Электромеханические свойства пьезоэлектрических кристаллов Pb₃Ga₂Ge₄O₁₄, выращенных из раствора в расплаве

© Б.П. Сорокин, Д.А. Глушков, Л.Н. Безматерных*, В.Л. Темеров*, И.А. Гудим*, К.С. Александров*

Красноярский государственный университет,

660041 Красноярск, Россия

* Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: bsorokin@lan.krasu.ru

(Поступила в Редакцию 18 июля 2003 г.)

Из собственных растворов-расплавов выращены монокристаллы галлогерманата свинца Pb₃Ga₂Ge₄O₁₄. Исследовано распространение объемных акустических волн и вычислены упругие, пьезоэлектрические и диэлектрические постоянные. Исследованы температурные зависимости диэлектрических постоянных в данном кристалле.

Работа выполнена при поддержке ФЦП "Интеграция" (проект № 67).

1. К кристаллам, применяемым в современных пьезотехнике и акустоэлектронике прежде всего относятся кварц, ниобат лития, германо- и силикосиллениты. Из них только кварц применяется наиболее широко, поскольку в нем существуют термостабильные срезы для распространения объемных (ОАВ) и поверхностных акустических волн (ПАВ), хотя коэффициенты электромеханической связи (КЭМС) как для ОАВ, так и для ПАВ относительно невелики. Поиск новых кристаллов, в которых высокие значения КЭМС и малое затухание акустических волн сочетаются с наличием срезов, обеспечивающих термостабильность устройств, продолжается. При этом немаловажное значение придается возможности массового производства при невысокой стоимости.

В последние годы большой интерес вызывает семейство кристаллов, изоморфных галлогерманату кальция Са₃Ga₂Ge₄O₁₄ и принадлежащих к классу симметрии 32. В настоящее время синтезировано более ста соединений, относящихся к этому семейству (в том числе в виде монокристаллов) [1]. В частности, уже применяемый в акустоэлектронике и пьезотехнике лангасит La₃Ga₅SiO₁₄, который существенно превосходит кварц по КЭМС. Для него и некоторых других материалов разработана расплавная технология (метод Чохральского) выращивания крупных монокристаллов. Тем не менее ряд вопросов по кристаллохимии и технологии этих материалов, непосредственно связанных с качеством монокристаллов, еще не решен, вследствие чего потери на распространение высокочастотных упругих волн в этих кристаллах больше, чем в пьезокварце. Возможной причиной этого является то, что практически для всех монокристаллов структурного типа лангасита допускается разупорядоченность структуры, поскольку в одной катионной позиции могут находиться атомы двух или более сортов [2]. В семействе лангасита найдены и кристаллы с упорядоченной структурой [3]; они являются объектами интенсивных исследований.

2. Крайние положения в этом семействе занимают галлогерманаты свинца и бария ($Pb_3Ga_2Ge_4O_{14}$ и $Ba_3Ga_2Ge_4O_{14}$), выделяющиеся наибольшими размерами крупного катиона и соответственно наибольшими значениями параметров элементарных ячеек. В соответствии с данными экстраполяции они представляются сильными пьезоэлектриками. Однако эти соединения плавятся с разложением и их невозможно получить в виде монокристаллов из расплава [1].

Изометричные монокристаллы $Pb_3Ga_2Ge_4O_{14}$ объемом более 1 сm³ выращены нами как из собственных растворов-расплавов, так и из растворов-расплавов, разбавленных фторидом свинца [4].

3. В данной работе импульсным ультразвуковым методом (30 MHz) с точностью нахождения скоростей ОАВ не хуже $\pm 10^{-4}$ [5] исследовано распространение ОАВ в монокристалле Pb₃Ga₂Ge₄O₁₄. Определение

Рис. 1. Температурные зависимости низкочастотной диэлектрической проницаемости (*a*) и тангенса угла диэлектрических потерь (*b*) в кристалле Pb₃Ga₂Ge₄O₁₄. *I* — *X*-срез, *2* — *Z*-срез.

Номер моды	Ν	U	Тип волны	Связь с материальными константами	V _i , m/s
1	[001]	[001]	L	C ₃₃	5128.1 ± 0.5
2	[001]		S	C 44	2743.5 ± 0.5
3	[100]	[100]	L	$C_{11} + \frac{e_{11}^2}{\varepsilon_{11}^n}$	4618.0 ± 0.5
4	[100]		SF	$\frac{1}{2}(C_{44}+C_{66})+\frac{1}{2}\sqrt{(C_{44}-C_{66})^2+4C_{14}^2}$	2932.9 ± 0.5
5	[100]		SS	$\frac{1}{2}(C_{44}+C_{66}) - \frac{1}{2}\sqrt{(C_{44}-C_{66})^2 + 4C_{14}^2}$	2257.3 ± 0.5
6	[010]	[100]	S	$C_{66} + \frac{e_{11}^2}{\varepsilon_{11}^{\mu}}$	2413.4 ± 0.5
7	[010]		QL	$\frac{1}{2}(C_{44}+C_{11})+\frac{1}{2}\sqrt{(C_{11}-C_{44})^2+4C_{14}^2}$	4630.3 ± 0.5
8	[010]		QS	$\frac{1}{2}(C_{44}+C_{11})-\frac{1}{2}\sqrt{(C_{11}-C_{44})^2+4C_{14}^2}$	2713.1 ± 0.5
9	$\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$	[100]	S	$rac{1}{2}(C_{44}+C_{66}+2C_{14})+rac{1}{2}rac{(e_{11}+e_{14})^2}{e_{11}^n+e_{33}^n}$	2284.2 ± 0.5
10	$\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$		QL	$\frac{1}{4}(C_{11} - 2C_{14} + 2C_{44} + C_{33}) + \frac{1}{4}(C_{11} - 2C_{14} + 2C_{44} + C_{33}) + \frac{1}{4}(C_{11} - 2C_{14} + 2C_{14} + C_{13}) + \frac{1}{4}(C_{11} - 2C_{14} + C_{14}) + \frac{1}{4}(C_{11} - 2C_{14}) + \frac{1}{4}(C_{11$	5107.9 ± 0.5
11	$\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$		QS	$ + \frac{1}{4}\sqrt{(2C_{14} - C_{11} + C_{33})^2 + 4(C_{13} + C_{44} - C_{14})^2} $ $ \frac{1}{4}(C_{11} - 2C_{14} + 2C_{44} + C_{33}) - $ $ - \frac{1}{4}\sqrt{(2C_{14} - C_{11} + C_{33})^2 + 4(C_{13} + C_{44} - C_{14})^2} $	2604.6 ± 0.5
12	$\left[0 - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]$	[100]	S	$rac{1}{2}(C_{44}+C_{66}+2C_{14})+rac{1}{2}rac{(e_{11}-e_{14})^2}{arepsilon_{11}^n+arepsilon_{33}^n}$	2853.6 ± 0.5
13	$\left[0 \ -\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$		QL	$\frac{\frac{1}{4}(C_{11} + 2C_{14} + 2C_{44} + C_{33}) + \frac{1}{4}\sqrt{(2C_{14} + C_{11} - C_{33})^2 + 4(C_{13} + C_{44} + C_{14})^2}$	4830.5 ± 0.5
14	$\left[0 \ -\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$		QS	$\frac{\frac{1}{4}(C_{11} + 2C_{14} + 2C_{44} + C_{33}) - \\ -\frac{1}{4}\sqrt{(2C_{14} + C_{11} - C_{33})^2 + 4(C_{13} + C_{44} + C_{14})^2}$	2556.8 ± 0.5

Таблица 1. Соотношения между скоростями ОАВ и константами электромеханических свойств в кристаллах симметрии 32, а также скорости ОАВ в монокристалле Pb₃Ga₂Ge₄O₁₄ (20°C)

Примечание. N и U — единичные векторы направления распространения и поляризации ОАВ.

ние электромеханических свойств основано на измерении в конкретных направлениях скоростей ОАВ, связанных с упругими модулями, пьезоэлектрическими и диэлектрическими константами (табл. 1). Данные ультразвукового метода дополнены измерениями НЧ-диэлектрической проницаемости $\varepsilon_{ij}^{\sigma}$ мостовым методом на частоте 1 kHz. Измерения $\varepsilon_{ij}^{\sigma}$ и тангенса угла диэлектрических потерь tg δ осуществлялись в интервале температур -100-150°C (рис. 1). Определение пьезоактивности проводилось также методом измерения прямого продольного пьезоэлектрического эффекта с помощью вольтметра-электрометра В7-30. Набор необходимых для исследований образцов соответствовал точечной симметрии 32 этих кристаллов. Так, для ультразвуковых измерений применялись образцы с линейными размерами 4-7 mm, ориентированные с помощью рентгеновского дифрактометра с точностью не хуже $\pm 3'$, плоскостность и плоскопараллельность граней которых поддерживались на уровне $\pm 1\,\mu$ m/cm (рис. 2). Согласно [6], направления $\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$ и $\left[0-\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$ в кристаллах данной симметрии различаются по упругим свойствам так, что направлению $\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$ соответствует условие для упругой константы $C_{14} < 0$. Низкочастотные $\varepsilon_{ij}^{\sigma}$ (механически свободный образец) и ε_{ij}^{η} (механически "зажатый" образец) диэлектрические проницаемости подчиняются соотношению связи, которое для кристаллов симметрии 32 имеет вид

$$\varepsilon_{11}^{\eta} = \varepsilon_{11}^{\sigma} - \frac{e_{11}^2}{\varepsilon_0 C_{11}^E}, \quad \varepsilon_{33}^{\eta} = \varepsilon_{33}^{\sigma}. \tag{1}$$

В (1) e_{11} — компонента тензора пьезоэлектрических постоянных $e_{i\lambda}$, $\varepsilon_0 = 8.854 \cdot 10^{-12}$ F/m — диэлектрическая постоянная, C_{11}^E — компонента тензора упругих

Рис. 2. Ориентация образцов для ультразвуковых исследований.

модулей, измеренных при условии постоянства электрического поля. Данные (1) были использованы для расчета значений ε_{ii}^{η} .

Электромеханические характеристики кристаллов Pb₃Ga₂Ge₄O₁₄, рассчитанные на основании данных табл. 1 и результатов диэлектрических измерений, приводятся в табл. 2 в сравнении с данными для лангасита [5].

Таблица 2. Упругие, пьезоэлектрические и диэлектрические свойства кристаллов Pb₃Ga₂Ge₄O₁₄ и La₃Ga₅SiO₁₄ (20°C)

	Pb ₃ Ga ₂ Ge ₄ O ₁₄	La ₃ Ga ₅ SiO ₁₄	
	Плотность ρ , kg/m ³ (расчет)		
	6884.8	5743	
$\lambda \mu$	$C^E_{\lambda\mu}$, 10	$C^E_{\lambda\mu}$, 10 ¹⁰ Pa	
11	14.65 ± 0.01	18.875	
66	3.98 ± 0.01	4.2	
33	18.12 ± 0.01	26.14	
44	5.21 ± 0.01	5.35	
14	-1.02 ± 0.01	-1.412	
13	7.04 ± 0.01	9.59	
iλ	$ e_{i\lambda} , 0$	$, C/m^2$	
11	0.26 ± 0.03	0.44	
14	0.09 ± 0.03	0.1	
ij	$arepsilon_{ij}^{\sigma}$	$arepsilon_{ij}^{\sigma}$	
11	26.2 ± 0.5	18.92	
33	13.9 ± 0.5	50.7	
ij	$arepsilon_{ij}^\eta$		
11	26.1 ± 0.5	1	
33	13.9 ± 0.5		
	КЭМС, %		
Пьезоактивная продольная вол-		1	
на в направлении Х (мода 3)*	4.7	8	
Пьезоактивная чистая сдвиго-			
вая волна в направлении У с	9	16	
поляризацией вдоль $X \pmod{7}^*$			

* Номера мод соответствуют табл. 1.

Анализ табл. 2 показывает, что кристаллы Pb₃Ga₂Ge₄O₁₄ вопреки экстраполяционным ожиданиям являются слабыми пьезоэлектриками, поскольку КЭМС имеет значения менее 10%. Их упругие модули имеют систематически более низкие значения по сравнению с лангаситом, что указывает на меньшую жесткость данного кристалла. Температурная зависимость скорости ОАВ моды 6, определяемой упругой постоянной С₆₆, имеет нормальный характер (рис. 3), что указывает на отсутствие в данном кристалле температурно-компенсированных направлений и срезов для распространения ОАВ и ПАВ. Качественные сравнительные оценки показали, что затухание упругих волн в Pb₃Ga₂Ge₄O₁₄ является относительно малым.

Обращает на себя внимание иной, чем в большинстве кристаллов со структурой лангасита, характер темпе-

Рис. 3. Температурная зависимость скорости чистой сдвиговой волны в направлении [010] (мода 6).

ратурных зависимостей диэлектрических параметров, а также то, что обычно выполняется соотношение $\varepsilon_{33}^{\sigma} > \varepsilon_{11}^{\sigma}$. Например, в лангасите температурная зависимость $\varepsilon_{33}^{\sigma}(T) \sim T^{-1}$, что соответствует вкладу дипольной поляризации. В Pb₃Ga₂Ge₄O₁₄ отмечается также изменение наклона температурной зависимости $\varepsilon_{11}^{\sigma}(T)$ в области комнатных температур, что коррелирует со значительным возрастанием тангенса угла диэлектрических потерь в этом интервале температур и может быть объяснено возникновением релаксационной ионной поляризации вследствие прыжковой проводимости.

Список литературы

- [1] B.V. Mill, Yu.V. Pisarevsky. Proc. of 2000 IEEE/EIA Int. Frequency Control Symp. and Exhibition. Kansas-City, USA (2000). P. 133.
- [2] А.А. Каминский, С.Э. Саркисов, Б.В. Милль, Г.Г. Ходжабагян. АН СССР. Неорган. материалы 18, 1396 (1982).
- [3] B.H.T. Chai, A.N.P. Bustamante, M.C. Chou. Proc. of 2000 IEEE/EIA Int. Frequency Control Symp. and Exhibition. Kansas-City, USA (2000). P. 163.
- [4] Л.H. Безматерных, Васильев, И.А. А.Д. Гудим, В.Л. Темеров. Выращивание и структура монокристаллов Рb₃Ga₂Ge₄O₁₄ и Ba₃Ga₂Ge₄O₁₄. Тез. Х Нац. конф. по росту кристаллов. М. (2002).
- [5] Е.Л. Белоконева, С.Ю. Стефанович, Ю.В. Писаревский, А.В. Мосунов. ЖНХ 45, 11, 1786 (2000).
- [6] Б.П. Сорокин, П.П. Турчин, Д.А. Глушков. ФТТ 36, 10, 2907 (1994).