Диэлектрические свойства железосодержащих твердых растворов титаната висмута со структурой слоистого перовскита

© М.С. Шашков¹, О.В. Малышкина¹, И.В. Пийр², М.С. Королева²

¹ Тверской государственный университет, Тверь, Россия ² Институт химии КомиНЦ УрО РАН, Сыктывкар, Россия

E-mail: maksim.shashkov69@gmail.com

Методом диэлектрической спектроскопии в диапазоне частот $30-10^6$ Hz при температуре 296 K исследованы сложные оксиды на основе титаната висмута с замещающими атомами железа: Bi₄Ti_{2.98}Fe_{0.02}O_{11.99}, Bi₄Ti_{2.5}Fe_{0.5}O_{11.75}, Bi₄Ti₂Fe₁O_{11.5}. Исследованы частотные зависимости диэлектрической проницаемости ε' , диэлектрических потерь ε'' , комплексной части проводимости σ' , построены зависимости $\varepsilon''(\varepsilon')$, получены изображения микроструктуры исследуемых керамических материалов методом атомно-силовой микроскопии. Показано, что при введении в качестве атомов замещения ионов Fe³⁺ существует критическая концентрация x (0.5 < x < 1), выше которой происходит существенное изменение диэлектрических свойств, связанное с изменением числа перовскитоподобных слоев, а также наблюдается корреляция между концентрацией замещающих атомов Fe и размером зерен на поверхности образцов.

Работа выполнена в рамках государственного задания Минобрнауки РФ.

1. Введение

В настоящее время значительное внимание уделяется поиску пьезокерамических материалов, обладающих близкими к керамике на основе цирконата-титаната свинца диэлектрическими характеристиками. В настоящей работе исследованы образцы висмутсодержащих соединений — фаз Ауривиллиуса, изучение диэлектрических свойств которых вызывает итерес.

Фазы Ауривиллиуса (ФА) представляют собой достаточно большое семейство висмутсодержащих слоистых перовскитоподобных соединений, большинство из которых проявляет сегнетоэлектрические свойства [1–8]. Многие из этих соединений имеют очень высокую температуру фазовых переходов из сегнетоэлектрической в параэлектрическую фазу (температуру Кюри), которая может достигать $T_c = 940^{\circ}$ С, например, для ФА Bi₃NbTiO₉ [9]. В связи с этими свойствами ФА представляют большой интерес для различных технических приложений.

Химический состав ФА описывается общей формулой $A_{m-1}\operatorname{Bi}_2B_m\operatorname{O}_{3m+3}$, где позиции A с кубооктаэдрическим окружением занимают одно-, двух- и трехвалентные катионы большого радиуса (Na, K, Ca, Sr, Ba, Pb, Bi и Ln (лантаниды)), а позиции B внутри кислородных октаэдров занимают высокозаряженные катионы с малыми радиусами (Al, Ti, Cr, Ga, Mn, Fe, Nb, Mo, Ta и W). Позиции A и B могут быть заняты одинаковыми или несколькими различными атомами. Как было показано в многочисленных исследованиях [10–12], замещения атомов в позициях A и B оказывают существенное влияние на электрофизические характеристики ФА.

В частности, происходят большие изменения величин диэлектрических констант, проводимости. Кроме того, температура Кюри также может меняться в широких пределах. В настоящее время синтезировано большое количество (более ста) ФА различного состава. На основе замещения позиций ионов *A* и *B* различными ионами с близкими радиусами и соответствующими зарядами можно расширить семейство ФА в несколько раз.

Таким образом, исследование катионзамещенных ФА играет важную роль при создании материалов для различных технологических приложений и является актуальным как в прикладном, так и в теоретическом плане.

2. Эксперимент

Сложные оксиды на основе титанатов висмута Bi₄Ti_{2.98}Fe_{0.02}O_{11.99} (Fe0.02), Bi₄Ti_{2.5}Fe_{0.5}O_{11.75} (Fe0.5), Ві₄Ті₂Fe₁O_{11.5} (Fe1) синтезировались керамическим методом из исходных высокочистых оксидов Bi2O3, TiO2 и Fe₂O₃. После высокотемпературной обработки шихты (конечная температура прокаливания 1050°С в течение 10 h) получены однофазные соединения с пространственной группой B2cb для Fe0.02 и Fe0.5 и пространственной группой Fmm2 для Fe1. Установлено, что после высокотемпературной обработки шихты химический состав образцов (метод атомно-эмиссионной спектроскопии) не меняется. На основе измерений магнитной восприимчивости по методу Фарадея определен магнитный момент атомов железа, соответствующий 5.92 µ_в, что указывает на высокоспиновое состояние ионов железа в виде Fe³⁺. Исследуемые образцы сложных оксидов на основе титаната висмута представляли собой плоские диски диаметром 10 mm и толщиной 0.9 mm. Емкость образцов и тангенс угла диэлектрических потерь определялись с использованием измерителя иммитанса Е7-20. Действительная часть комплексной диэлектрической проницаемости ε' находилась по формуле плоского конденсатора.

Мнимая часть комплексной диэлектрической проницаемости определялась, согласно определению тангенса угла диэлектрических потерь, как

$$\varepsilon'' = \operatorname{tg} \delta \varepsilon'. \tag{1}$$

Действительная часть комплексной проводимости рассчитывалась по следующей формуле:

$$\sigma' = 2\pi g \varepsilon''. \tag{2}$$

Построенные на основе расчетов зависимости $\varepsilon''(f)$, $\varepsilon''(\varepsilon')$, $\sigma'(f)$ представляют собой степенные функции частоты, поэтому анализ данных параметров проводился исходя из положений теории Йоншера [13] о низкочастотной дисперсии, согласно которой отсутствие максимума на кривой зависимости $\varepsilon''(f)$ может интерпретироваться двояко.

1. В системе сосуществуют два независимых параллельных процесса, один из которых преобладает на высоких частотах благодаря обычному диэлектрическому отклику материала, в то время как другой, сильно диспергирующий, доминирует на низких частотах.

2. В процессы релаксации в системе вносит существенный вклад проводимость на постоянном токе.

Более полная информация о характере релаксации получается из анализа диаграмм $\varepsilon''(\varepsilon')$. Если на диаграмме наблюдаются дуги полуокружностей, то это указывает на наличие двух релаксационных процессов в различных областях частотного спектра. Если на диаграмме наблюдается прямая линия, расположенная под углом к оси абсцисс, то это свидетельствует о сильном вкладе проводимости на постоянном токе в процессы релаксации, проходящие в соединении. В случае обнаружения дуг полуокружностей можно определить времена релаксации исследуемых соединений как величины, обратные частотам, на которых наблюдается максимум на диаграмме $\varepsilon''(\varepsilon')$. Критическая частота, при которой происходит смена преобладающего в низкочастотном диапазоне релаксационного процесса другим (высокочастотным), соответствует точке, в которой одна дуга полуокружности переходит в другую.

3. Результаты и их обсуждение

Как видно из полученных частотных зависимостей действительной части комплексной диэлектрической проницаемости (рис. 1), соединение с максимальной концентрацией замещающих атомов железа Fe1 обладает более высоким значением действительной части комплексной диэлектрической проницаемости ($\varepsilon' = 125$) по сравнению с соединениями Fe0.02 и Fe0.5 ($\varepsilon' = 75$). У составов Fe0.02 и Fe0.5 практически отсутствует зависимость действительной части комплексной диэлектрической проницаемости от частоты измеряемого поля во всем частотном лиапазоне. Соелинение Fe1 в низкочастотной области отличается поведением действительной части комплексной диэлектрической проницаемости от составов Fe0.02 и Fe0.5. С уменьшением частоты измеряемого поля от 200 до 30 Hz у Fe1 наблюдается рост величины ε' с 125 до 230. В частотном диапазоне от

Рис. 1. Частотная зависимость ε' для составов Ві₄Ti_{2.98}Fe_{0.02}O_{11.99} (*1*), Ві₄Ti_{2.5}Fe_{0.5}O_{11.75} (*2*) и Ві₄Ti₂Fe₁O_{11.5} (*3*).

Рис. 2. Частотная зависимость ε'' для составов Ві₄Ti_{2.98}Fe_{0.02}O_{11.99} (*1*), Ві₄Ti_{2.5}Fe_{0.5}O_{11.75} (*2*) и Ві₄Ti₂Fe₁O_{11.5} (*3*).

200 до 10^6 Hz действительная часть комплексной диэлектрической проницаемости состава с максимальной концентрацией замещающих атомов железа ведет себя так же, как в составах Fe0.02 и Fe0.5, т.е. выходит на плато и практически не зависит от частоты измеряемого поля.

У всех исследуемых соединений на зависимости мнимой части комплексной диэлектрической проницаемости (диэлектрических потерь) от частоты измеряемого поля (рис. 2) отсутствует максимум. Диэлектрические потери соединений Fe0.02 и Fe0.5 практически не зависят от частоты измеряемого поля и находятся в диапазоне от 0 до 10. Диэлектрические потери соединения с максимальной концентрацией замещающих атомов железа (Fe1) на минимальной частоте измеряемого поля составляют $\varepsilon'' = 200$. С увеличением частоты измеряемого поля до 2 kHz величина диэлектрических потерь уменьшается до значения $\varepsilon'' = 10$. При дальнейшем увеличении

Рис. 3. Диаграммы $\varepsilon''(\varepsilon')$ для составов Bi₄Ti_{2.98}Fe_{0.02}O_{11.99} (*1*), Bi₄Ti_{2.5}Fe_{0.5}O_{11.75} (*2*) и Bi₄Ti₂Fe₁O_{11.5} (*3*).

Рис. 4. Зависимость $\sigma'(f)$ для составов Ві₄Ti_{2.98}Fe_{0.02}O_{11.99} (*1*), Ві₄Ti_{2.5}Fe_{0.5}O_{11.75} (*2*) и Ві₄Ti₂Fe₁O_{11.5} (*3*).

частоты измеряемого поля величина диэлектрических потерь состава Fe1 практически не меняется, как и у соединений Fe0.02 и Fe0.5.

В ходе анализа зависимостей $\varepsilon''(\varepsilon')$ (рис. 3) установлено, что у составов Fe0.02 и Fe1 имеется существенный вклад проводимости на постоянном токе в процессы релаксации во всем исследуемом частотном диапазоне.

Спектр состава Fe0.5 имеет две дуги полуокружностей. Для соединения Fe0.5 в высокочастотной области спектра удалось оценить время релаксации: $\tau_{\rm Fe0.5} = 5 \cdot 10^{-6}$ s. Критическая частота составляет $f_{\rm crFe0.5} = 700$ Hz.

e pill

Рис. 5. Изображения поверхности соединений висмутсодержащей керамики со структурой перовскита, полученные с помощью атомно-силовой микроскопии. a — Bi₄Ti_{2.98}Fe_{0.02}O_{11.99} (размер области $25 \times 25 \,\mu$ m), b — Bi₄Ti_{2.5}Fe_{0.5}O_{11.75} (размер области $20 \times 20 \,\mu$ m), c — Bi₄Ti₂Fe₁O_{11.5} (размер области $25 \times 25 \,\mu$ m).

Величины действительной части комплексной соединений находятся проводимости исследуемых диапазонах: в следующих для состава Fe0.02 $\sigma' = 10^{-10} - 10^{-6}$ S/m; для состава Fe0.5 $\sigma =$ $= 10^{-10} - 10^{-5}$ S/m; для состава Fe1 $\sigma' = 10^{-8} - 10^{-4}$ S/m (рис. 4), т.е. на низких частотах величина проводимости увеличивается при увеличении концентрации замещающих атомов железа.

Существенные различия между составом Fe1 и составами Fe0.02 и Fe0.5 наблюдаются и в микроструктуре поверхности исследуемых соединений, которая представляет собой зерна малых размеров (порядка $0.6-1\,\mu$ m), спеченные в крупные конгломераты (рис. 5). Увеличение концентрации атомов замещения приводит к уменьшению размеров конгломератов.

4. Заключение

Из представленных результатов следует, что диэлектрические свойства сложных оксидов на основе титаната висмута с замещающими атомами железа сильно зависят от концентрации атомов замещения. Существует концентрация x (0.5 < x < 1), выше которой происходит существенное изменение диэлектрических свойств. Поскольку увеличение концентрации железа приводит к росту числа перовскитоподобных слоев, разделенных слоями висмута (Bi₂O₂)²⁺, данный факт, по всей видимости, и является основной причиной отличия свойств состава Fe1 от составов с меньшей концентрацией железа.

Данный вывод коррелирует с исследованиями микроструктуры поверхности висмутсодержащей керамики, выполненными на атомно-силовом микроскопе (рис. 5).

Список литературы

- [1] B. Aurivillius. Arkiv. Kemi 1, 54, 463 (1949).
- [2] B. Aurivillius. Arkiv. Kemi 1, 58, 499 (1949).
- [3] B. Aurivillius. Arkiv. Kemi 2, 37, 512 (1950).
- [4] Физика сегнетоэлектрических явлений / Под ред. Г.А. Смоленского. Наука, Л. (1985). 396 с.
- [5] Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина, Н.В. Дергунова. Неорган. материалы **32**, *4*, 474 (1996).
- [6] Е.Г. Фесенко, А.Т. Шуваев, В.Г. Смотраков, Г.А. Гегузина, В.Д. Комаров, В.Г. Гавриляченко, Е.С. Гагарина. Неорган. материалы **30**, *8*, 1057 (1994).
- [7] G. Geguzina, E. Fesenko, E. Shuvaeva. Ferroelectrics 167, 311 (1995).
- [8] А.Т. Шуваев, В.Г. Власенко, Г.А. Гегузина, Л.А. Шилкина. Электрон. журн. Исследовано в России. 6, 654 (2003); http://zhurnal.ape.relarn.ru/articles/2003/055.pdf
- [9] E.C. Subbarao. J. Phys. Chem. Solids 23, 665 (1962).
- [10] H.X. Yan, H.T. Zhang, Z. Zhang, R. Ubie, M.J. Reece. J. Eur. Ceram. Soc. 26, 2785 (2006).
- [11] P. Duran-Martin, B. Jimenez, P. Millan, A. Castro. J. Phys. Chem. Solids 61, 1423 (2000).
- [12] T. Rentsehler, M. Karus, A. Wellm, A. Reller. Solid State Ionics 90, 49 (1996).
- [13] A.K. Jonscher. Universal relaxation law. London (1996). 415 p.