 15%, а в p-i-n-структуре варьировалась в диапазоне 15–30%. В p-i-n-образце на подложке кремния концентрация мышьяка в GaPNAs составляла 10%. В табл. 1 и 2 приведены параметры слоев p-n-и p-i-n-структур соответственно.

[¶] E-mail: baranovartiom1990@gmail.com

Таблица 1. Параметры слоев *p*-*n*-структуры

Материал	Концентрация доноров <i>n</i> , см ⁻³	Концентрация акцепторов p , см ^{-3}	Толщина, мкм
GaP	Нет	$1\cdot 10^{19}$	0.1
GaP	Нет	$5\cdot 10^{18}$	0.1
GaPNAs	$5\cdot10^{17}$	Нет	1.0
GaP	$5\cdot 10^{18}$	Нет	0.2

Таблица 2. Параметры слоев *p*-*i*-*n*-структуры

Материал	Концентрация доноров n, cm^{-3}	Концентрация акцепторов <i>p</i> , см ⁻³	Толщина, мкм
GaP	Нет	$1\cdot 10^{19}$	0.1
GaP	Нет	$5\cdot 10^{18}$	0.1
GaPNAs	Нет	$5 \cdot 10^{17}$	0.2
<i>i-</i> GaPNAs	Нет	Нет	0.2 - 0.3
GaPNAs	$5\cdot 10^{17}$	Нет	0.2
GaPNAs	$5\cdot 10^{18}$	Нет	0.1

Известно, что постростовой отжиг может приводить к повышению качества слоев разбавленных нитридов. Так, согласно работе [15], после отжига наблюдалось значительное увеличение интенсивности фотолюминесценции GaPN. В данной работе структуры на подложках фосфида галлия отжигались в ростовой камере в потоке фосфора при температуре 700°С. Структуры на подложках кремния были отожжены при температурах 500 и 600°С в азотной среде.

Исследование электрофизических свойств проводилось с помощью метода спектроскопии полной проводимости, который заключается в измерении зависимости емкости и проводимости образца от температуры при разных частотах прикладываемого переменного сигнала. Прикладываемое переменное напряжение приводит к модуляции положения уровня Ферми и, следовательно, может приводить к захвату носителей заряда на дефектные уровни и эмиссии с уровней, которые пересекаются с уровнем Ферми. В этом случае может наблюдаться скачкообразное увеличение емкости с ростом температуры или уменьшением частоты (так называемая ступень емкости), которое сопровождается локальным максимумом проводимости. По положению локальных максимумов проводимости, согласно процедуре, описанной в [16], можно определить параметры дефектных уровней: энергетическое положение и площадь сечения захвата. Измерения проводились с использованием азотного вакуумного криостата Janis VPF-100 в диапазоне температур T от 80 до 320 К и с использованием RLC-метра Е7-20 в интервале частот f от 20 Гц до 1 МГц. Определение концентрации и типа дефектов в многослойных гетероструктурах проводилось с помощью компьютерного моделирования в программе AFORS-HET 2.4.1.

3. Результаты

На рис. 1 представлены температурные зависимости емкости, C(T, f), и проводимости, деленной на циклическую частоту, $G(T, f)/\omega$, p-n-структур для разных частот, а на рис. 2 и 3 — для p-i-n-структур на подложках фосфида галлия и кремния соответственно. Наличие ступеней на кривой емкости с ростом температуры свидетельствует об отклике дефектного уровня в объеме или на границе раздела либо о наличии потенциального барьера на гетеропереходе GaPNAs/GaP. Из анализа теоретических зонных диаграмм и вида экспериментальных вольт-амперных характеристик, на которых отсутствуют какие-либо перегибы, можно сделать заключение, что обнаруженные особенности спектров полной проводимости не связаны с паразитными потенциальными барьерами на границах раздела. Измерения C(T, f) и $G(T, f)/\omega$) при разных напряжениях

Рис. 1. Экспериментальные зависимости C(T, f) и $G(T, f)/\omega$ неотожженной (*a*) и отожженной (*b*) *p*-*n*-структур. *a*: f = 25 (*1*), 100 Гц (*2*), 1 (*3*), 10 (*4*), 50 кГц (*5*). *b*: f = 25 (*1*), 100 Гц (*2*), 1 (*3*), 10 (*4*), 50 кГц (*5*).

Образец	Дефект	Энергия активации, эВ	Площадь сечения захвата σ_a, cm^2	Расчетное значение концентрации дефектов <i>N_a</i> , см ⁻³
<i>p</i> - <i>n</i> , без отжига, на GaP	А	0.22	$\sim 2.4\cdot 10^{-15}$	$\sim 2.0\cdot 10^{17}$
<i>p</i> - <i>n</i> , с отжигом, на GaP	А	0.22	$\sim 9.0\cdot 10^{-15}$	$\sim 5.0\cdot 10^{16}$
p-i-n без отжига, на GaP	В	0.18	$\sim 1.1\cdot 10^{-16}$	$\sim 1.0\cdot 10^{15}$
<i>p v n</i> , <i>co c nnnnc c</i>	B2	0.24	$\sim 8.2\cdot 10^{-20}$	$\sim 1.0\cdot 10^{17}$
n-i-n с отжигом на GaP	В	0.19	$\sim 1.7\cdot 10^{-16}$	$\sim 1.0\cdot 10^{15}$
	C1	0.31	$\sim 5.0\cdot 10^{-16}$	$\sim 5.0\cdot 10^{16}$
p-i-n, без отжига, на Si	B2	0.23	$\sim 9.0\cdot 10^{-20}$	$\sim 5.0\cdot 10^{16}$

Таблица 3. Параметры обнаруженных дефектов в исследуемых структурах

смещения показали, что положения пиков и ступеней не зависят от прикладываемого напряжения смещения, что свидетельствует об отклике дефектных уровней в объеме материала, а не на границе раздела. Все найденные дефекты в образцах и их параметры представлены в табл. 3.

Для исходной *p*-*n*-структуры на подложке фосфида галлия наблюдаются четко различимая ступень емкости и локальные максимумы проводимости при температурах 100-200 K (рис. 1, *a*), что соответствует дефектному уровню A с энергией активации $E_{\rm A} = 0.22$ эВ. При более высокой температуре в спектре полной проводимости можно выделить еще одну ступень емкости с малым значением энергии активации, находящимся в диапазоне 0.04-0.1 эВ. Более точное определение этой величины затруднительно из-за перекрытия обоих откликов, находящихся в одном диапазоне температур. После отжига (рис. 1, b) ступень емкости, отвечающая за наличие дефекта с энергией 0.22 эВ, заметно уменьшилась по абсолютной величине для высоких частот 10 и 50 кГц. При этом изменений для ступени емкости с меньшей энергией активации обнаружено не было.

Для неотожженной p-i-n-структуры, выращенной на подложке фосфида галлия (рис. 2, *a*), можно различить две ступени емкости, которые сопровождаются пиками проводимости: слабая ступень В при температурах 120–200 K с энергией активации $E_{\rm B} = 0.18$ эВ и более значительная по амплитуде ступень В2 при температурах 220–300 K с энергией активации $E_{\rm B2} = 0.24$ эВ. Однако после отжига характер поведения спектров полной проводимости меняется (рис. 2, *b*): не наблюдается отклика дефектного уровня В2 с энергией активации 0.24 эВ и визуально различим только отклик уровня В при низких температурах. Более детальный анализ позволяет выделить еще один очень слабый отклик дефектного уровня (C1) при температурах 150–250 K с энергией активации $E_{\rm C1} = 0.31$ эВ.

Для *p*-*i*-*n*-структур на подложках кремния наблюдается похожая ситуация. Для исходной структуры при

Рис. 2. Экспериментальные зависимости C(T, f) и $G(T, f)/\omega$ неотожженной (*a*) и отожженной (*b*) p-i-n-структур на GaP. *a*: f = 25 (*1*), 100 Гц (*2*), 1 (*3*), 10 кГц (*4*). *b*: f = 100 Гц (*1*), 0.5 (*2*), 1 (*3*), 10 кГц (*4*).

Рис. 3. Экспериментальные зависимости C(T, f) и $G(T, f)/\omega$ неотожженной p-i-n-структуры на Si. f = 100 Гц (1), 0.5 (2), 1 (3), 10 кГц (4).

Рис. 4. Экспериментальные зависимости C(T, f) для p-i-n-структуры на Si: a — исходный образец, b — отжиг при 500°С, c — отжиг при 600°С. f = 25 (1), 60 (2), 100 (3), 120 (4), 200 Гц (5).

Физика и техника полупроводников, 2015, том 49, вып. 4

температурах 220–300 К был обнаружен отклик дефектного уровня с параметрами, очень близкими к параметрам дефекта B2, с энергией активации 0.23 эВ и площадью сечения захвата ~ $9.0 \cdot 10^{-20}$ см² (рис. 3). На рис. 4 представлены зависимости C(T, f) для разных температур отжига. Видно, что после отжига при 500°С (рис. 4, b) амплитуда ступени сильно уменышилась. Такое поведение говорит о том, что концентрация дефектов значительно снизилась, до ~ 10^{15} см⁻³. После отжига при 600°С (рис. 4, c) отклик данного дефектного уровня практически отсутствует, т. е. концентрация стала ниже порога чувствительности методики (10^{14} см⁻³).

Необходимо отметить, что в результате отжига наблюдалось существенное увеличение внешней квантовой эффективности для p-i-n-структур, выращенных на обоих типах подложек.

4. Обсуждение

Рассмотрим дефектный уровень А с энергией активации 0.22 эВ, наблюдаемый в обеих p-n-структурах. Согласно работам [11,12], в материале GaP:N, легированном кремнием, наблюдался уровень Т1 с близкими значениями энергии активации и сечения захвата. Этот дефект является комбинацией $Si_{Ga} + V_P$, которая возникает в условиях неравновесного роста, когда образуется большое количество вакансий галлия и фосфора. Исследуемый слой n-GaPNAs также был легирован кремнием с концентрацией 5.0 · 10¹⁷ см⁻³. Стоит отметить, что данный дефект не был обнаружен в нелегированных слоях четверного раствора GaPNAs, что дает дополнительные основания полагать участие атомов кремния в структуре обнаруженных дефектов. Концентрации дефектов А в исходной и отожженной *p*-*n*-структурах были определены с помощью компьютерного моделирования, которое показало, что после отжига количество таких дефектов уменьшилось в 4 раза и составило $\sim 5.0 \cdot 10^{16} \, \mathrm{cm}^{-3}$.

Из экспериментальных данных следует, что дефект В с энергией активации 0.18 эВ характерен для нелегированных слоев GaPNAs, выращенных на подложках фосфида галлия. В литературе отсутствуют упоминания об этом дефекте с похожими энергией активации и сечением захвата, что позволяет сделать предположение об его уникальности именно для четверных растворов типа GaPNAs. Моделирование показало, что дефект В является ловушкой для электронов, концентрация этих дефектов не меняется при отжиге и равна $\sim 1.0 \cdot 10^{17} \,\mathrm{cm^{-3}}$ в *i*-слоях GaPNAs. Отсутствие отклика этих дефектов в спектрах полной проводимости для слоев GaPNAs, выращенных на подложках кремния, может быть обусловлено различным составом исследуемого материала GaPNAs для образцов на подложках Si и GaP. Слой GaPNAs, выращенный на кремниевой подложке, был решеточно согласован с кремнием. В материале GaPNAs, выращенном на GaP-подложке, доля мышьяка была значительно выше, что могло привести к напряжению в структуре из-за рассогласования с подложкой и появлению характерных дефектов в слое.

Согласно моделированию, концентрация дефектов B2 с энергией активации 0.23-0.24 эВ, которые были обнаружены в исходных образцах на подложках фосфида галлия и кремния, в 2 раза меньше в структурах, выращенных на кремниевых подложках, что также, возможно, связано с разной долей мышьяка в растворах GaPNAs. В то же время было установлено уменьшение концентрации дефектов B2 при постростовом отжиге образцов, выращенных на подложках GaP и Si (рис. 2 и 4), ниже порога обнаружения методики спектроскопии полной проводимости (10^{14} см⁻³).

Дефект C1 с энергией активации 0.31 эВ был обнаружен только в образцах, выращенных на подложках GaP. Отклик этого уровня до отжига, возможно, не наблюдался из-за перекрытия откликов от уровней B2 и C1 в исходной структуре. Согласно моделированию, оба эти дефекта являются ловушками для электронов.

5. Заключение

В работе с помощью метода спектроскопии полной проводимости были исследованы фотопреобразовательные структуры с нелегированными (p-i-n) и легированными кремнием (p-n) слоями GaPNAs. В результате в слоях, легированных кремнием, был обнаружен дефект с энергией активации 0.22 эВ, который является комплексом Si_{Ga} + V_P, и концентрация этих дефектов уменьшается после отжига. Экспериментально показано, что найденные дефекты с энергией активации 0.23-0.24 эВ в нелегированных слоях GaPNAs, выращенных на подложках кремния и фосфида галлия, исчезают после термического отжига. В нелегированных слоях на подложках фосфида галлия образовались дефекты с энергией активации 0.18 эВ, кроме того, после отжига в этих структурах стал заметен отклик дефектов с энергией активации 0.31 эВ.

Список литературы

- W. Shan, W. Walukiewicz, K.M. Yu, J. Wu, J.W. Ager, E.E. Haller, H.P. Xin, C.W. Tu. Appl. Phys. Lett., 76, 3251 (2000).
- [2] I.A. Buyanowa, G. Pozina, J.P. Bergman, W.M. Chen, H.P. Xin, C.W. Tu. Appl. Phys. Lett., **52**, 81 (2002).
- [3] Д.А. Кудряшов, А.С. Гудовских, Е.В. Никитина, А.Ю. Егоров. ФТП, 48 (3), 396 (2014).
- [4] J.F. Geisz, D.J. Friedman, S.R. Kurtz. 29th IEEE PVSC, (2002) p. 864.
- [5] J.F. Geisz, J.M. Olson, D.J. Friedman, K.M. Jones, R.C. Reedy, M.J. Romero. 31th IEEE PVSC (2005) p. 695.
- [6] А.И. Баранов, А.С. Гудовских, Е.В. Никитина, А.Ю. Егоров. Письма ЖТФ, 39 (24), 88 (2013).
- [7] I.P. Vorona, T. Mchedlidze, D. Dagnelund, I.A. Buyanova, W.M. Chen, K. Köhler. Phys. Rev. B, 73, 125 204 (2006).

- [8] N.Q. Thinh, I.P. Vorona, I.A. Buyanova, W.M. Chen, Sukit Limpijumnong, S.B. Zhang, Y.G. Hong, H.P. Xin, C.W. Tu, A. Utsumi, Y. Furukawa, S. Moon, A. Wakahara, H. Yonezu. Phys. Rev. B, **71**, 125 209 (2005).
- [9] D. Dagnelund, I.A. Buyanova, X.J. Wang, W.M. Chen, A. Utsumi, Y. Furukawa, A. Wakahara, H. Yonezu. J. Appl. Phys., **103**, 063 519 (2008).
- [10] D. Dagnelund, Jan Stehr, A.Yu. Egorov, W.M. Chen, I.A. Buyanova. Appl. Phys. Lett., **102**, 021 910 (2013).
- [11] Г.И. Кольцов, С.Ю. Юрчук, В.Д. Алешин, Ю.И. Кунакин. ФТП, 24 (5), 782 (1990).
- [12] A.V. Skazochkin, Y.K. Krutogolov, Y.I. Kunakin. Semicond. Sci. Technol., 10, 634 (1995).
- [13] K. Zdansky, J. Zavadil, D. Nohavica, S. Kugler. J. Appl. Phys., 83, 7678 (1998).
- [14] О.И. Румянцев, П.Н. Брунков, Е.В. Пирогов, А.Ю. Егоров. ФТП, **44** (7), 923 (2010).
- [15] A. Utsumi, H. Yonezu, Y. Furukawa, K. Momose, K. Kuroki. Phys. Status Solidi C, 0 (7), 2741 (2003).
- [16] D.L. Loose. J. Appl. Phys., 46 (5), 2204 (1975).

Редактор Л.В. Шаронова

Admittance spectroscopy of solar cells based on GaPNAs layers

A.I. Baranov, A.S. Gudovskikh, K.S. Zelentsov, E.V. Nikitina, A.Yu. Egorov

St. Petersburg Academic University — Nanotechnology Research and Education Centre, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Defect properties of GaPNAs quaternary alloy layers were studied by admittance spectroscopy. Defect level with activation energy of 0.22 eV and cross section of $\sim 2.4 \cdot 10^{-15}$ cm² was detected in Si doped *n*-GaPNAs layers grown on GaP wafers. This defect level corresponds to the one previously observed in Si doped GaP:N layers, which was defined as Si_{Ga} + *V*_P system; its concentration decreases several times with annealing. Defect with activation energy of 0.23–0.24 eV and cross section of $\sim 9.0 \cdot 10^{-20}$ cm² was detected in undoped GaPNAs layers grown on Si and GaP wafers. Its concentration strongly decreases with annealing and became indistinguishable after annealing above 600°C. Also defect with activation energy of 0.18 eV and cross section of $\sim 1.1 \cdot 10^{-16}$ cm² was discovered in intrinsic GaPNAs layers grown on GaP wafers, which concentration does not change with annealing.