Магнитные фазовые переходы в допированных железом манганитах Pr_{0.7}Ca_{0.3}Mn_{1-y}Fe_yO₃ при высоких давлениях

© Д.П. Козленко, В.И. Воронин*, В.П. Глазков**, И.В. Медведева*, Б.Н. Савенко

Объединенный институт ядерных исследований,

141980 Дубна, Московская обл., Россия

*Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

** Российский научный центр "Курчатовский институт",

123182 Москва, Россия

E-mail: denk@nf.jinr.ru

(Поступила в Редакцию 9 июля 2003 г.)

Методом нейтронной дифракции исследована атомная и магнитная структура допированных железом манганитов $Pr_{0.7}Ca_{0.3}Mn_{1-y}Fe_yO_3$ (y = 0, 0.1) при высоких давлениях до 4 GPa в диапазоне температур 16–300 К. При нормальном давлении в области низких температур в $Pr_{0.7}Ca_{0.3}MnO_3$ происходит фазовый переход из парамагнитного в антиферромагнитное (AΦM) состояние псевдо-CE типа, а в $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$ — переход из парамагнитного в ферромагнитное состояние. Частичное замещение атомов Mn атомами Fe приводит к заметному уменьшению среднего магнитного момента на атом. При давлении $P \approx 2.2$ GPa в $Pr_{0.7}Ca_{0.3}MnO_3$ и 2.7 GPa в $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$ в области низких температур наблюдалось возникновение нового AΦM состояния A-типа. Возможной причиной этого явления может являться анизотропия сжимаемости, которая приводит к одноосному сжатию кислородных октаэдров MnO₆ в структуре и формирует предпочтительные условия для формирования AΦM состояния A-типа. На основе полученных структурных параметров рассчитана зависимость ширины зоны носителей заряда от давления в исследуемых соединениях.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 03-02-16879) и Министерства промышленности, науки и технологий РФ (госконтракт № 40.012.1.1.1148).

Введение

Перовскитоподобные манганиты $A_{1-x}A'_xMnO_3$ (A — редкоземельный, A' — щелочноземельный элемент) проявляют большое разнообразие магнитных и электронных свойств в зависимости от номера A'-элемента и его содержания. Большой интерес к изучению этих соединений был вызван открытием эффекта колоссального магнетосопротивления (KMC), обусловленного сильной корреляцией магнитных, электронных и транспортных свойств манганитов [1].

Интересно отметить, что "химическое" давление, т.е. уменьшение среднего радиуса A/A'-катиона $\langle r_A \rangle$ при фиксированной концентрации (x), и внешнее высокое давление оказывают качественно различное влияние на магнитные и транспортные свойства манганитов. В обоих случаях наблюдается уменьшение объема элементарной ячейки, однако влияние "химического" давления приводит к снижению температуры перехода диэлектрик-металл T_{I-M} и температуры Кюри T_C [2], а приложение внешнего давления ведет к росту T_{I-M} и Т_С [3]. Предполагается [3], что данное явление связано с различным влиянием "химического" и внешнего давления на ширину зоны носителей заряда W, которая в рамках модели двойного обмена [4-6] определяет значения T_{I-M} и T_C ($T_{I-M} \approx T_C \propto W$). Величина W определяется значениями длин связей Мп-О и валентных углов Мп-О-Мп в кислородных октаэдрах МпО₆ [3]. Воздействие "химического" давления приводит к уменьшению *W* за счет уменьшения валентного угла Mn–O–Mn, а при воздействии внешнего давления ожидается увеличение валентного угла Mn–O–Mn.

Интересными объектами для изучения взаимосвязи между изменениями кристаллической и магнитной структуры, транспортных и магнитных свойств манганитов под влиянием внешнего высокого давления явлются соединения Pr_{0.7}Ca_{0.3}Mn_{1-v}Fe_vO₃. Исходный состав Pr_{0.7}Ca_{0.3}MnO₃ [7,8] в нормальных условиях имеет орторомбическую структуру (пр. гр. Рпта) и является парамагнитным диэлектриком. С понижением температуры при $T_{\rm CO} \approx 200 \, {\rm K}$ в нем наблюдается электронный фазовый переход, связанный с зарядовым упорядочением ионов Mn³⁺/Mn⁴⁺ в структуре. При $T_N \approx 140 \,\mathrm{K}$ в $\mathrm{Pr}_{0.7}\mathrm{Ca}_{0.3}\mathrm{MnO}_3$ происходит переход в антиферромагнитное (АФМ) состояние псевдо-СЕ типа, для которого характерно наличие двух магнитных подрешеток с векторами распространения $q_1 = (001/2)$ и $q_2 = (1/201/2)$, образованных ионами Mn³⁺ и Mn⁴⁺ [1]. С дальнейшим понижением температуры наблюдается сложное магнитное состояние, включающее АФМ компоненту псевдо-СЕ типа и ферромагнитную (ФМ) компоненту [8,9]. Согласно [9], появление такого магнитного состояния в Pr_{0.7}Ca_{0.3}MnO₃ обусловлено фазовым расслоением в области низких температур, приводящим к сосуществованию АФМ и ФМ фаз. Однако окончательного подтверждения это предположение не получило. Так, в [10] признаков фазового расслоения в Pr_{0.7}Ca_{0.3}MnO₃ не наблюдалось и было установлено, что магнитная структура этого соединения является скошенным антиферромагнетиком, имеющим АФМ и ФМ компоненты.

Под воздействием внешнего высокого давления P > 0.5 GPa в $Pr_{0.7}Ca_{0.3}MnO_3$ наблюдался фазовый переход диэлектрик-металл, причем с ростом давления происходит заметное увеличение T_{I-M} [11]. В нейтронографическом исследовании монокристаллов $Pr_{0.7}Ca_{0.3}MnO_3$ при давлении до 2 GPa [12] наблюдались подавление антиферромагнитной компоненты и рост вклада ферромагнитной компоненты при низких температурах.

Для соединений Pr_{1-x}Ca_xMnO₃ концентрация атомов Са $x \approx 0.3$ лежит вблизи фазовой границы, разделяющей области антиферромагнитного и ферромагнитного состояния, и незначительные вариации химического состава могут привести к изменению магнитного состояния системы. Так, в исследовании систем Pr_{0.6}Ca_{0.4}Mn_{1-v}Fe_vO₃ [13] было установлено, что замещение части атомов Mn атомами Fe приводит к разрушению зарядового упорядочения ионов Mn³⁺/Mn⁴⁺ и появлению ферромагнитного металлического состояния в области низких температур при y > 0.02. Подавление зарядового упорядочения ионов Mn³⁺/Mn⁴⁺ при допировании железом также наблюдалось в системах $Pr_{0.5}Ca_{0.5}Mn_{1-\nu}Fe_{\nu}O_{3}$ [14,15], оданко в области низких температур они остаются диэлектриками и переход в металлическое состояние происходит лишь при приложении внешнего магнитного поля [15].

Настоящая работа посвящена исследованию влияния внешнего высокого давления на атомную и магнитную структуру допированных железом манганитов $Pr_{0.7}Ca_{0.3}Mn_{1-y}Fe_yO_3$ (y = 0, 0.1) в области низких температур методом нейтронной дифракции и изучению взаимосвязи между наблюдаемыми структурными изменениями и изменениями магнитных и транспортных свойств.

1. Описание эксперимента

Поликристаллические образцы Pr_{0.7}Ca_{0.3}Mn_{1-v}Fe_vO₃ (у = 0, 0.1) были приготовлены обычным методом твердофазной реакции. Стехиометрические смеси порошков Pr₆O₁₁, CaCO₃, MnO₂ и Fe₂O₃ отжигались на воздухе при температуре 1173 К в течение 24 h. Синтез проводился при температуре 1473 К в течение 96 h с промежуточным дроблением и прессованием в таблетки. Эксперименты проводились на спектрометре ДН-12 [16] на импульсном высокопоточном реакторе ИБР-2 (ЛНФ им. И.М. Франка, ОИЯИ, Дубна) с использованием камер высокого давления с сапфировыми наковальнями [17] в диапазоне внешних высоких давлений до 4 GPa. Объем исследуемых образцов составлял $V \sim 2 \,\mathrm{mm^3}$. Дифракционные спектры измерялись при углах рассеяния $2\theta = 92$ и 45.9°. Для данных углов рассеяния разрешение дифрактометра на длине волны $\lambda = 2$ Å составляло $\Delta d/d = 0.02$ и 0.025 соответственно. Характерное время измерения одного спектра —

20 h. Давление в камере измерялось по сдвигу линии люминесценции рубина с точностью 0.05 GPa. В качестве величины давления на образце использовалось значение, усредненное по величинам, определенным в нескольких точках поверхности образца. Градиент распределения давления по поверхности образца не превышал 10%. Для проведения измерений с камерой высокого давления при низких температурах до 16 К использовался специализированный криостат на базе гелиевого рефрижератора замкнутого цикла. Анализ дифракционных данных производился методом Ритвельда с помощью программ MRIA [18] (атомная структура) в рамках известных структурных моделей [8,9].

2. Полученные результаты

Участки дифракционных спектров Pr_{0.7}Ca_{0.3}MnO₃, полученных при различных давлениях и температурах, показаны на рис. 1. Во всем исследуемом интервале давлений до 4 GPa атомная структура этого соединения сохраняет исходную орторомбическую симметрию. Рассчитанные на основе дифракционных данных структурные параметры Pr_{0.7}Ca_{0.3}MnO₃ при нормальных условиях (см. таблицу) находятся в хорошем согласии с предыдущими исследованиями Pr_{0.7}Ca_{0.3}MnO₃ [8,9]. Спектр, измеренный при нормальном давлении и $T = 16 \, \text{K}$, соответствует АФМ состоянию псевдо-СЕ типа, о чем свидетельствует появление сверхструктурных магнитных пиков с индексами (1/201/2) и (101/2) (вставка на рис. 1). В результате анализа дифракционных данных было установлено, что магнитные моменты ионов Мп направлены вдоль кристаллографической оси b и имеют примерно одинаковые значения для обеих подрешеток,

Рис. 1. Дифракционные спектры $Pr_{0.7}Ca_{0.3}MnO_3$, измеренные при P = 2.2 GPa и T = 290 K (угол рассеяния $2\theta = 92^{\circ}$), P = 0 и 2.2 GPa, T = 16 K (угол рассеяния $2\theta = 45.9^{\circ}$ — вставка), обработанные по методу Ритвельда. Показаны экспериментальные точки, вычисленный профиль и разностная кривая (для P = 2.2 GPa, T = 290 K). Приведены индексы Миллера для наиболее интенсивных АФМ рефлексов.

Параметр	Pr _{0.7} Ca _{0.3} MnO ₃			$Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_{3}$		
P, GPa	0	2.2	4	0	2.7	3.7
a, Å	5.468(5)	5.468(5)	5.468(5)	5.461(5)	5.461(5)	5.461(5)
b, Å	7.677(8)	7.63(1)	7.56(1)	7.685(8)	7.61(1)	7.59(1)
c,Å	5.435(5)	5.435(5)	5.435(5)	5.431(5)	5.431(5)	5.431(5)
Pr/Ca: x	0.036(3)	0.038(5)	0.036(5)	0.041(3)	0.046(5)	-0.051(5)
Z	-0.013(4)	-0.030(6)	-0.026(6)	-0.008(4)	-0.032(6)	-0.027(4)
O1: <i>x</i>	0.486(4)	0.489(5)	0.477(5)	0.486(4)	0.483(5)	0.484(5)
Z	0.070(3)	0.068(5)	0.064(5)	0.070(3)	0.066(5)	0.066(5)
O2: x	0.286(2)	0.287(3)	0.287(3)	0.288(2)	0.290(3)	0.290(3)
у	0.039(2)	0.035(4)	0.034(4)	0.039(2)	0.039(4)	0.038(4)
Z	0.714(2)	0.713(3)	0.713(3)	0.712(2)	0.710(3)	0.710(3)
$\mu_{ m AFM},\ \mu_{ m B}$	2.6(1)	1.6(1)	2.1(1)	—		1.5(1)
$\mu_{\mathrm{FM}},\ \mu_{\mathrm{B}}$	—	—	—	1.4(1)		0.8(1)
Mn/Fe–O1, Å	1.958(8)	1.94(1)	1.93(1)	1.961(8)	1.94(1)	1.93(1)
Mn/Fe–O2, Å	1.972(8)	1.968(12)	1.967(12)	1.971(8)	1.973(12)	1.972(12)
	1.969(8)	1.965(12)	1.963(12)	1.968(8)	1.970(12)	1.969(12)
Mn/Fe-O1-Mn/Fe	157.2(1)°	157.2(2)°	157.6(2)°	$157.1(1)^{\circ}$	157.9(2)°	158.0(2)°
Mn/Fe-O2-Mn/Fe	156.1(1)°	157.9(2)°	157.9(2)°	155.5(1)°	155.1(2)°	155.4(2)°
$R_{p}, \%$	2.81	7.62	10.33	5.54	8.11	8.68
$R_{wp},\%$	2.90	6.36	8.15	3.39	6.77	6.16

Структурные параметры соединений Pr0.7Ca0.3MnO3 и Pr0.7Ca0.3MnO.9Fe0.1O3 при различных давлениях и комнатной температуре

Примечание. Атомы Mn/Fe находятся в позициях 4(b) (0,0,0.5), атомы Pr/Ca и O1 — 4(c) (x, 1/4, z) и атомы O2 — 8(d) (x, y, z) пространственной группы *Pnma*. Также приведены значения средних магнитных моментов атомов Mn/Fe при T = 16 K, валентных связей Mn/Fe–O1, Mn/Fe–O2, валентных углов Mn/Fe–O1–Mn/Fe и Mn/Fe–O2–Mn/Fe.

 $\mu_{q1} \approx \mu_{q2} = 2.6(1) \,\mu_{\rm B}$. Эти значения согласуются с величиной полного магнитного момента ${\rm Pr}_{0.7}{\rm Ca}_{0.3}{\rm MnO}_3$ $\mu = 2.53(7) \,\mu_{\rm B}$, полученной в [10].

В настоящем исследовании в области температур $T < 100 \, \mathrm{K}$ появление ферромагнитной компоненты в $\mathrm{Pr}_{0.7}\mathrm{Ca}_{0.3}\mathrm{MnO}_3$ не наблюдалось. Уточнение содержания кислорода по дифракционным данным показало, что оно несколько отличается от 3.0 и точная химическая формула исследуемого соединения — $\mathrm{Pr}_{0.7}\mathrm{Ca}_{0.3}\mathrm{MnO}_{2.98}$. Наличие кислородной нестехиометрии является возможной причиной отсутствия ферромагнитной компоненты в исследуемом образце, поскольку она может оказывать существенное влияние на свойства манганитов [20].

При давлении P = 2.2 GPa в области температур $T \leq 150$ K в $Pr_{0.7}Ca_{0.3}$ MnO₃ обнаружено появление новых магнитных пиков (рис. 1), положение которых не согласовывалось с исходной АФМ структурой псевдо-СЕ типа. Анализ дифракционных данных показал, что данные пики соответствуют новому антиферромагнитному состоянию со структурой А-типа [1] и вектором распространения q = (010). Согласно [11], это состояние является металлическим. Магнитные моменты ионов Mn в АФМ структуре А-типа лежат в кристаллографической плоскости (*ac*) и при P = 2.2 GPa и T = 16 K имеют значения $\mu_{AFM} = 1.6(1)\mu_{B}$. Полученные структурные параметры $Pr_{0.7}Ca_{0.3}$ MnO₃ при различных давлениях представлены в таблице.

Интересно отметить, что при нейтронографическом исследовании монокристаллов $Pr_{0.7}Ca_{0.3}MnO_3$ [12] при давлениях до 2 GPa также было установлено подавление вклада от псевдо-СЕ АФМ компоненты магнитной

структуры. Однако в этом эксперименте сканирование обратного пространства производилось только в области некоторых наиболее интенсивных магнитных рефлексов псевдо-СЕ АФМ и ФМ компонент магнитной структуры, и переход в АФМ состояние А-типа не был обнаружен.

Участки дифракционных спектров Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃, полученных при различных давлениях и температурах, показаны на рис. 2. При нормальном давлении с понижением температуры при T < 100 К в этом соединении наблюдалось увеличение интегральных интенсивностей дифракционных пиков (101)/(020) и (200)/(002)/(121), что свидетельствовало о возникновении ферромагнитного состояния. После анализа дифракционных данных было установлено, что магнитные моменты ионов Mn/Fe лежат в плоскости (ac) и их среднее значение при $T = 16 \,\mathrm{K}$ составляет $\mu_{\rm FM} = 1.4(1) \, \mu_{\rm B}$. По аналогии с близкими по химическому составу и магнитным свойствам соединениями $Pr_{0.6}Ca_{0.4}Mn_{1-v}Fe_vO_3$ 13 можно предположить, что оно также является металлическим. Замещение 10 at.% атомов Mn атомами Fe приводит к заметному уменьшению значения среднего магнитного момента ионов Mn/Fe, которое в исходном соединении $Pr_{0.7}Ca_{0.3}MnO_3$ составляет 2.6 μ_B . Подобное явление наблюдалось также в La_{0.7}Ca_{0.3}Mn_{1-y}Fe_yO₃ [21]. Ионы железа в данных соединениях замещают часть ионов Mn^{3+} и они находятся в состоянии Fe^{3+} $(t_{2g}^{3}e_{g}^{2})$ с $2e_{g}$ электронами. Такое замещение приводит к ослаблению двойного обменного взаимодействия, лежащего в основе формирования ферромагнитного состояния в манганитах [1] и появлению магнитных неодно-

Рис. 2. Дифракционные спектры $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$, измеренные при P = 3.7 GPa и T = 290 K (угол рассеяния $2\theta = 92^{\circ}$), P = 0 и 3.7 GPa, T = 16 K (угол рассеяния $2\theta = 45.9^{\circ}$ — вставка), обработанные по методу Ритвельда. Показаны экспериментальные точки, вычисленный профиль и разностная кривая (для P = 3.7 GPa, T = 290 K). Приведены индексы Миллера для наиболее интенсивных структурных рефлексов, имеющих ферромагнитный вклад (при P = 0) и AΦM рефлексов (при P = 3.7 GPa).

Рис. 3. Зависимости длины связи Mn-O1 и средней длины связи $\langle Mn-O2 \rangle$ в $Pr_{0.7}Ca_{0.3}MnO_3$ и $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$ от давления и их линейная интерполяция (сплошные линии).

родностей [14]. Следствием влияния этих факторов является уменьшение среднего значения магнитного момента ионов Mn/Fe и намагниченности [14,21]. С повышением давления при P = 2.7 GPa и $T \approx 40$ K в Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃ также обнаружено появление новых магнитных дифракционных пиков, соответствующих антиферромагнитному состоянию А-типа, при этом наблюдалось его сосуществование с иходным ферромагнитным состоянием вплоть до T = 16 K (рис. 2). При P = 3.7 GPa и T = 16 K рассчитанные средние значения магнитных моментов ионов Mn/Fe в АФМ фазе составили $\mu_{AFM} = 1.5(1) \mu_{B}$, а в ФМ фазе — $\mu_{FM} = 0.8(1) \mu_{B}$.

Структурные параметры Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃ при различных давлениях представлены в таблице.

Оба исследуемых соединения показывают заметную анизотропию сжатия. Рассчитанный коэффициент линейной сжимаемости $k_i = (1/a_{i0}) \cdot (da_i/dP)_T$ для параметра элементарной ячейки *b* при комнатной температуре составляет $k_b = 0.004 \,\text{GPa}^{-1}$ для $\text{Pr}_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ и 0.003 GPa⁻¹ для $\text{Pr}_{0.7}\text{Ca}_{0.3}\text{Mn}_{0.9}\text{Fe}_{0.1}\text{O}_3$, в то время как соответствующие значения для других параметров элементарной ячейки k_a , $k_c < 0.0015 \,\text{GPa}^{-1}$ для обоих соединений. Появление уширения дифракционных пиков при высоких давлениях, связанного с наличием градиента распределения давления по объему исследуемого образца, не позволило определить изменения параметров *a* и *c* элементарной ячейки с достаточной точностью, поэтому величины k_a и k_c имеют оценочный характер.

Анизотропия сжатия различных параметров решетки приводит к одноосному сжатию кислородных октаэдров MnO₆ в структуре вдоль кристаллографической оси b. Длины двух валентных связей Mn-O2, лежащих в плоскости (ac), практически не изменяются с давлением, их среднее значение $\langle l_{\rm Mn-O2} \rangle \approx 1.97(1)$ Å, в то время как длина валентной связи Mn-O1, ориентированной вдоль кристаллографической оси b, уменьшается с $l_{\rm Mn-O1} \approx 1.96$ до 1.93 Å в обоих соединениях (рис. 3). Значение коэффициента линейной сжимаемости, усредненной по кислородному октаэдру длины связи $\langle \text{Mn-O} \rangle k_{\langle \text{Mn-O} \rangle} = (1/l_{\langle \text{Mn-O} \rangle 0}) (dl_{\langle \text{Mn-O} \rangle}/dP)_T$, составляет $k_{\langle Mn-O \rangle} = 0.0018 \, \text{GPa}^{-1}$ для $Pr_{0.7} \text{Ca}_{0.3} \text{MnO}_3$ и 0.0011 GPa⁻¹ для Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃. Рассчитанное значение $k_{(Mn-O)}$ для $Pr_{0.7}Ca_{0.3}MnO_3$ согласуется с величиной $k_{\langle {\rm Mn-O} \rangle} = 0.00232 \, {\rm GPa^{-1}},$ полученной в более узком диапазоне давлений до 0.6 GPa [8]. В Pr_{0.7}Ca_{0.3}MnO₃ с ростом давления от 0 до 4GPa происходит увеличение валентных углов в кислородных октаэдрах MnO₆, угол Mn–O2–Mn возрастает от 156.1 до 157.6°, а угол Мп-О1-Мп — от 157.2 до 157.9°. В Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃ с ростом давления до 3.7 GPa величина угла Mn-O2-Mn мало изменяется, $lpha_{
m Mn-O2-Mn} pprox 155.42^\circ$, а значение угла Mn-O1-Mn возрастает от 157.2 до 158°.

3. Обсуждение результатов

Возможной причиной возникновения антиферромагнитного металлического состояния А-типа в $Pr_{0.7}Ca_{0.3}MnO_3$ И $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$ является анизотропия сжимаемости этих соединений, которая приводит к заметному одноосному сжатию кислородных октаэдров MnO₆ вдоль кристаллографической оси b. Недавние теоретические [22] и экспериментальные [23] исследования показали, что магнитные свойства манганитов, обладающих эффектом колоссального магнитосопротивления, существенным образом зависят от величины тетрагонального искажения c_p/a_p параметров псевдокубической элементарной ячейки структуры перовскита. Соотношение между параметрами

Рис. 4. Ориентация магнитных моментов ионов Mn/Fe в магнитной структуре А-типа для $Pr_{0.7}Ca_{0.3}MnO_3$ и $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$ при высоких давлениях.

орторомбической ячейки (a, b, c) перовскитоподобных манганитов (пр. гр. *Pnma*) и параметрами c_p, a_p имеет вид: $a \approx c \approx a_p \sqrt{2}$, $b \approx 2c_p$. Пренебрегая разницей между значениями параметров а и с элементарной ячейки орторомбической структуры Pr0.7Ca0.3MnO3 и Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃ (которая не превышает 1%), можно оценить величину тетрагонального искажения этих соединениях как $c_p/a_p \approx l_{\text{Mn-O1}}/l_{(\text{Mn-O2})}$. в Полученные значения составляют $c_p/a_p = 0.986$ для $Pr_{0.7}Ca_{0.3}MnO_3$ при P = 2.2 GPa, $c_p/a_p = 0.984$ для $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$ при P = 2.7 GPa и уменьшаются с дальнейшим ростом давления или понижением температуры. Согласно [22,24], в случае тетрагонального искажения $c_p/a_p < 1$ происходят преимущественное заселение $d(x^2 - y^2)$ орбиталей ионов Mn (возникает орбитально упорядоченное состояние) и уменьшение обменного интеграла J₁ между ближайшими соседями в направлении одноосного сжатия. Эти факторы создают предпочтительные условия для формирования АФМ состояния А-типа, для которого характерно наличие чередующихся вдоль оси b орторомбической структуры ферромагнитных плоскостей (ac) с противоположным направлением магнитных моментов ионов Mn/Fe (рис. 4).

Возникновение металлического антиферромагнитного состояния А-типа также обнаружено в некоторых манганитах при нормальном давлении в области низких температур — $\Pr_{1-x}Sr_xMnO_3$ при 0.48 < x < 0.58 [25], $Nd_{1-x}Sr_xMnO_3$ при 0.48 < x < 0.58 [26] и $(Nd_{1-z}La_z)_{0.5}Sr_{0.5}MnO_3$ при 0.48 < z < 0.6 [11]. Переход в АФМ состояние А-типа в этом случае также сопровождался значительным одноосным сжатием кислородных октаэдров MnO_6 , вызванным заметным уменьшением параметра b и небольшим увеличением параметров a и c элементарной ячейки.

Упорядочение $d(x^2 - y^2)$ -орбиталей ионов Mn в плоскостях (ac) способствует формированию псевдодвумерной зоны проводимости, ширина которой W может существенно зависеть от межатомных расстояний и углов. В рамках модели двойного обмена [5–7] вариация температуры перехода диэлектрик-металл T_{I-M} и температуры Кюри T_C при вариации химического состава или воздействии внешнего давления определяется изменением ширины зоны носителей заряда W, $T_{I-M}(T_C) \propto W$. Зависимость W от структурных параметров в перовскитных материалах ABO₃ может быть выражена следующим образом [27,28]:

$$W \propto \frac{\cos \omega}{l_{\rm B-O}^{3.5}}.$$
 (1)

Здесь ω — средний угол наклона октаэдров ВО₆ в плоскости валентной связи, $\omega = 1/2(\pi - \langle B-O-B \rangle)$, и l_{B-O} — средняя длина связи В–О.

Уменьшение средней длины связи (Mn-O) и увеличение среднего межатомного угла (Mn/Fe–O–Mn/Fe) (увеличение $\cos \omega$) приводят к почти линейному возрастанию W (рис. 5) в соединениях $Pr_0 Ca_0 Mn_{1-v}Fe_vO_3$ при увеличении давления. На рис. 5 также показаны барическая зависимость температуры перехода диэлектрик-металл $T_{I-M}(P)$, полученная для исследуемого образца Pr_{0.7}Ca_{0.3}MnO₃ в диапазоне давлений 1.5-2.1 GPa в ИФМ УрО РАН, и аналогичные данные для Pr_{0.7}Ca_{0.3}MnO₃, полученные ранее в диапазоне 0.5-1.5 GPa [11]. Как видно из рис. 5, в Pr_{0.7}Ca_{0.3}MnO₃ наблюдается заметная корреляция между зависимостями $T_{I-M}(P)$ и W(P). Некоторое расхождение между величинами $T_{I-M}(P)$ для образца $Pr_{0.7}Ca_{0.3}MnO_3$, исследуемого в настоящей работе, и данными [11], по-видимому, связано с небольшим отклонением содержания кислорода (2.98) от идеального (3.0).

Проведенные ранее исследования свойств манганитов $A_{0.7}A'_{0.3}$ MnO₃ [2] с различными значениями среднего радиуса A/A'-катиона $\langle r_A \rangle$ показали наличие тесной взаимосвязи между температурой перехода диэлектрик-металл и так называемым фактором толерантности, характеризующим геометрическое искажение кристаллической структуры по сравнению с идеальной кубической

Рис. 5. Рассчитанные зависимости ширины зоны носителей заряда W для $Pr_{0.7}Ca_{0.3}MnO_3$ (1) и $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$ (2) от давления и их линейная интерполяция (сплошные линии). Также показаны зависимости температуры перехода диэлектрик-металл T_{I-M} от давления, полученные для исследуемого образца $Pr_{0.7}Ca_{0.3}MnO_3$ (3), и аналогичные данные из работы [10] (4).

Рис. 6. Зависимость фактора толерантности *t* для Pr_{0.7}Ca_{0.3}MnO₃ и Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃ от давления.

структурой перовскита,

$$t = l_{\rm A-O}/\sqrt{2}l_{\rm Mn-O},\tag{2}$$

где l_{A-O} — расстояние между A/A'-катионами и атомами кислорода и l_{Mn-O} — длина валентной связи Mn–O. Идеальной кубической структуре перовскита соответствует t = 1. Соединению Pr_{0.7}Ca_{0.3}MnO₃ отвечает величина фактора толерантности, которая находится вблизи границы перехода диэлектрик-металл [2]. В результате расчета с использованием таблиц стандартных ионных радиусов A/A'-катиона, отвечающих величине координационного числа атомов кислорода вокруг A/A'-катиона N = 12, для Pr_{0.7}Ca_{0.3}MnO₃ было получено значение $t \approx 0.96$ [29]. С увеличением t сначала наблюдался рост T_{I-M} до $t \approx 0.98$, а затем небольшое снижение T_{I-M} .

Анизотропия сжатия решетки при высоких давлениях ведет к неэквивалентному изменению различных межатомных расстояний. В этом случае для вычисления t можно использовать усредненные по первой координационной сфере значения межатомных расстояний $\langle l_{A-O} \rangle$ и $\langle l_{Mn-O} \rangle$, $t = \langle l_{A-O} \rangle / \sqrt{2} \langle l_{Mn-O} \rangle$. Вычисленное таким образом значение t = 0.97 для $Pr_{0.7}Ca_{0.3}MnO_3$ при P = 0 хорошо согласуется с данными [29]. С повышением давления до $P = 4 \, \text{GPa}$ наблюдается рост tот 0.97 до 0.974 в Pr_{0.7}Ca_{0.3}MnO₃ и от 0.967 до 0.98 в Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O₃ (рис. 6). В предположении отсутствия заметных качественных различий в поведении T_{I-M} как функции t в случае внешнего (P) и "химического" (уменьшение $\langle r_A \rangle$) давления в $Pr_{0.7}Ca_{0.3}MnO_3$ при относительном росте t на 0.41%, сответствующем увеличению давления до 4 GPa, следует ожидать увеличения T_{I-M} до значения $T_{I-M} \sim 140$ К. В работе [11] установлено, что в диапазоне давлений 0.5-1.5 GPa температура перехода диэлектрик-металл в Pr_{0.7}Ca_{0.3}MnO₃ увеличивается от $T_{I-M} = 66$ до 118 K, причем градиент роста ТІ-м уменьшается с увеличением давления.

По-видимому, фактор толерантности является универсальной характеристикой, качественно определяющей изменения свойств манганитов как при приложении внешнего высокого давления, так и при вариации $\langle r_A \rangle$.

Заключение

Результаты настоящей работы показывают, что воздействие внешнего высокого давления приводит к возникновению антиферромагнитного состояния А-типа в исследуемых манганитах, которое является металлическим в $Pr_{0.7}Ca_{0.3}MnO_3$ и, по-видимому, металлическим в $Pr_{0.7}Ca_{0.3}Mn_{0.9}Fe_{0.1}O_3$. Возможной причиной данного явления может быть анизотропия сжимаемости этих соединений, которая приводит к одноосному сжатию кислородных октаэдров MnO_6 и преимущественному заселению орбиталей $d(x^2 - y^2)$ ионов Mn.

Проведенные на основе полученных структурных данных расчеты показали, что под воздействием давления происходит рост ширины зоны носителей заряда *W*. Этот результат в рамках модели двойного обмена качественно согласуется с экспериментально наблюдаемым ростом температуры перехода диэлектрик-металл *T*_{I-M} в исследуемых соединениях.

Авторы признательны G.H. Rao за предоставление образцов для исследований.

Список литературы

- [1] M.B. Salamon, M. Jaime. Rev. Modern Phys. 73, 583 (2001).
- [2] H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg. Phys. Rev. Lett. 75, 914 (1995).
- [3] H.Y. Hwang, T.T.M. Palstra, S.-W. Cheong, B. Batlogg. Phys. Rev. B 52, 15046 (1995).
- [4] C. Zener. Phys. Rev. 81, 440 (1951); 82, 403 (1951).
- [5] P.W. Anderson, H. Hasegawa. Phys. Rev. 100, 675 (1955).
- [6] P.-G. de Gennes. Phys. Rev. B **118**, 141 (1960).
- [7] Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha, S. Vratislav. J. Magn. Magn. Mater. 53, 153 (1985).
- [8] P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.-W. Cheong, J.D. Jorgensen, D.N. Argyriou. Phys. Rev. B 56, 8265 (1997).
- [9] P.G. Radaelli, R.M. Ibberson, D.N. Argyriou, H. Casalta, K.H. Andersen, S.-W. Cheong, J.F. Mitchell. Phys. Rev. B 63, 172 419 (2001).
- [10] A.M. Balagurov, V.Yu. Pomjakushin, D.V. Sheptyakov, V.L. Aksenov, P. Fischer, L. Keller, O.Yu. Gorbenko, A.R. Kaul, N.A. Babushkina. Phys. Rev. B 64, 024420 (2001).
- [11] Y. Moritomo, H. Kuwahara, Y. Tomioka, Y. Tokura. Phys. Rev. B 55, 7549 (1997).
- [12] H. Yoshizawa, R. Kajitomo, H. Kawano, Y. Tomioka, Y. Tokura. Phys. Rev. B 55, 2729 (1997).
- [13] F. Damay, A. Maignan, C. Martin, B. Raveau. J. Appl. Phys. 82, 1485 (1997).
- [14] S. Hebert, A. Maignan, C. Martin, B. Raveau. Solid State Commun. 121, 229 (2002).
- [15] F. Damay, C. Martin, A. Maignan, B. Raveau. J. Magn. Magn. Mater. 183, 143 (1998).
- [16] V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.P. Kozlenko, I.V. Naumov, B.N. Savenko, D.V. Sheptyakov, V.A. Somenkov, A.P. Bulkin, V.A. Kudryashev, V.A. Trounov. Physica B 265, 258 (1999).
- [17] В.П. Глазков, И.Н. Гончаренко. Физика и техника высоких давлений **1**, 56 (1991).

- [18] V.B. Zlokazov, V.V. Chernyshev. J. Appl. Cryst. 25, 447 (1992).
- [19] J. Rodriguez-Carvajal. Physica B 192, 55 (1993).
- [20] С.В. Труханов, И.О. Троянчук, Ф.П. Коршунов, В.А. Сиренко, Х. Шимчак, К. Барнер. Физика низких температур 27, 385 (2001).
- [21] G.H. Rao, J.R. Sun, A. Kattwinkel, L. Haupt, K. Barner, E. Schmitt, E. Gmelin. Physica B 269, 379 (1999).
- [22] Z. Fang, I.V. Solovyev, K. Terakura. Phys. Rev. Lett. 84, 3169 (2000).
- [23] Y. Konishi, Z. Fang, M. Isumi, T. Manako, M. Kasai, H. Kuwahara, M. Kawasaki, K. Terakura, Y. Tokura. J. Phys. Soc. Jpn. 68, 3790 (1999).
- [24] С. Крупичка. Физика ферритов и родственных им магнитных окислов. Мир, М. (1976). Т. 1. С. 162.
- [25] E. Pollert, Z. Jirák, J. Hejtmánek, A. Strejc, R. Kužel, V. Hardy. J. Magn. Magn. Mater. 246, 290 (2002).
- [26] R. Kajimoto, H. Yoshizawa, H. Kawano, Y. Tokura, K. Ohoyama, M. Ohashi. Phys. Rev. B 60, 9506 (1999).
- [27] W.A. Harrison. The Electronic Structure and Properties of Solids. Freeman, San Francisco (1980). P. 430.
- [28] M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Wischer, K. Gobrecht. Phys. Rev. B 52, 9248 (1995).
- [29] W. Archibald, J.-S. Zhou, J.B. Goodenough. Phys. Rev. B 53, 14445 (1996).