04,10

Расчет динамики решетки, упругие и диэлектрические свойства *y*-BiB₃O₆ и δ -BiB₃O₆

© М.С. Павловский, А.С. Шинкоренко, В.И. Зиненко

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: mspav@iph.krasn.ru

(Поступила в Редакцию 10 октября 2014 г.)

Частоты колебаний кристаллической решетки, плотность фононных состояний, модули упругости и высокочастотная диэлектрическая проницаемость вычислены в рамках метода функционала плотности для двух полиморфов γ -BiB₃O₆ и δ -BiB₃O₆. На основе вычисленных плотностей фононных состояний построены температурные зависимости свободных энергий двух рассматриваемых модификаций трибората висмута и определена температура фазового перехода между ними, которая составила 1100 К. Предложена структура возможной неполярной прафазы для δ -BiB₃O₆, оценка величины поляризации δ -BiB₃O₆ дала величину 131 μ C/cm².

Работа выполнена при финансовой поддержке гранта Президента РФ "Ведущие научные школы" НШ-924.2014.2.

1. Введение

Соединение BiB₃O₆ (BBO) принадлежит к семейству боратов, которые привлекают внимание исследователей благодаря своим высоким нелинейным оптическим свойствами [1]. Большинство кристаллов этого семейства, в зависимости от условий роста или внешних воздействий (температуры и давления) существуют в нескольких структурных модификациях. Триборат висмута, в частности, имеет шесть структурных модификаций [2,3]. Основу структуры этого соединения составляет боркислородный каркас, состоящий из соединенных между собой вершинами тетраэдров ВО4 либо тетраэдров ВО4 и треугольников BO₃ [2,3]. В полостях такого каркаса располагаются атомы висмута. Известно, что среди всех модификаций трибората висмута только у- и б-модификации имеют структурный каркас, состоящий только из тетраэдров ВО4 (остальные модификации содержат тетраэдры BO₄ и треугольники BO₃ с соотношением 1:2 или 2:1 [2,3]) и, как следствие, эти две модификации имеют наибольшие значения плотности, причем эти значения не сильно различаются в γ- и δ-структурах (6.177 и 6.378 g/cm³ соответственно). В работе [2] для ВВО была построена фазовая диаграмма температура/давление, из которой видно, что γ- и δ-модификации BBO занимают наибольшие области этой диаграммы. При нулевом давлении в интервале от низких температур до 953 К существует δ-ВВО, в интервале от 953 К до 983 К существует у-ВВО, причем температура плавления обеих модификаций совпадает и составляет 983 К. В работе [2] отмечается очень медленная кинетика фазовых переходов между модификациями трибората висмута. Так при отжиге δ-BBO в течение 50 h при температуре 923~973 К появления у-BBO в объеме образца не наблюдается. Однако при добавлении в исходный образец δ -BBO зерна γ -BBO и последующем отжиге в течении 50-ти часов при температуре $953 \sim 983$ K до 81% процента объема образца занимает γ -BBO.

Физические свойства трибората висмута изучены достаточно подробно как экспериментальными, так и теоретическими методами в альфа модификации [1,2,4,5], в других же модификациях основное внимание исследователей уделяется изучению оптических свойств этого соединения. В то же время, например, для выяснения физической причины большого нелинейного оптического коэффициента в δ-ВВО или высоких значений механической прочности знание фононных спектров, модулей упругости и пьезоэлектрического отклика имеет большое значение. В работе [6] экспериментально, методами Раман- и ИК-спектроскопии были определены предельные частоты колебаний кристаллической решетки б-ВВО и проведен расчет этих частот в модели с использованием межатомных потенциалов, параметры которых подгонялись по экспериментальным данным. В работе [3] приводится несколько значений предельных частот колебаний у-ВВО, полученных экспериментально методом Раман спектроскопии.

Настоящая работа посвящена неэмпирическому расчету фононных спектров, диэлектрических и упругих свойств γ- и δ-модификаций кристалла BiB₃O₆.

2. Результаты расчета

Вычисления спектра частот колебаний кристаллической решетки, высокочастотной диэлектрической проницаемости, динамических зарядов Борна и модулей упругости проведены в рамках неэмпирической модели ионного кристалла с учетом дипольной и квадрупольной поляризуемостей ионов. Детали модели приведены в работе [7].

Рис. 1. Плотность фононных состояний δ-ВВО (слева) и γ-ВВО (справа) сверху вниз: полная плотность состояний, частичная плотность состояний ионов висмута, ионов кислорода, ионов бора.

Таблица 1. Параметры решетки и относительные координаты атомов δ -BBO с пространственной группой симметрии $Pca2_1$, полученные экспериментально [8] и в результате теоретического расчета (приведены в скобках)

Таблица 2. Параметры решетки и относительные координаты
атомов γ -BBO с пространственной группой симметрии $P2_1/c$,
полученные экспериментально и в результате теоретического
расчета (приведены в скобках)

Атом	Позиция Уайкова	x	у	Z
		0.8379	0.1574	0.2024
Bi	4a	(0.830)	(0.168)	(0.196)
O(1)		0.7883	0.3102	0.1578
O(1)	4a	(0.787)	(0.313)	(0.196)
		0.9394	0.3611	0.0695
O(2)	4a	(0.940)	(0.362)	(0.073)
O(2)	4	0.8543	0.7600	0.0338
O(3)	4a	(0.854)	(0.762)	(0.036)
O(4)		0.7242	0.7487	-0.0133
O(4)	4a	(0.724)	(0.752)	(-0.011)
O(5)	4	0.0679	0.2639	-0.0247
O(5)	4a	(0.068)	(0.263)	(-0.022)
O(C)	4	0.9821	0.8710	-0.0274
O(6)	4a	(0.983)	(0.871)	(-0.024)
$\mathbf{D}(1)$	4	0.7871	0.6369	0.1678
$\mathbf{B}(1)$	4a	(0.787)	(0.639)	(0.169)
$\mathbf{P}(\mathbf{a})$		0.9277	0.6730	0.1456
$\mathbf{B}(2)$	4a	(0.928)	(0.674)	(0.148)
$\mathbf{D}(2)$	4	0.0023	0.1759	0.1144
B(3)	4a	(0.003)	(0.176)	(0.117)
	V	а	b	С
Параметры	$351.37{ m \AA}^3$	18.4480 Å	4.4495 Å	4.2806 Å
решетки	(333.91 Å^3)	$(18.3034\mathrm{\AA})$	(4.3378 Å)	(4.2056 Å)

Атом	Позиция Уайкова	x	у	Z
		0.1563	0.615	0.3702
Bi	4e	(0.167)	(0.598)	(0.361)
0(1)		0.846	0.624	0.879
O(1)	4e	(0.847)	(0.624)	(0.880)
		0.778	0.578	0.554
O(2)	4e	(0.780)	(0.577)	(0.555)
		0.792	0.772	0.670
O(3)	4e	(0.793)	(0.773)	(0.671)
- (.)		0.335	0.658	0.717
O(4)	4 <i>e</i>	(0.337)	(0.659)	(0.719)
- (-)	4 <i>e</i>	0.346	0.879	0.546
O(5)		(0.347)	(0.880)	(0.548)
P (<i>I</i>)		0.809	0.967	0.685
O(6)	4e	(0.809)	(0.968)	(0.686)
- (1)		0.702	0.658	0.693
B(1)	4 <i>e</i>	(0.674)	(0.659)	(0.693)
		0.713	0.868	0.564
B(2)	4 <i>e</i>	(0.694)	(0.869)	(0.564)
		0.181	0.583	0.867
B(3)	4 <i>e</i>	(0.202)	(0.584)	(0.868)
	β	а	b	с
Параметры				
решетки	91.0689°	4.2596 Å	11.7093 Å	7.2757 Å
$V = 362.83 \text{ Å}^3$	90°	(4.1421 Å)	(11.5587 Å)	(7.2209 Å)

A_g	B_{g}	A_u	A_u	S	B_u	B_u	B_u	S_x	S_y
		(LO)	(TO)		(LO_x)	(LO_z)	(TO)		
1093	1121	1111	1089	0.136	1178	1087	1087	0.623	0.000
1024	1066	1075	1072	0.019	1038	1063	1035	0.021	0.187
946	1029	1023	982	0.293	1006	1009	1006	0.000	0.018
928	926	982	936	0.350	957	965	948	0.070	0.123
887	904	931	891	0.319	899	886	871	0.234	0.122
774	839	886	794	0.848	857	867	855	0.019	0.104
715	748	763	752	0.102	728	855	709	0.191	1.564
687	682	700	696	0.034	702	703	698	0.047	0.049
670	656	641	636	0.064	671	659	656	0.158	0.029
589	590	584	584	0.000	624	597	593	0.370	0.048
539	571	561	558	0.045	591	578	569	0.378	0.116
525	520	550	543	0.091	534	525	517	0.242	0.112
507	499	508	503	0.068	508	507	506	0.029	0.020
484	474	492	490	0.028	503	485	480	0.340	0.076
444	448	486	479	0.104	467	466	466	0.014	0.011
423	429	438	438	0.003	451	451	448	0.052	0.039
422	415	421	421	0.000	411	408	407	0.074	0.006
379	385	399	399	0.006	399	400	399	0.003	0.014
351	333	369	369	0.005	368	372	361	0.139	0.216
337	319	348	347	0.014	352	351	351	0.036	0.007
305	314	320	320	0.001	330	330	329	0.021	0.023
285	288	300	299	0.005	304	303	301	0.079	0.053
265	262	257	254	0.078	274	272	272	0.058	0.002
231	257	214	214	0.000	223	225	222	0.014	0.093
207	209	188	183	0.177	196	205	194	0.094	0.430
149	183	164	164	0.013	159	162	134	1.438	1.625
123	174	127	100	2.083	98	119	93	0.352	2.110
93	120	56	55	0.054	24	47	24	0.143	10.227
66	78	48	45	0.384					
53	39								

Таблица 3. Вычисленные в настоящей работе значения частот колебаний (ст⁻¹) в центре зоны Бриллюэна кристалла γ -BBO и соответствующих ИК-активным модам сил осциллятора *S*

δ-ВВО имеет полярную структуру с пространственной группой симметрии Pca2₁ с четырьмя молекулами в элементарной ячейке [8] (параметры решетки и относительные координаты атомов приведены в табл. 1). у-ВВО имеет центросимметричную структуру с пространственной группой симметрии $P2_1/n$ и также с четырьмя молекулами в элементарной ячейке [9]. Отметим, что для описания структуры у-ВВО авторы [9] используют нестандартную установку для моноклинной группы симметрии, в которой угол моноклинности составляет 121.141°. Мы используем стандартную установку с пространственной группой симметрии P21/c. Параметры решетки и относительные координаты атомов в этой установке полученные программой FINDSYM [10] приведены в табл. 2. Угол моноклинности при такой установке составляет 91.0689°, т.е. очень близок к прямому углу. При расчете спектра частот колебаний по зоне Бриллюена в у-ВВО для удобства расчетов использовалось значение угла 90°, что, как показывает сравнение результатов расчета частот колебаний в центре зоны Бриллюена для углов моноклинности 91.0689° и 90°, приводит к незначительному расхождению в значениях частот (менее 1%).

Расчет спектра частот колебаний кристаллической решетки γ -BBO и δ -BBO с использованием экспериментальных значений параметров решетки и координат атомов показал наличие нестабильных мод колебаний.

Для устранения нестабильных мод была проведена релаксация структур обеих модификаций, как по параметрам решетки, так и по координатам атомов. Полу-

Таблица 4. Экспериментально измеренные в работе [6] и вычисленные теоретически в настоящей работе значения частот колебаний (сm⁻¹) ИК- и Раман-активных мод в центре зоны Бриллюэна кристалла δ -BBO. Вычисленные нами величины сил осциллятора *S* для мод типа A_1 .

A_1	A_1	A_1	A_1	A_1	A_2	A_2	ИК
расчет	расчет	расчет	эксп.	эксп.	расчет	эксп.	эксп.
LO	ТО	S	LO	ТО	ТО	ТО	
1112	1105	0.047		1113	1105	1075	1263
1063	1031	0.237	1075	1075	1031	1031	1120
1022	1004	0.135	1031	1030	1015	1008	1085
986	986	0.000	1006	996	986	975	1044
945	923	0.182	974	954	926	935	1006
908	881	0.235	935	895	880	863	960
792	772	0.198	784	863	866	783	937
765	727	0.394	727	783	792	727	928
642	636	0.071	647	753	714	708	887
584	582	0.030	607	726	632	648	818
582	536	0.666	530	639	544	607	791
512	511	0.015	515	607	524	530	770
500	498	0.040	501	530	498	514	744
489	475	0.218	467	515	478	501	726
458	453	0.083	417	499	456	467	703
434	431	0.042	402	467	435	417	644
394	392	0.044	395	415	406	401	627
375	374	0.011	329	395	401	394	607
366	366	0.000	314	327	373	329	578
330	330	0.000	256	304	357	314	568
309	305	0.085	247	246	326	255	531
283	283	0.000	228	228	301	246	499
268	268	0.000	206	206	294	228	488
230	230	0.008	195	185	252	205	467
188	166	1.066	170	177	247	196	416
144	139	0.255	150	124	227	170	403
115	114	0.023	124	115	86	124	393
87	48	8.327	116	99	71	115	367
26	23	1.194	109		63	108	328
					57		311
							257
							242
							205
							190
							173
							154
							127
							119

ченные в результате релаксации значения параметров решетки и относительных координат атомов приведены в табл. 1 и 2. Как видно из этих таблиц, вычисленные параметры решетки отличаются от экспериментальных параметров не более чем на 3%, а наибольшая разница между релаксированными и экспериментальными относительными координатами атомов составляет 1%.

Разложение полного колебательного представления в центре зоны Бриллюэна для γ -фазы имеет следующий вид: $\Gamma = 30A_g + 30B_g + 30A_u + 30B_u$, где акустическими

Таблица 5. Экспериментально измеренные в работе [6] и вычисленные теоретически в настоящей работе значения частот колебаний (сm⁻¹) ИК- и Раман-активных мод в центре зоны Бриллюэна кристалла δ -BBO. Вычисленные нами величины сил осциллятора *S* для мод типа B_1 и B_2 .

B_1	B_1	B_1	B_1	B_2	B_2	B_2	B_2	ИК
расчет	расчет	расчет	эксп.	расчет	расчет	расчет	эксп.	эксп.
LO	ТО	S	ТО	LO	ТО	S	ТО	
1203	1157	0.287	1079	1204	1203	0.009		1263
1045	1042	0.015	1032	1136	1045	0.655	1082	1120
1025	1019	0.040	998	1024	1014	0.069	1028	1085
988	961	0.205	934	1007	990	0.126	996	1044
924	915	0.068	919	925	920	0.038	962	1006
888	867	0.170	862	896	886	0.082	933	960
865	832	0.292	812	840	816	0.219	919	937
816	811	0.043	785	784	757	0.259	863	928
773	746	0.257	727	728	728	0.005	784	887
719	687	0.329	711	628	610	0.216	727	818
603	602	0.009	607	587	579	0.103	607	791
564	561	0.035	580	575	563	0.150	578	770
538	522	0.212	531	521	521	0.000	530	744
503	502	0.003	514	503	503	0.000	514	726
470	470	0.007	499	467	463	0.064	498	703
440	440	0.004	467	442	439	0.033	467	644
425	424	0.014	416	411	410	0.019	416	627
408	406	0.032	403	392	385	0.000	395	607
385	385	0.003	394	385	384	0.141	328	578
369	369	0.000	328	338	337	0.025	313	568
316	315	0.026	313	311	310	0.019	304	531
310	305	0.123	305	287	285	0.046	247	499
282	275	0.178	247	253	252	0.027	227	488
272	269	0.059	228	209	177	1.430	206	467
254	254	0.000	207	140	140	0.004	185	416
126	80	5.221	187	127	127	0.013	177	403
78	76	0.197	176	111	109	0.083	124	393
68	67	0.096	125	92	61	4.507	115	367
63	43	3.940	116	25	24	0.227	99	328
			100					311
								257
								242
								205
								190
								173
								154
								127
								119

модами являются моды $A_u + 2B_u$. Раман-активными являются моды A_g и B_g , ИК-активными являются моды A_u и B_u . Вычисленные значения предельных частот колебаний для γ -ВВО приведены в табл. 3.

Разложение полного колебательного представления в центре зоны Бриллюэна для δ -фазы выглядит следующим образом: $\Gamma = 30A_1 + 30A_2 + 30B_1 + 30B_2$, включая акустические моды $A_1 + B_1 + B_2$. Оптические моды A_1 , B_1 и B_2 являются активными в рамановских спектрах и ИК-спектрах. Моды A_2 являются Раман-активными.

Вычисленные в настоящей работе частоты предельных колебаний δ -BBO приведены в табл. 4 и табл. 5; там же для сравнения приведены значения предельных частот, полученных экспериментально в работе [6], где полученные из рамановских спектров частоты классифицированы авторами по неприводимым представлениям, а ИК-активные приведены без классификации.

В настоящей работе вычислены значения модулей упругости (GPa) для γ -BBO (1) и δ -BBO (2). Вычисленные значения высокочастотной диэлектрической проницаемости и модуля всестороннего сжатия для обеих рассматриваемых модификаций трибората висмута приведены в табл. 6. На рис. 1 приведены вычисленные плотности фононных состояний как полные, так и частичные атомов висмута, бора и кислорода для γ -BBO и δ -BBO.

$$C_{\gamma} = \begin{bmatrix} 328.2 & 83.3 & 155.5 & 0 & 6.3 & 0 \\ 83.3 & 411.4 & 83.4 & 0 & -3.0 & 0 \\ 155.5 & 83.4 & 313.1 & 0 & 0.1 & 0 \\ 0 & 0 & 0 & 76.9 & 0 & -3.0 \\ 6.3 & -3.0 & 0.1 & 0 & 151.7 & 0 \\ 0 & 0 & 0 & -3.0 & 0 & 79.5 \end{bmatrix}$$
(1)
$$C_{\delta} = \begin{bmatrix} 363.9 & 127.0 & 120.7 & 0 & 0 & 0 \\ 127.0 & 361.3 & 111.5 & 0 & 0 & 0 \\ 120.7 & 111.5 & 365.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 108.2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 117.7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 124.1 \end{bmatrix}$$
(2)

3. Обсуждение результатов

Как видно из (1), (2) и табл. 6, значения модулей упругости C_{ij} и модуля всестороннего сжатия в γ -BBO и δ -BBO не сильно отличаются, что не удивительно, так как обе структуры имеют одинаковый структурный каркас и близкие по величине межатомные расстояния (максимальное различие в межатомных расстояниях в этих структурах составляет 3%). Нами не найдено в литературе экспериментальных значений упругих модулей

Таблица 6. Вычисленные значения модуля всестороннего сжатия B (GPa), высокочастотной диэлектрической проницаемости $\varepsilon_{\infty}^{ii}$, показателей преломления n_i для δ -BBO и γ -BBO. В скобках указаны значения показателей преломления, полученных в работах [11,12].

	γ -BBO	δ -BBO
B, GPa	188.5	201.0
$\varepsilon_{\infty}^{xx}$	3.55	3.55
$\varepsilon_{\infty}^{yy}$	3.47	3.62
$arepsilon_{\infty}^{zz}$	3.47	3.73
n_x	1.88(2.14)	1.88(2.09)
n_y	1.86(2.06)	1.90(2.11)
n_z	1.86(2.06)	1.93(2.20)

Таблица 7. Значения полных энергий и отдельных вкладов в энергию (eV/at) для δ -BBO и γ -BBO

	δ -BBO	γ -BBO	ΔE
E_{full}	-36.214559	-36.206352	-0.008207
$E_{\rm short}$	6.818838	6.635765	0.183073
$E_{\rm coulomb}$	-42.578558	-42.242114	-0.336444
$E_{\rm dipole}$	-0.305630	-0.429230	0.123600
$E_{\text{quadrupole}}$	-0.149245	-0.170775	0.021530

ни для γ -BBO, ни для δ -BBO и поэтому не проведено сравнения вычисленных величин с экспериментом. Из табл. 6 видно, что значения компонент тензора высокочастотной диэлектрической проницаемости для обеих рассматриваемых модификаций также не сильно отличаются, и показатели преломления удовлетворительно согласуются с экспериментально измеренными величинами [11,12].

К сожалению, у нас не было возможности провести сравнение вычисленных предельных частот колебаний для γ -BBO (табл. 3) с экспериментальными данными, поскольку подробных экспериментальных исследований фононных спектров для γ -BBO нами в литературе не обнаружено. В работе [3] приводится спектр рамановского рассеяния γ -BBO, из которого авторы приводят лишь следующие значения частот: 430, 473, 548, 602, 701 и 1055 сm⁻¹ без их классификации.

Из табл. 4 и 5 видно, что вычисленные в настоящей работе предельные частоты δ -BBO хорошо согласуются с экспериментальными данными, основное отличие можно наблюдать в области низких частот, но, по-видимому, экспериментально частоты ниже 100 сm⁻¹ не наблюдались. Среди вычисленных колебательных мод есть две моды с наибольшими частотами: мода типа B_1 с частотой 1203/1157 сm⁻¹ (LO/TO) и мода типа B_2 с частотой 1204/1203 сm⁻¹ (LO/TO). В экспериментальных рамановских спектрах моды с такими частотами отсутствуют, однако, среди ИК-активных есть две наибольших по частоте моды 1263 сm⁻¹ и 1120 сm⁻¹.

Для вычисленных частот типа A_1 , B_1 , B_2 в δ -BBO и A_u , B_u в γ -BBO проведена оценка значений силы осциллятора моды [13]

$$S_i = \varepsilon_{\infty} \frac{\omega_{\text{LO},i}^2 - \omega_{\text{TO},i}^2}{\omega_{\text{TO},i}^2}.$$
 (3)

Значения сил осциллятора, вычисленных по (3), приведены в табл. 3, 4 и 5.

В кристалле у-ВВО наибольшими значениями сил осциллятора 10.227, 2.110, 2.083, 1.625, 1.564, 1.438, 0.848, 0.623 обладают моды с частотами (LO/TO) 47/24, 119/93, 127/100, 162/134, 855/709, 159/134, 886/794, 1178/1087 сm⁻¹. В кристалле δ -ВВО наибольшими значениями сил осциллятора 8.327, 5.221, 4.507, 3.940, 1.430, 1.194, 1.066, 0.655, 0.666 обладают моды с частотами (LO/TO) 87/48, 126/80, 92/61, 63/43, 209/177, 26/23, 188/166, 1136/1045, 582/536 ст⁻¹. Большие величины сил осциллятора низкочастотных мод (менее $200 \,\mathrm{cm}^{-1}$) соответствуют полярным модам колебаний, в собственных векторах которых положительно заряженные ионы висмута смещаются в одном направлении, а отрицательно заряженные ионы кислорода — в противоположном направлении. При высоких частотах ионы висмута в колебаниях решетки участия практически не принимают, и большие силы осциллятора имеют моды, в собственных векторах которых большинство ионов бора смещается в одном направлении, а большинство ионов кислорода в противоположном. В [6], авторы проводят оценку силы осциллятора экспериментально измеренных мод типа А1 и приводят наибольшие из них 0.09, 0.22, 0.12, 0.29, 0.54, 1.257 для частот 996, 954, 639, 304, 185, 99 cm⁻¹ соответственно: из этой оценки видно, что самой большой величиной силы осциллятора обладают моды с низкими частотами.

Обсудим устойчивость δ-ВВО и γ-ВВО фаз при изменении температуры. Как уже отмечалось во введении, экспериментальными исследованиями установлено, что при низких температурах более устойчива δ-фаза, а при температурах выше 950 К более устойчивой становится у-фаза [2]. Результаты нашего расчета показывают, что при $T = 0 \,\mathrm{K} \,\delta$ -фаза энергетически более выгодна по сравнению с у-фазой, однако полные энергии этих фаз близки, как это видно из табл. 7, где приведены значения полных энергий (с вычетом собственной энергии ионов) и отдельных вкладов в эти энергии для *δ*-BBO и *γ*-BBO. Близость энергий дельта и гамма фаз при нулевой температуре позволяет предположить, что при конечной температуре у-фаза становится более устойчивой по сравнению с б-фазой за счет фононного вклада в свободную энергию. В настоящей работе использовалось выражение для свободной энергии в гармоническом приближении [14] в предположении, что ангармонические вклады в F(T) для γ - и δ -фаз одинаковы

$$F(T) = E_{\text{static}} + F_{\text{vibr}}(T), \qquad (4)$$

$$F_{\rm vibr}(T) = \int d\omega g(\omega) \left[\frac{\hbar \omega}{2} + k_B T \ln \left(1 - \exp \left(-\frac{\hbar \omega}{k_B T} \right) \right) \right],$$
(5)

где E_{static} — полная энергия, $F_{\text{vibr}}(T)$ — колебательная энергия, состоящая из энергии нулевых колебаний (первое слагаемое) и тепловой энергии колебаний (второе слагаемое), $g(\omega)$ — плотность фононных состояний.

Как видно из рис. 1, в плотности фононных состояний для δ -BBO и γ -BBO имеются некоторые отличия, которые наиболее явно проявляются в частичной плотности состояний. А именно, в моноклинной фазе имеется пик в частичной плотности состояний висмута в районе 120 сm⁻¹, тогда как в ромбической фазе колебания висмута с такой частотой отсутствуют. В высокочастотной области спектра, где в колебаниях принимают участие преимущественно атомы бора, отличия в плотности состояний менее выражены, можно только отметить, что в интервале 800 сm⁻¹–1200 сm⁻¹ большее число частот колебаний присутствует в ромбической фазе.

Эти отличия в плотности фононных состояний проявляются в температурной зависимости $F_{\text{vibr}}(T)$ для δ -BBO и γ -BBO, показанной на рис. 2. Видно, что колебательная энергия гамма фазы выгоднее энергии дельта фазы во всем температурном интервале и имеет более "крутую" температурную зависимость. На вставке рис. 2 показана зависимость от температуры разницы свободных энергий δ -BBO и γ -BBO, из которой видно, что при температурах ниже 1100 К устойчива структура δ -BBO, а выше 1100 К устойчивой становится структура γ -BBO. Вычисленная здесь температура фазового перехода между двумя структурными модификациями хорошо согласуется с экспериментальным значением T = 950 K [2].

Обратимся теперь к оценке величины поляризации в δ -BBO. В литературе данное соединение в δ -фазе относят к пироэлектрикам, поскольку в этой фазе не наблюдается доменной структуры и нет экспериментальных сведений о возможной переполяризации образца при приложении внешнего электрического поля. Как известно, в случае пироэлектриков оценка величины поляризации по структурным данным о координатах атомов в элементарной ячейке невозможна, так как имеется бесконечное число вариантов выбора начала отсчета смещений атомов. Такую оценку можно провести, если удается относительно небольшими смещениями ионов исходной структуры получить структуру с центром инверсии. В случае *б*-ВВО мы можем сместить атомы висмута и кислорода (см. табл. 1) параллельно оси с кристалла так, что они расположатся в плоскости z = 0 (координата z иона висмута и каждого из шести кислородов примет значение 0). Полученная структура остается полярной с той же пространственной группой симметрии Pca21 и так же с четырьмя молекулами в элементарной ячейке. Важной особенностью этой структуры является то, что в ней можно достроить каждый тетраэдр до треугольной бипирамиды, состоящей из двух тетраэдров, соединенных между собой гранью

Рис. 2. Температурная зависимость вибрационной энергии (5) для δ -BBO (пунктир) и γ -BBO (точки). На вставке показана температурная зависимость разницы свободных энергий (4) δ -BBO и γ -BBO.

Рис. 3. Структура δ -BBO с пространственной группой симметрии $Pca2_1$ (*a*), структура центросимметричной парафазы δ -BBO с пространственной группой симметрии Pbcm (*b*) (ион бора в каждом тетраэдре занимает свое положение с вероятностью 1/2).

перпендикулярной оси c кристалла. Такие тетраэдры отличаются между собой лишь тем, что один из тетраэдров содержит внутри себя ион бора, а другой нет. Таким образом, можно представить, что основу этой структуры составляет каркас не из тетраэдров, а из бипирамид, соединенных между собой ребрами и вершинами. Если же переместить каждый ион бора в бипирамиде из одного тетраэдра в другой ни трансляционная, ни точечная симметрия такой структуры не изменятся, только направление вектора поляризации кристалла изменится на противоположное. Естественно предположить, что парафаза γ -BBO представляет собой структуру, в которой ионы бора с равной вероятностью занимают два положения в бипирамидах (рис. 3). Такая структура принадлежит неполярной ромбической пространственной группе *Pbcm* с четырьмя молекулами в элементарной ячейке, то есть трансляционная симметрия кристалла при разупорядочении ионов бора по двум положениям не изменяется.

Поляризация вычислялась по формулам

$$P = P_{\rm ion} + P_{\rm el},\tag{6}$$

$$P_{\rm ion} = \frac{1}{V} \sum_{i=1}^{N} Z_i^{\rm ion} u_i.$$
⁽⁷⁾

Здесь N — число атомов в элементарной ячейке, V — объем ячейки, Z_i^{ion} — номинальный заряд *i*-того иона, u_i — величина смещения *i*-того иона по оси *z* из парафазы в экспериментально наблюдаемую полярную фазу (ионы бора смещались из средних положений, т.е. из оснований бипирамид), P_{el} — поляризация, связанная с дипольными искажениями электронной плотности ионов. Величина поляризации составила 131 μ C/cm² при ионном и электронном вкладах 117 μ C/cm² и 14 μ C/cm² соответственно.

4. Заключение

Перечислим кратко основные результаты работы.

В рамках неэмпирической модели ионного кристалла вычислены полный спектр колебаний кристаллической решетки, упругие константы и высокочастотная диэлектрическая проницаемость для двух модификаций трибората висмута δ -BBO и γ -BBO. Полученные в результате расчета частоты колебаний ИК- и Раман-активных мод в центре зоны Бриллюэна для δ -BBO, показатели преломления δ -BBO и γ -BBO хорошо согласуются с экспериментальными данными.

Результаты данного расчета показывают, что разница энергий фаз γ -BBO и δ -BBO при T = 0 составляет 8 meV, а колебательный вклад в свободную энергию при всех конечных температурах энергетически выгоднее в γ -BBO по сравнению с δ -BBO. Вычисленная температура перехода из δ -BBO в γ -BBO 1100 К удовлетворительно согласуется с экспериментальным значением 950 К.

Предложена структура неполярной прафазы δ -BBO с разупорядочением ионов бора по двум равновероятным положениям. Проведена оценка величины поляризации δ -BBO, которая составила 131 μ C/cm².

Список литературы

- [1] J.Z. Liebertz. Kristallogr. 158, 319 (1982).
- [2] R.H. Cong, J.L. Zhu, Y.X. Wang, T. Yang, F.H. Liao, C.Q. Jin, J.H. Lin. Cryst. Eng. Commun. 11, 1971 (2009).
- [3] R.H. Cong, T. Yang, J. Sun, Y.X. Wang, J.H. Lin. Inorg. Chem. 52, 7460 (2013).
- [4] J. Yang, M.J. Dolg. Phys. Chem. B 110, 19254 (2006).

- [5] Z.S. Lin, Z.Z. Wang, C.T. Chen, M.H. Lee. J. Appl. Phys. 90, 5585 (2001).
- [6] M. Maczka, L. Macalik, A.J. Majchrowski. Alloys Comp. 575, 86 (2013).
- [7] Е.Г. Максимов, В.И. Зиненко, Н.Г. Замкова. УФН 174, 1145 (2004).
- [8] J.S. Knyrim, P. Becker, D. Johrendt, H. Huppertz. Angew. Chem. Int. Ed. 45, 8239 (2006).
- [9] L. Li, G. Li, Y. Wang, F. Liao, J. Lin. Inorg. Chem. 44, 8243 (2005).
- [10] H.T. Stokes, D.M. Hatch. J. Appl. Cryst. 38, 237 (2005).
- [11] A.V. Cherepakhin, A.I. Zaitsev, A.S. Aleksandrovsky, A.V. Zamkov. Opt. Mater. 34, 790 (2012).
- [12] С.В. Мельникова, Л.И. Исаенко. ФТТ 54, 1843 (2012).
- [13] H. Kuzmany. Solid-State Spectroscopy. An Introduction. Springer, Berlin, Heidelberg (1998).
- [14] A.A. Maradudin, E.W. Montroll, G.H. Weiss. Theory of Lattice Dynamics In The Harmonic Approximation. Academic Press, N.Y.–London (1963).