05

Особенности магнитных свойств редкоземельных ферроборатов $Sm_{1-x}La_xFe_3(BO_3)_4$

© Е.В. Еремин 1,2 , Н.В. Волков 1,2 , В.Л. Темеров 1 , И.А. Гудим 1 , А.Ф. Бовина 1

¹ Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

² Сибирский федеральный университет,

Красноярск, Россия

E-mail: eev@iph.krasn.ru

(Поступила в Редакцию 11 сентября 2014 г.)

Раствор-расплавным методом выращены монокристаллы $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ (x=0,0.5,0.75). Исследованы их магнитные свойства в температурном интервале $2-300\,\mathrm{K}$ и магнитных полях до 9 Т. Обнаружено увеличение магнитной восприимчивости в $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ при замещении магнитных ионов Sm^{3+} немагнитными ионами La^{3+} . В рамках феноменологической модели качественно объяснено поведение магнитных свойств выращенных монокристаллов, Сделаны оценки констант обменных d-d- и d-f-взаимодействий.

Работа выполнена при поддержке РФФИ (грант № 14-02-00307_а), а также в рамках государственного задания Министерства образования и науки РФ Сибирскому федеральному университету на выполнение НИР в 2014 г. (задание № 3.2534.2014/K).

1. Введение

В последние годы редкоземельные ферробораты со структурой хантита с общей формулой RFe₃(BO₃)₄ (R = Y, La-Lu) привлекают повышенное внимание благодаря обнаружению у них свойств, мультиферроиков, характерных для [1,2]. Главным элементом кристаллической структуры редкоземельных ферроборатов (пространственная группа R32) являются ориентированные вдоль с-оси спиральные цепочки соприкасающихся по ребру октаэдров FeO₆. Связи между ионами Fe³⁺ вдоль цепочки и между цепочками таковы, что обменное взаимодействие внутри цепочки сильнее, чем взаимодействие между цепочками. В магнитном отношении ферробораты являются антиферромагнетиками с двумя взаимодействующими магнитными подсистемами (редкоземельного элемента и железа). Fe-подсистема упорядочивается при $T_N = 30-40$ К. Редкоземельная подсистема подмагничена f-d-взаимодействием и вносит существенный вклад в магнитную анизотропию и ориентацию магнитных моментов. Магнитная структура ферроборатов может быть типа "легкая ось", "легкая плоскость", либо в них, как в $GdFe_3(BO_3)_4$ и $HoFe_3(BO_3)_4$, реализуется спонтанный спин-переориентационный переход из состояния "легкая ось" в состояние "легкая плоскость" при изменении температуры [3,4].

Интерес к $SmFe_3(BO_3)_4$ обусловлен тем, что среди всех ферроборатов с одним типом редкоземельного иона в нем были обнаружены наибольший магнитоэлектрический эффект [5] и гигантский магнитодиэлектрический эффект [6]. Вся информация о спектроскопических, магнитных, резонансных, магнитоэлектрических и магнитоупругих свойствах [5–10] свидетельствует о том, что магнитные моменты ионов железа в $SmFe_3(BO_3)_4$

антиферромагнитно упорядочиваются при $T_N=32\,\mathrm{K}$ и лежат в базисной ab-плоскости, перпендикулярной оси c кристалла. Также в базисной плоскости находятся магнитные моменты ионов самария, подмагниченные обменным полем со стороны Fe-подсистемы. Величины магнитных моментов ионов железа и самария, полученные в [10] из анализа данных по дифракции нейтронов на порошках $\mathrm{SmFe_3}(\mathrm{BO_3})_4$, в предположении коллинеарности всех магнитных моментов соответственно равны 4.2 и $0.24\,\mu_\mathrm{B}$ при температуре 1.7 K.

Для понимания роли ионов Sm³⁺ в формировании магнитной структуры, спонтанной поляризации, магнитоэлектрической поляризации и гигантского магнитодиэлектрического эффекта в SmFe₃(BO₃)₄ можно провести исследования и дальнейший сравнительный анализ ферроборатов с последовательным замещением ионов самария другими редкоземельными элементами. В частности, таким удобным замещающим элементом является лантан. Во-первых, он немагнитный, а значит, не будет оказывать влияние на магнитную анизотропию в кристалле $Sm_{1-r}La_rFe_3(BO_3)_4$ Во-вторых, он имеет наибольший среди редкоземельных элементов ионный радиус, а это может повлиять на подвижность катионов в локальном анионном окружении, что в свою очередь приведет к изменению магнитоэлектрических свойств.

В настоящей работе представлены результаты исследования магнитных свойств монокристаллов $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ (x=0,0.5,0.75). Дальнейшие исследования спонтанной поляризации, гигантского магнитодиэлектрического эффекта и магнитоэлектрической поляризации позволят получить дополнительную информацию о механизмах магнитоэлектрической связи в редкоземельных ферроборатах со структурой хантита.

Таблица 1. Состав растворов-расплавов в квазибинарной форме (100-n) mass% $\{Bi_2Mo_3O_{12}+pB_2O_3+q[(1-x)Sm_2O_3+xLa_2O_3]\}+n$ mass% $Sm_{1-x}La_xFe_3(BO_3)_4$

x	n	р	q
0	20	3	0.5
0.5	22	3	0.5 0.5 0.6
0.75	21	3	0.6

Примечание. x — степень замещения ионов Sm ионами La; n — концентрация кристаллообразующих окислов (в соответствии со стехиометрией) в wt.%; p и q — подбираемые коэффициенты, выраженные в количестве молей на 1 моль $\mathrm{Bi}_2\mathrm{Mo}_3\mathrm{O}_{12}$.

Таблица 2. Параметры решетки монокристаллов $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ при $T=293~\mathrm{K}$

Монокристалл	a, Å	$c, ext{Å}$
SmFe ₃ (BO ₃) ₄ [12]	9.5663	7.5896
$Sm_{0.5}La_{0.5}Fe_3(BO_3)_4$	9.5990	7.6167
$Sm_{0.25}La_{0.75}Fe_3(BO_3)_4$	9.6077	7.6276

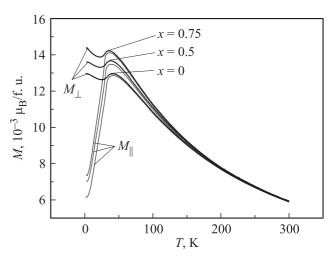
2. Образцы и методика измерений

Монокристаллы $Sm_{1-x}La_xFe_3(BO_3)_4$ выращивались из растворов-расплавов на основе тримолибдата висмута $Bi_2Mo_3O_{12}$ [11]. Состав растворов-расплавов в квазибинарной форме, концентрация (n) кристаллообразующих окислов, соответствующая стехиометрии $Sm_{1-x}La_xFe_3(BO_3)_4$, и коэффициенты p,q приведены в табл. 1.

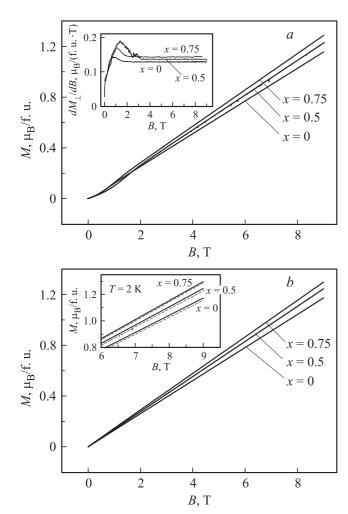
Монокристаллы выращивались в две стадии. Сначала в режиме спонтанного зарождения выращивались кристаллы размером ~ 1 mm. Визуально качественные кристаллы использовались в дальнейшем как затравки. На следующей стадии кристаллы выращивались на затравках с понижением температуры так, чтобы скорость роста не превышала 1 mm/day. В конце роста кристаллы охлаждались до комнатной температуры со скоростью не более 100° C/h.

Магнитные свойства выращенных монокристаллов были исследованы на вибрационном магнитометре PPMS-9 (QuantumDesign) в интервале температур $2-300~\mathrm{K}$ и магнитных полях до $9~\mathrm{T}$.

Рентгеноструктурный анализ производился при комнатной температуре на порошковом дифрактометре Bruker D8 ADVANCE (излучение $\mathrm{Cu}K_{\alpha}$) на порошке, полученном путем перетирания монокристаллов.


3. Экспериментальные результаты

Как известно [4], при высоких температурах все кристаллы семейства $R\mathrm{Fe_3}(\mathrm{BO_3})_4$ имеют тригональную структуру, которая принадлежит к пространственной группе R32. В соединениях с большим ионным радиусом


(R=La-Sm) эта структура неизменна вплоть до низких температур, тогда как в соединениях с малым ионным радиусом (R=Eu-Er) имеет место структурный фазовый переход $R32 \to P3_121$, температура которого возрастает с уменьшением ионного радиуса [12].

С большой вероятностью можно ожидать, что легирование ионами La (ионный радиус которых больше радиуса ионов Sm^{3+}) приведет к эффективному увеличению радиуса редкоземельного катиона и отсутствию структурного перехода в $Sm_{1-x}La_xFe_3(BO_3)_4$. Для образцов $Sm_{0.5}La_{0.5}Fe_3(BO_3)_4$ и $Sm_{0.25}La_{0.75}Fe_3(BO_3)_4$ был проведен рентгеноструктурный анализ. Подтверждена фазовая чистота образцов и то, что все рефлексы индицированы одной фазой пространственной группы R32, и определены параметры решетки, которые представлены в табл. 2 в сравнении с параметрами для номинально чистого монокристалла $SmFe_3(BO_3)_4$, взятыми из работы [12]. Как видно из таблицы, параметры решетки линейно увеличиваются по мере роста концентрации ионов La

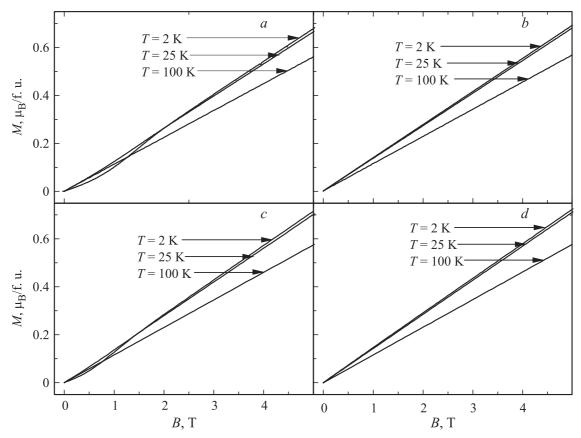
На рис. 1 представлены температурные зависимости намагниченности монокристаллов $Sm_{1-x}La_xFe_3(BO_3)_4$ с x = 0, 0.5 и 0.75. Измерение намагниченности производилось в магнитном поле 0.1 Т, направленном вдоль кристаллографической c-оси — $M_{\parallel}(T)$ и в базисной плоскости (вдоль a-оси) — $M_{\perp}(T)$. В парамагнитной области для всех трех образцов намагниченность изотропна и подчиняется закону Кюри-Вейсса. Экспериментально найденные парамагнитные температуры Кюри оказались равны $\Theta_1 = -135\,\mathrm{K}$ для $\mathrm{SmFe_3}(\mathrm{BO_3})_4$, $\Theta_2 = -125 \,\mathrm{K}$ для $\mathrm{Sm}_{0.5} \mathrm{La}_{0.5} \mathrm{Fe}_3 (\mathrm{BO}_3)_4$ и $\Theta_3 = -118 \,\mathrm{K}$ для $Sm_{0.25}La_{0.75}Fe_3(BO_3)_4$. Отрицательный знак указывает на наличие антиферромагнитного обменного взаимодействия в магнитной системе. Видно, что абсолютная величина парамагнитной температуры Кюри уменьшается по мере замещения магнитных ионов самария Sm³⁺

Рис. 1. Температурные зависимости намагниченности монокристаллов $Sm_{1-x}La_xFe_3(BO_3)_4$, измеренные в магнитном поле 0.1 Т в геометрии ${\bf B}\parallel{\bf c}$ и ${\bf B}\perp{\bf c}$.

Рис. 2. Кривые намагничивания $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ при $T=2\,\mathrm{K}$ в геометрии $\mathbf{B}\perp\mathbf{c}$ (a) и $\mathbf{B}\parallel\mathbf{c}$ (b). На вставках приведены производная намагниченности по полю в зависимости от величины магнитного поля для ориентации $\mathbf{B}\perp\mathbf{c}$ (часть a) и кривые намагничивания для $\mathbf{B}\parallel\mathbf{c}$ (сплошные линии) и $\mathbf{B}\perp\mathbf{c}$ (штриховые линии) при $T=2\,\mathrm{K}$ (часть b).

немагнитными ионами лантана La^{3+} . Это указывает на антиферромагнитное взаимодействие ионов Sm^{3+} с ближайшими ионами железа Fe^{3+} .

При температурах $T < T_N \sim 35 \, \mathrm{K}$ поведение намагниченности для всех составов качественно не отличается от поведения, наблюдавшегося ранее в $\mathrm{SmFe_3(BO_3)_4}$ [5]. Намагниченность в базисной плоскости монотонно уменьшается по мере уменьшения температуры, а вдоль c-оси практически сохраняет свое значение, равное величине в точке Нееля. Такое поведение свидетельствует о том, что магнитные моменты ионов железа $\mathrm{Fe^{3+}}$ упорядочиваются в базисной плоскости. Из рисунка видно, что по мере роста концентрации ионов $\mathrm{La^{3+}}$ магнитный момент в пересчете на формульную единицу увеличивается, причем увеличение не связано с выходом момента из плоскости, так как рост намагниченности имеет место в обоих направлениях.


На рис. 2 представлены экспериментальные кривые зависимостей намагниченности от магнитного поля $M_{\parallel}(B), M_{\perp}(B)$ для $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ в базисной плоскости (a) и вдоль c-оси (b) при $T=2\,\mathrm{K}$. Вид кривых для составов при $B > 2 \, \mathrm{T}$ как в базисной плоскости, так и вдоль тригональной c-оси мало различается, что свидетельствует об одинаковом характере процессов намагничивания. Небольшое различие в величинах $M_{\parallel}(B)$ и $M_{\perp}(B)$ при одной и той же величине магнитного поля (вставка на рис. 2, b) обусловлено влиянием магнитной одноосной анизотропии. Из рисунка видно, что начальный участок $M_{\perp}(B)$ для всех составов имеет нелинейный вид. Такое поведение наблюдается для всех легкоплоскостных ферроборатов. Это связывают с тем, что в тригональных кристаллах с магнитными моментами, лежащими в базисной плоскости, возможно существование трех типов доменов. При намагничивании в базисной плоскости в малых полях вклад в величину намагниченности вносят все три домена с осями антиферромагнетизма под углом 120° друг к другу. В работе [9] был проведен расчет $M_{\perp}(B)$ для $B < 1.5 \,\mathrm{T}$. В частности, было показано, что процессы намагничивания при различных направлениях поля в базисной плоскости происходят по-разному. При В || а это спин-флоп-переход в домене с осью антиферромагнетизма вдоль a-оси, а при **H** \parallel **b** — это срыв 30-градусных доменов в некотором критическом поле.

Из рис. 2, a видно, что низкополевое поведение намагниченности различно для составов с разным уровнем допирования ионами ${\rm La^{3+}}$. Лучше всего это видно из вставки к рис. 2, a, где приведена магнитная восприимчивость dM_{\perp}/dB . Все составы имеют различную величину разворота доменов по направлению магнитного поля. Критические поля можно оценить по максимуму на кривых. Как видно из рис. 2, a (вставка), они равны $0.8\,{\rm T}$ для состава с $x=0,1.5\,{\rm T}$ для $x=0.5\,{\rm u}$ $1\,{\rm T}$ для x=0.75.

При увеличении температуры поведение полевых зависимостей намагниченности качественно не изменяется. $M_{\parallel}(B)$ имеет линейный вид во всем температурном интервале (рис. 3,b,d). Зависимость $M_{\perp}(B)$ становится линейной ниже температуры перехода $T_N \approx 35~{\rm K}$ (рис. 3,a,c). На рис. 3 показаны полевые зависимости намагниченности $M_{\perp}(B)$ и $M_{\parallel}(B)$ для составов ${\rm Sm}_{0.5}{\rm La}_{0.5}{\rm Fe}_3({\rm BO}_3)_4$ (a,b) и ${\rm Sm}_{0.25}{\rm La}_{0.75}{\rm Fe}_3({\rm BO}_3)_4$ (c,d).

4. Обсуждение результатов

Представленные выше результаты свидетельствуют о парадоксальной ситуации: по мере замещения магнитных ионов Sm^{3+} немагнитными ионами La^{3+} в ферроборатах $Sm_{1-x}La_xFe_3(BO_3)_4$ величина магнитной восприимчивости увеличивается. Это кажется немного странным, ведь если сравнить магнитные восприимчивости $SmFe_3(BO_3)_4$ и $YFe_3(BO_3)_4$ (ионы Y^{3+} , так же как и ионы La^{3+} , являются немагнитными), то окажется, что величина магнитного момента у последнего меньше

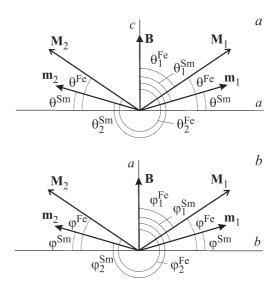


Рис. 3. Кривые намагничивания для $Sm_{0.5}La_{0.5}Fe_3(BO_3)_4$ (*a, b*) и $Sm_{0.25}La_{0.75}Fe_3(BO_3)_4$ (*c, d*). *a, c* — ориентация $\mathbf{B} \perp \mathbf{c}$; *b, d* — $\mathbf{B} \parallel \mathbf{c}$.

во всем измеренном температурном диапазоне и в магнитных полях до 5 Т. Например, для ориентации ${f B} \perp {f c}$ при $T=2\,{
m K}$ и в магнитном поле 5 Т $M_{\perp}=0.58\,\mu_{
m B}$ на формульную единицу [13], тогда как для SmFe₃(BO₃)₄ при тех же температуре и магнитном поле $M_{\perp} = 0.64 \, \mu_{
m B}$ (рис. 3). По мере замещения ионов Sm^{3+} ионами La^{3+} величина магнитного момента становится еще больше. И если бы нам удалось вырастить стабильную тригональную фазу LaFe₃(BO₃)₄, то величина магнитного момента такого соединения была бы однозначно больше, чем у УГе₃(ВО₃)₄, хотя магнитная структура, определяемая только подрешеткой ионов железа, у обоих соединений одинакова. Почему так происходит, сказать трудно. Можно лишь предположить, что в силу различия ионных радиусов La³⁺ и Y³⁺ различаются обменные взаимодействия, осуществляемые между ионами Fe³⁺ по пути Fe-O-Fe или Fe-O-B-O-Fe, из-за изменения интегралов перекрытия волновых функций.

На наш взгляд, описанное выше явление должно объясняться конкуренцией обменных d—d- и d—f- взаимодействий. Магнитную структуру редкоземельных ферроборатов со структурой хантита можно представить следующим образом [9] (рис. 4): магнитные моменты ионов железа объединяются в две антиферромагнитно взаимодействующие подрешетки, ионы самария не связаны обменным взаимодействием друг с другом, но ан-

тиферромагнитно взаимодействуют с соседними ионами железа, которые объединяются в одну из подрешеток. Для описания наблюдаемых магнитных свойств кристаллов $Sm_{1-x}La_xFe_3(BO_3)_4$ запишем термодинамический

Рис. 4. Схематическое изображение магнитной структуры $Sm_{1-x}La_xFe_3(BO_3)_4$ в случае ориентации магнитного поля вдоль c-оси (a) и вдоль a-оси (b).

потенциал при $T=0\,\mathrm{K}$, при этом для простоты будем пренебрегать анизотропией в базисной плоскости:

$$F = F_{d-d} + F_{d-f} + F_{1d} + F_{1f} + F_{Z}, \tag{1}$$

обменного $F_{d-d} = \lambda_{d-d} \mathbf{M}_1 \mathbf{M}_2$ энергия взаимодействия подрешеток железа, $F_{d-f} =$ $\lambda_{d-f}(\mathbf{M}_1\mathbf{m}_1 + \mathbf{M}_2\mathbf{m}_2)$ — энергия обменного взаимодействия подрешетки железа с подрешеткой самария, $F_{1d} = K_{1d}[\cos^2(\theta_1^{\text{Fe}}) + \cos^2(\theta_2^{\text{Fe}})], \qquad F_{1f} = K_{1f}[\cos^2(\theta_1^{\text{Sm}})]$ $+\cos^{2}(\theta_{2}^{\text{Sm}})]$ — энергии магнитной одноосной анизотропии подрешеток железа и самария соответственно, $F_Z = -\mathbf{H}(\mathbf{M}_1 + \mathbf{M}_2) - (\mathbf{m}_1 + \mathbf{m}_2)$ — энергия зеемановского взаимодействия. Здесь λ_{d-d} , λ_{d-f} — константы обменного взаимодействия, $K_{1d} > 0$, $K_{1f} > 0$ константы одноосной анизотропии. Магнитные моменты i-й подрешетки железа \mathbf{M}_i и самария \mathbf{m}_i в расчете на формульную единицу определяются соотношениями

$$\mathbf{M}_{i} = 3g_{s}\mu_{B}\langle \mathbf{S}_{i}\rangle, \quad \mathbf{m}_{i} = xg_{J}\mu_{B}\langle \mathbf{J}_{i}\rangle, \tag{2}$$

где $g_s = 2$ — g-фактор, учитывающий только спиновый момент ионов железа, $g_J = 2/7$ — фактор Ланде для иона самария, \mathbf{S}_i — оператор спинового момента иона железа, \mathbf{J}_i — оператор полного момента иона самария, x — концентрация ионов самария.

Рассмотрим случай, когда внешнее магнитное поле **H** направлено вдоль c-оси (рис. 4, a). Тогда, переходя к записи векторов \mathbf{M}_i и \mathbf{m}_i в сферической системе координат и учитывая, что векторы \mathbf{H} , \mathbf{M}_i и \mathbf{m}_i лежат в одной плоскости, получим

$$\begin{split} F &= \lambda_{d-d} M^2 \cos(\theta_1^{\text{Fe}} - \theta_2^{\text{Fe}}) \\ &+ \lambda_{d-f} Mm \big[\cos(\theta_1^{\text{Sm}} - \theta_1^{\text{Fe}}) + \cos(\theta_2^{\text{Sm}} - \theta_2^{\text{Fe}}) \big] \\ &+ K_{1d} (\cos^2 \theta_1^{\text{Fe}} + \cos^2 \theta_2^{\text{Fe}}) + K_{1f} (\cos^2 \theta_1^{\text{Sm}} + \cos^2 \theta_2^{\text{Sm}}) \\ &- HM (\cos \theta_1^{\text{Fe}} + \cos \theta_2^{\text{Fe}}) - Hm (\cos \theta_1^{\text{Sm}} + \cos \theta_2^{\text{Sm}}) \big]. \end{split}$$

Здесь M, m — величины магнитных моментов подрешеток железа и самария соответственно, H — величина внешнего магнитного поля.

Для отыскания равновесного состояния магнитной структуры минимизируем термодинамический потенциал по углам. Далее введем обозначения $\theta_1^{\rm Fe}=\frac{\pi}{2}-\theta^{\rm Fe}$, $\theta_2^{\rm Fe}=\frac{3\pi}{2}+\theta^{\rm Fe}$, $\theta_1^{\rm Sm}=\frac{3\pi}{2}+\theta^{\rm Sm}$ и $\theta_2^{\rm Sm}=\frac{\pi}{2}-\theta^{\rm Sm}$ (рис. 4, a) и получим систему двух независимых уравнений

$$H_d \sin 2\theta^{\mathrm{Fe}} + H_f \frac{m}{M} \sin(\theta^{\mathrm{Fe}} + \theta^{\mathrm{Sm}})$$

$$+ \frac{H_{1d}}{2} \sin 2\theta^{\mathrm{Fe}} - H \cos \theta^{\mathrm{Fe}} = 0, \qquad (4a)$$

$$H_f \sin(heta^{ ext{Fe}} + heta^{ ext{Sm}}) + rac{H_{1f}}{2} \sin 2 heta^{ ext{Sm}} - H \cos heta^{ ext{Sm}} = 0, \quad ext{(4b)}$$
 где $H_d = \lambda_{d-d} M, \quad H_f = \lambda_{d-f} M, \quad H_{1d} = 2K_{1d}/M, H_{1f} = 2K_{1f}/m.$

К сожалению, система уравнений (4a) и (4b) не имеет решения в аналитическом виде. Поэтому ограничимся случаем, когда углы $\theta^{\rm Fe}$ и $\theta^{\rm Sm}$ малы. Такое предположение правомерно, так как, например, в YFe₃(BO₃)₄, где имеется только магнитная подсистема железа, угол $\theta^{\rm Fe} \approx 2^{\circ}$ в поле 5 T при температуре 2 K [13]. В таком случае можем разложить углы $\theta^{\rm Fe}$ и $\theta^{\rm Sm}$ в ряд, ограничившись первым порядком малости. В итоге получим следующие выражения для этих углов, учитывая, что $H_{1d} \ll H_d$ и $H_{1f} \ll H_f$:

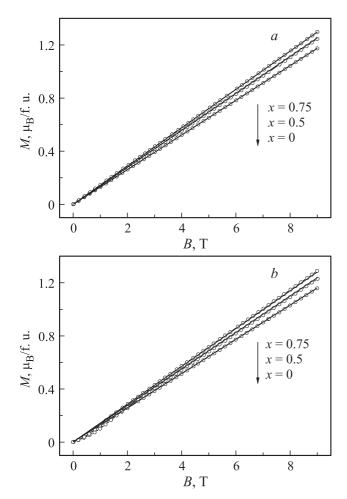
$$\theta^{\text{Fe}} = \left(1 - \frac{m}{M}\right) \frac{H}{2H_d + \frac{m}{M}H_{1f} + H_{1d}},$$
 (5a)

$$\theta^{\text{Sm}} = \left[\frac{1}{H_f} - \left(1 - \frac{m}{M}\right) \frac{1}{2H_d + \frac{m}{M}H_{1f} + H_{1d}}\right] H.$$
 (5b)

Выражения для углов в случае, когда внешнее магнитное поле направлено в базисной плоскости без учета анизотропии в базисной плоскости, можно получить, проделав аналогичные действия, положив в (3) $H_{1d}=0$ и $H_{1f}=0$,

$$\varphi^{\text{Fe}} = \left(1 - \frac{m}{M}\right) \frac{H}{2H_d},\tag{6a}$$

$$\varphi^{\rm Sm} = \left[\frac{1}{H_f} - \left(1 - \frac{m}{M} \right) \frac{1}{2H_d} \right] H,\tag{6b}$$


где φ^{Fe} и φ^{Sm} — углы между векторами \mathbf{M}_i и \mathbf{m}_i соответственно и осью x (рис. 4, b).

Полный магнитный момент для $M_{\perp}(B)$ и $M_{\parallel}(B)$ в расчете на формульную единицу и при выполнении условия малости углов будет равен

$$M_{\parallel} = M\theta^{\text{Fe}} + m\theta^{\text{Sm}}, \quad M_{\perp} = M\varphi^{\text{Fe}} + m\varphi^{\text{Sm}}.$$
 (7)

Энергию одноосной анизотропии обозначим как $H_{\mathrm{eff}}=\frac{m}{M}H_{1f}+H_{1d}$. Ранее с помощью нейтронографии [10] были определены магнитные моменты ионов железа $\mu_{\mathrm{Fe}}=4.2\,\mu_{\mathrm{B}}$ и самария $\mu_{\mathrm{Sm}}=0.24\,\mu_{\mathrm{B}}$. Положив $M=3\mu_{\mathrm{Fe}}$ и $m=x\mu_{\mathrm{Sm}}$ и варьируя H_d , H_f и H_{eff} , мы предприняли попытки подогнать зависимости $M_{\perp}(B)$ и $M_{\parallel}(B)$ к экспериментальным кривым, используя выражения (7), (6) и (5). Однако никакими разумными значениями H_d , H_f и H_{eff} не удалось удовлетворительно описать кривые намагничивания. Поэтому дополнительно к трем представленным параметрам мы варьировали еще и магнитный момент иона самария μ_{Sm} .

На рис. 5 представлены результаты расчета $M_{\perp}(B)$ и $M_{\parallel}(B)$ в сравнении с экспериментальными результатами. Наилучшее согласие достигается при следующих значениях подгоночных параметров: $H_d=43\,\mathrm{T},$ $H_f=90\,\mathrm{T},$ $H_{\mathrm{eff}}=-1.2\,\mathrm{T},$ $m=1.7\,\mu_{\mathrm{B}}.$ Полученные параметры несколько отличаются от ранее вычисленных значений. Так, в [4] $H_d=64\,\mathrm{T},$ $H_f=30\,\mathrm{T},$ а в [9] $H_d=59\,\mathrm{T},$ $H_f=53\,\mathrm{T}.$ Отметим, что в работе [7] значение поля обменного f-d-взаимодействия $H_f=94\,\mathrm{T}$ было определено по расшеплению основного дублета

Рис. 5. Кривые намагничивания $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ $M_{\parallel}(B)$ (a) и $M_{\perp}(B)$ (b) при $T=2\,\mathrm{K}$. Точки — экспериментальные данные, линии — расчет.

иона самария ${\rm Sm^{3+}}$, что наиболее точно согласуется с нашими результатами.

Отрицательное значение $H_{\rm eff}$ указывает на то, что намагниченность $M_{\parallel}(B)$ имеет большие значения, чем $M_{\perp}(B)$, при тех же значениях температуры и магнитного поля (вставка на рис. 2,b). Результат получился неожиданным, так как и температурные зависимости намагниченности (рис. 1), и данные нейтронографических исследований [10] указывают на то, что в $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ имеет место анизотропия типа "легкая плоскость". Данный результат объяснить сложно. Можно только предположить, что уменьшение величины намагниченности, когда магнитное поле приложено в базисной плоскости, связано с наличием магнитных доменов с осями антиферромагнетизма, расположенными под углом 120° друг к другу.

5. Заключение

Раствор-расплавным методом на основе тримолибдата висмута были выращены монокристаллы ${\rm Sm_{1-x}La_xFe_3(BO_3)_4}$ (x=0,0.5,0.75). Проведен рентгеноструктурный анализ выращенных монокристаллов. Подтверждена фазовая чистота образцов и определены параметры решетки. Исследованы магнитные свойства монокристаллов в широких диапазонах температур и магнитных полей.

Обнаружено увеличение магнитного момента в $Sm_{1-x}La_xFe_3(BO_3)_4$ при замещении магнитных ионов Sm^{3+} немагнитными ионами La^{3+} . В рамках феноменологической модели качественно объяснено магнитное поведение выращенных монокристаллов. Проведены оценки параметров обменных d-d- и d-f-взаимодействий. Найденное ранее значение поля обменного f - d-взаимодействия $H_f = 94 \,\mathrm{T}$ [7], которое было определено по расщеплению основного дублета иона самария Sm³⁺, очень хорошо согласуется с нашим результатом: $H_f = 90$ Т. Этого нельзя сказать о величине поля обменного d-d-взаимодействия, которое оказалось примерно в 1.5 раза меньше, чем значения, оцененные в ранее представленных работах [4,9].

Отметим необходимость дальнейшего исследования магнитной структуры кристаллов $\mathrm{Sm}_{1-x}\mathrm{La}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$. Для полного понимания всей картины необходимо провести нейтронографические исследования в магнитных полях.

Список литературы

- [1] А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьев, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, Е.Н. Попова. Письма в ЖЭТФ **81**, 335 (2005).
- [2] А.К. Звездин, Г.П. Воробьев, А.М. Кадомцева, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, А.В. Кувардин, Е.А. Попова. Письма в ЖЭТФ 83, 600 (2006).
- [3] А.Н. Васильев, Е.А. Попова. ФНТ 32, 968 (2006).
- [4] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. ФНТ 36, 640 (2010).
- [5] Ю.Ф. Попов, А.П. Пятаков, А.М. Кадомцева, Г.П. Воробьев, А.К. Звездин, А.А. Мухин, В.Ю. Иванов. ЖЭТФ **138**, 226 (2010).
- [6] А.А. Мухин, Г.П. Воробьев, В.Ю. Иванов, А.М. Кадомцева, А.С. Нарижная, А.М. Кузьменко, Ю.Ф. Попов, Л.Н. Безматерных, И.А. Гудим. Письма в ЖЭТФ 93, 305 (2011).
- [7] E.P. Chukalina, M.N. Popova, L.N. Bezmaternykh, I.A. Gudim. Phys. Lett. A 374, 1790 (2010).
- [8] А.М. Кузьменко, А.А. Мухин, В.Ю. Иванов, А.М. Кадомцева, Л.Н. Безматерных. Письма в ЖЭТФ 94, 318 (2011).
- [9] А.А. Демидов, Д.В. Волков, И.А. Гудим, Е.В. Еремин, В.Л. Темеров. ЖЭТФ 143, 922 (2013).
- [10] C. Ritter, A. Pankrats, I. Gudim, A. Vorotynov. J. Phys.: Cond. Matter. 24, 386 002 (2012).
- [11] L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim, N.A. Stolbovaya. Cryst. Rep. **50**, 97 (2005).
- [12] Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, A. Alemi. J. Solid State Chem. **172**, 438 (2003).
- [13] E.A. Popova, A.N. Vasiliev, V.L. Temerov, L.N. Bezmaternykh, N. Tristan, R. Klingeler, B.Büchner. J. Phys.: Cond. Matter 22, 116 006 (2010).