Связь динамики атомов кислорода и кинетики окисления твердых растворов на основе Bi₂Sr₂CaCu₂O₈

© А.В. Кнотько, А.В. Гаршев, М.Н. Пулькин, В.И. Путляев, С.И. Морозов*

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия * ГНЦ РФ "Физико-энергетический институт", 249033 Обнинск, Калужская обл., Россия

E-mail: knotko@inorg.chem.msu.ru

(Поступила в Редакцию 24 июля 2003 г.)

Кинетика окисления твердых растворов Bi_{1.3}Pb_{0.8}Sr₂Ca_{0.8}Y_{0.2}Cu₂O_{8+ δ} при различных температурах и $p_{O_2} = 0.21$ atm исследована методом термогравиметрии и сопоставлена с ранее исследованным случаем твердых растворов Bi_{1.5}Pb_{0.6}Sr₂CaCu₂O_{8+ δ}. Обнаружено, что замещенеие Ca на Y значительно замедляет начальную стадию процесса, связанную с кислородной диффузией.

Методом неупругого рассеяния нейтронов на спектрометре прямой геометрии ДИН–2ПИ были исследованы фононные спектры указанных твердых растворов. Предложена возможная модель взаимосвязи наблюдаемых различий в высокочастотных частях спектров плотности фононного состояния (> 50 meV), связанных с кислородными колебаниями, в иттрийсодержащих и безиттриевых твердых растворах с различиями в их кинетике окисления.

Работа выполнена при поддержке Российской государственной программы "Актуальные направления в физике конденсированных сред" по направлениям "Нейтронные исследования вещества", а также Российского фонда фундаментальных исследований (проект № 02-03-33270-а).

Введение

Фазовые превращения в сверхпроводящих материалах с образованием композита "матрица сверхпроводниканесверхпроводящее включение" являются перспективным методом создания эффективных центров пиннинга магнитного потока. Так, для одного из наиболее перспективных для практического применения сверхпроводника Bi₂Sr₂CaCu₂O₈ (Bi-2212) эффективными центрами пиннинга магнитного потока могут быть выделения, образующиеся на начальном этапе распада твердых растворов на основе указанной фазы. Эффективность таких центров определяется равномерностью распределения выделений и близостью их размеров к длине когерентности сверхпроводника. Однако из-за малой скорости катионного перераспределения практическое применение для этой цели фазового распада в случае заместителей с постоянной степенью окисления сильно затруднено [1], а поэтому значительный интерес представляет применение для создания неоднородностей в матрице Ві-2212 окислительно-восстановительных процессов, что может обеспечить значительное ускорение фазового распада из-за существенно большей скорости кислородной диффузии по сравнению с катионной (D около 10^{-8} и 10^{-10} cm²/s по порядку величины соответственно при температурах около 650°С [2]).

Поскольку окисление меди, входящей в состав купрата Bi-2212, приводит к значительному понижению температуры сверхпроводящего перехода (см., например, обзор [3]), основной интерес представляют фазовые превращения в твердых растворах, полученных замещением Bi на Pb (или Sb), связанные со специфичностью данной кристаллохимической позиции по отношению к электронному строению катиона (Bi^{3+} в Bi-2212 может быть замещен на Pb^{2+} ; при окислении же свинца до Pb^{+4} происходит выделение вторых фаз ((Pb,Bi)₃(Sr,Ca)₅ CuO_2) [4]), а также одновременным замещением в несколько кристаллографических позиций (например, замещением Bi на Pb и Ca и/или Sr на P3Э). Менее интересными представляются твердые растворы с замещением Ca и Sr на P3Э с переменной степенью окисления (Pr, Tb, Ce).

Как показали ранее проведенные исследования твердых растворов $Bi_{2-x}Pb_xSr_2CaCu_2O_8$ [5], при больших содержаниях свинца окисление происходит в две стадии, причем первая стадия может быть связана с кислородным перераспределением в исходно однородном твердом растворе, а вторая — с более медленным катионным, сопровождающимся выделением указанных выше вторых фаз. Первая стадия окислительного распада твердого раствора происходит по спинодальному механизму с последующим огрублением образовавшейся микроструктуры.

Двойное гетеровалентное замещение в структуре Ві-2212 может позволить за счет изменения эффективных электрических зарядов тех или иных кристаллохимических слоев управлять и кинетикой окисления таких твердых растворов, и образующимися при этом микроструктурами. Для понимания механизма окисления твердых растворов на основе Bi-2212 и влияния гетеровалентного замещения значительный интерес представляет сравнительное исследование на одних и тех же образцах скорости набора кислорода образцом и колебательных состояний кислородных атомов.

Рис. 1. Параметры элементарной ячейки исследуемых твердых растворов (светлые ромбы — Pb_{0.6}Bi_{1.5}Sr₂CaCu₂O_z, — $Pb_{0.8}Bi_{1.3}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_z)$ в сравнении с темные параметрами элементарной ячейки твердых растворов $Pb_xBi_{2,1-x}Sr_2Ca_{1-y}Y_yCu_2O_z$, полученными [6]: в треугольники $Pb_xBi_{2.1-x}Sr_2Ca_{0.6}Y_{0.4}Cu_2O_z$, $Pb_xBi_{2.1-x}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_z$, круги квадраты $Pb_xBi_{2.1-x}Sr_2CaCu_2O_z$.

Постановка эксперимента и обработка результатов

Образцы Ві_{2.1-x} Pb_x Sr₂Ca_{1-y} Y_yCu₂O_{8+δ} (x=0.6, y=0; x=0.8, y=0.2) были синтезированы из нитратнооксинитратных смесей, полученных растворением Ві₂O₃, SrCO₃, CuO, Pb(NO₃)₂–ЧДА CaCO₃, Y₂O₃–ОСЧ в 20% азотной кислоте с последующим упариванием полученного раствора. Выбранные составы отвечают одинаковой средней степени окисления меди, обусловленной гетеровалентностью замещения (Bi³⁺ на Pb²⁺ и Ca²⁺ на Y³⁺). Синтез образцов включал разложение солевой смеси на воздухе при 750°С и несколько последующих стадий отжига в токе азота (остаточное $p_{O_2} = 10^{-3}$ atm) при температуре 760°С длительностью 24 h с промежуточным помолом.

Рентгенофазовый анализ синтезированных образцов, проведенный с использованием дифрактометра ДРОН-3М (Си- $K_{\alpha,cp.}$ -излучение, для расчета параметров элементарной ячейки в качестве внутреннего стандарта использовался кремний), показал, что их состав соответствует твердым растворам на основе Bi₂Sr₂CaCu₂O₈. Уточненные по методу наименыших квадратов параметры элементарных ячеек приведены на рис. 1 в сравнении с параметрами элементарных ячеек аналогичных твердых растворов по данным [6].

Микроструктура полученных образцов исследовалась на просвечивающем электронном микроскопе JEM-2000FXII (Jeol, Япония) при ускоряющем напряжении 200 kV, материал катода — LaB₆.

Кинетика окисления полученных твердых растворов исследовалась термогравиметрическим методом с использованием дериватографа Q-1500D (МОМ, Венгрия). Исследуемый образец нагревался на воздухе до темпера-

туры $650-750^{\circ}$ C со скоростью 20° /min с последующей изотермической выдержкой. Базовая линия дериватографа определялась при съемке в том же режиме образца стандарта (Bi₂O₃).

Эксперименты по неупругому рассеянию нейтронов проводились на спектрометре прямой геометрии ДИН-2ПИ, установленном на реакторе ИБР-2 (ОИЯИ, г. Дубна) [7]. Спектры регистрировались по времени пролета в режиме приобретения энергии Е с начальной энергией нейтрона $E_0 = 7.90 \text{ meV}$ при комнатной температуре в диапазоне углов рассеяния 42-134° (на детекторах, расположенных при меньших углах, наблюдался значительный поток нейтронов с энергиями > 100 meV, соответствующий тепловому фону). Разрешение спектрометра составляло $\Delta E/E \approx 5-8\%$ в области передач энергии $\varepsilon = E - E_0 = 0 - 100$ meV, при этом переданный нейтрону импульс лежал в пределах $Q = 1.8 - 4.2 \,\text{\AA}^{-1}$ для $\varepsilon = 6 \text{ meV}$ и $Q = 5.9 - 8.7 \text{ Å}^{-1}$ для $\varepsilon = 100 \text{ meV}.$ Нормировка спектров проводилась по упругому пику ванадия.

Обработка спектров велась в некогерентном приближении с учетом многофононного рассеяния [8]. После введения обычных поправок на эффективность детекторов и ослабление потока нейтронов образцом спектры неупругого рассеяния нейтронов, полученные в диапазоне углов рассеяния $42-134^{\circ}$, обрабатывались до уровня функции $G(\varepsilon)$ — спектра частот кристаллической решетки, взвешенного на множителе $\Sigma \exp(-2W_i) \cdot c_i \cdot \sigma_i \langle |\xi_i(\varepsilon)|^2 \rangle / m_i$, где c_i, σ_i, m_i и $\langle |\xi_i(\varepsilon)|^2 \rangle$ — концентрация, сечение рассеяния, масса и средний квадрат векторов поляризации *i*-го атома, а $\exp(-2W_i)$ — фактор Дебая–Валлера (так называемая нейтроно-взвешенная спектральная плотность колебательных состояний).

Усредненные по измерениям на всех детекторах в диапазоне углов рассеяния 42–134° нейтроно-взвешенные спектры частот для исследуемых образцов приведены на рис. 2. Для численной оценки различий в спектрах плотности состояний фононов в образцах с различным

Рис. 2. Обобщенные спектры частот $G(\varepsilon)$ твердых растворов Bi_{2.1-x}Pb_xSr₂Ca_{1-y}Y_yCu₂O_z (1 - x = 0.6, y = 0; 2 - x = 0.8, y = 0.2). Под спектром I показана его аппроксимация функциями (I).

Параметры функций Гаусса (1), суперпозиция которых описывает полученные обобщенные спектры частот твердых растворов Bi_{2.1-x}Pb_xSr₂Ca_{1-y}Y_yCu₂O_z

<i>x</i> , <i>y</i>		1	2	3	4	5	6	7	8
x = 0.6, y = 0	ε_c , meV	5.28	9.9	16.5	19.2	32.3	53.5	65.1	84
	w, meV	1.53	3.02	10.9	1.44	19.4	9.84	11.8	26
	A, a.u.	11.1	23.2	141	6.92	554	96.4	133	74
x = 0.8, y = 0.2	ε_c , meV	5.37	10.1	16.6	19.3	32.9	54.0	65.7	93
	W, meV	1.55	2.81	11.3	1.63	19.9	9.69	16.0	23
	A, a.u.	9.85	19.8	132	6.10	535	81.0	206	119

катионным составом низкочастотная ($\varepsilon < 50 \, meV$) часть данных спектров была аппроксимирована суперпозицией функций Гаусса

$$I = A/(w(\pi/2)^{1/2}) \exp(-2(\varepsilon - \varepsilon_c)/w)^2, \qquad (1)$$

где I — интенсивность; ε — энергия; A, w, ε_c — параметры. Вычитанием из спектра $G(\varepsilon)$ суммы функций, описывающих низкочастотную часть, была выделена часть спектра, отвечающая, согласно литературным данным, колебаниям кислорода в слоях CuO₂ и SrO (рис. 3), которая также была аппроксимировна функциями (1). Параметры функций Гаусса для всех образцов приведены в таблице, а графики данных функций, описывающих спектр $G(\varepsilon)$ образца Bi_{1.5}Pb_{0.6}Sr₂CaCu₂O₈, приведены на рис. 2 и 3.

2. Обсуждение результатов

На рис. 4 приведены кинетические кривые окисления на воздухе при 650 и 700°C твердых растворов исследуемых составов. Приведенные на данном рисунке результаты по окислению образцов Bi1.5Pb0.6Sr2CaCu2O8+6 получены ранее [5]. Как можно видеть, при окислении твердого раствора Bi1.3Pb0.8Sr2Ca0.8Y0.2Cu2O8+6 наблюдается значительное замедление (по сравнению с не содержащими У образцами) начальной стадии процесса окисления при почти неизменной скорости второй стадии. Как уже отмечалось, начальная стадия окисления Рb-замещенного Bi-2212 связана главным образом с кислородным перераспределением в твердом растворе, а последующая — с катионным. Таким образом, можно сделать вывод о существенном замедлении кислородной диффузии в У-содержащих образцах при одной и той же средней степени окисления меди, обусловленной гетеровалентностью замещения. Электронномикроскопические исследования (для не содержащих У твердых растворов по данным [5]) образцов до и после окисления показали, что начальная стадия процесса включает в себя расслаивание твердого раствора (как кислородное, так и, по-видимому, катионное) с образованием ламеллярной микроморфологии, характерной для спинодального распада и благоприятной для эффективного пиннинга магнитного поля. В случае безиттриевых составов при дальнейшем окислении происходит огрубление полученной микроструктуры [5]. Для твердого раствора $Bi_{1.3}Pb_{0.8}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_{8+\delta}$ было обнаружено, что образующаяся ламеллярная структура характеризуется существенно меньшим периодом (около 3 nm по сравнению с 10 nm для безиттриевого твердого раствора [5]), а ее огрубление значительно замедленно. Таким образом, использование приема двойного гетеровалентного замещения позволяет управлять микроструктурой, образующейся при окислительном распаде тверодого раствора на основе Bi-2212.

Исследование колебательных спектров рассматриваемых твердых растворов было предпринято с целью уточнения механизма замедления кислородной диффузии в Pb-содержащем Bi-2212 при замещении в нем Ca на Y. Соотнесение той или иной части полученных спектров

Рис. 3. Высокочастотная часть спектров $G(\varepsilon)$ твердых растворов $\operatorname{Bi}_{2.1-x}\operatorname{Pb}_x\operatorname{Sr}_2\operatorname{Ca}_{1-y}\operatorname{Y}_y\operatorname{Cu}_2\operatorname{O}_z$ (I - x = 0.6, y = 0;2 - x = 0.8, y = 0.2) (после вычета суммы функций (I)), описывающих пики I-5. Под спектром I показана его аппроксимация функциями (I).

Рис. 4. кривые Кинетические окисления (в координатах превращения относительно степень полного окисления свинца до Pb^{4+} от времени) твердых растворов $Pb_xBi_{2.1-x}Sr_2Ca_{1-y}Y_yCu_2O_z$ при температурах: Pb_{0.6}Bi_{1.5}Sr₂CaCu₂O_z различных 1 2 — Pb_{0.8}Bi_{1.3}Sr₂Ca_{0.8}Y_{0.2}Cu₂O_z при 700°С, при 700°С, $Pb_{0.8}Bi_{1.3}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_z$ при 650°С, 3 4 Рb_{0.6}Bi_{1.5}Sr₂CaCu₂O₂ при 650°.

Рис. 5. Структура $Bi_2Sr_2CaCu_2O_8$ (схематично, половина элементарной ячейки в тетрагональной установке).

 $G(\varepsilon)$ с колебаниями различных атомов в различных кристаллохимических слоях структуры В_i-2212 проводилось, как и в работах [10,11], сравнением данных эксперимента с результатами [12-15] для твердых растворов $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_{8+\delta}$ и незамещенного $Bi_2Sr_2CaCu_2O_8$. Выводы из данного соотнесения также были аналогичны сделанным в [10,11], а именно пик 1 относится к колебаниям атомов Bi, пик 2 — к колебаниям Sr, пики 3 и 4 к колебаниям Си и катионов в слое Са, пик 5 является результатом наложения колебаний Си и нескольких типов колебаний атомов кислорода (главным образом в слое Bi_2O_2), пики 6 и 7 соответствуют колебаниям кислорода в слое SrO, а пик 8 — колебаниям кислорода в слое CuO₂. Предложенное в [13] обратное соотнесение пиков 6, 7 и 8 с колебаниями кислорода в слоях SrO и CuO₂ представляется маловероятным в связи со значительным ковалентным связыванием кислорода и меди в слое CuO₂. В многочисленных работах по исследованию фононного спектра Ві-2212 методом спектроскопии комбинационного рассеяния (КР) пик с максимальной частотой чаще всего относят к колебаниям кислорода в слое SrO [16], однако модельные расчеты [17] показываеют, что более высокочастотные пики колебаний кислорода в слое CuO2 не могут наблюдаться в КР спектрах (являются активными в спектрах поглощения или отражения (моды A_{2u} и E_u)), поэтому колебания с частотами 627 и 656 cm⁻¹ (что соответствует энергиям фононов 75.2 и 78.7 meV), наблюдавшиеся авторами [16], скорее всего, соответствуют пикам 6 и 7 в нашем случае. Таким образом, наибольший интерес для исследования влияния гетеровалентного замещения на подвижность кислородных атомов в структуре Bi-2212 представляет сравнение пиков 6, 7 и 8 в спектрах $G(\varepsilon)$ исследуемых образцов.

На рис. 5 схематично (с равными расстояниями между кристаллохимическими слоями и без учета несоразмерной модуляции в слоях Bi_2O_2 и SrO) приведена кристаллическая структура Bi-2212 и послойная локализация в

ней протекающих при окислении процессов (см., например, [3]). Кислородная нестехиометрия локализована в кристаллохимическом слое Bi2O2. Диффузия кислорода в структуре Bi-2212 также происходит вдоль слоев Bi₂O₂, что связано с несоразмерной базовой субъячейкой модуляцией положений атомов в этом слое, благодаря которой в нем появляются дополнительные позиции, заполняемые кислородом. В этом же слое локализовано и гетеровалентное замещение Bi на Pb. В случае замещения Ca на Y (благодаря малому ионному радиусу Y³⁺ по сравнению со Sr^{2+} — 1.22 и 1.45 Å для $\mathrm{KH}=9$ (катион в слое SrO) соответственно [18]) можно ожидать локализацию иттрия в кристаллохимическом слое Са, но возможно и перераспределение катионов Ca, Sr и Y по слоям Са и SrO, подобное наблюдавшемуся для твердых растворов на основе Bi-2212, содержащих Nd, La [1] или Pr [19]. В Рb-содержащих твердых растворах на основе Ві-2212 изменять степень окисления могут медь, свинец и висмут, однако, как было показано методом РФЭС [20], висмут в данной структуре находится в степени окисления +3, причем нахождение его в степени окисления +5 представляется маловероятным в силу высокой специфичности координационного окружения для ионов, содержащих неподеленную 6s²-электронную пару. Свинец при переходе $Pb^{+2} \rightarrow Pb^{+4}$, как было показано в [4,5], выделяется из матрицы Bi-2212 в виде второй фазы ((Pb,Bi)₃(Sr,Ca)₅CuO_z) после предварительной стадии расслаивания твердого раствора. Таким образом, можно полагать, что изменение степеней окисления элементов при окислении твердого раствора локализовано главным образом в кристаллохимическом слое CuO₂ (ввиду металличности этого слоя можно говорить только об изменении положения в нем уровня Ферми). Меньшую скорость кислородной диффузии в твердом растворе $Bi_{1,3}Pb_{0,8}Sr_2Ca_{0,8}Y_{0,2}Cu_2O_{8+\delta}$ по сравнению с Bi_{1.5}Pb_{0.6}Sr₂CaCu₂O_{8+δ} нельзя объяснить изменением катионного состава кристаллохимического слоя Bi₂O₂ структуры Bi-2212, поскольку замещение Bi^{3+} на изоэлектронный ион с меньшим зарядом (Pb^{2+}) должно уменьшать прочность связи атома кислорода с катионным окружением. Усиление связывания кислорода в слое Bi₂O₂ могло бы иметь место при нахождении значительной части Y в кристаллохимическом слое SrO (при одновременном перераспределении атомов Са и Sr по позициям в кристаллической структуре), однако это сопровождалось бы и усилением связывания кислорода в слое SrO, и как следстие сдвигом пиков 6 и 7 в спектре $G(\varepsilon)$ в сторону больших энергий, чего в нашем случае не наблюдалось. Кроме того, как уже указывалось, нахождение большого количества иттрия в слое SrO структуры Bi-2212 представляется маловероятным в связи с большим различием ионных радиусов стронция и иттрия.

Лучше согласуется с имеющимися экспериментальными данными, на наш взгляд, механизм замедления кислородной диффузии при замещении в Рb-содержащем Bi-2212 Ca и Y, предполагающий нахождение иттрия в слое Ca структуры Bi-2212. При этом, очевидно, увеличивается положительный электростатический заряд этого слоя. С другой стороны, окисление данного твердого раствора приводит к переходу $Cu^{+2} \rightarrow Cu^{+3}$ в слое CuO_2 . При этом, хотя суммарный заряд этого слоя и остается отрицательным, локализация дырок на атомах меди (образование ионов Cu^{3+}) оказывается менее выгодным для итррий-замещенного твердого раствора изза электростатического отталкивания со слоем Са, что и может являться причиной наблюдаемого замедления диффузии кислорода. При нахождении Y в слое Ca структуры Bi-2212 связь атомов кислорода в слое CuO₂ с катионами координационного окружения усиливается, что приводит к наблюдавшемуся в нашем эксперименте сдвигу в сторону больших энергий пика (8) в спектре $G(\varepsilon)$.

Заключение

Итак, замещение Са на Y в Pb-содержащих твердых растворах на основе $Bi_2Sr_2CaCu_2O_8$ приводит к заметному замедлению кислородной диффузии в них, что значительно облегчает наноструктурную модификацию указанных твердых растворов с использованием приема внутреннего окисления.

Анализ высокочастотной части колебательного спектра (относящейся к атомам кислорода в кристаллохимических слоях SrO и CuO₂ структуры $Bi_2Sr_2CaCu_2O_8$) позволяет сделать вывод об изменении электростатического взаимодействия слоев Ca и CuO₂ данной структуры как о причине замедления кислородной диффузии.

Список литературы

- А.В. Кнотько, А.В. Гаршев, А.Г. Вересов, В.И. Путляев, Ю.Д. Третьяков. Материаловедение 1, 42 (2000).
- [2] А.А. Фотиев, Б.В. Слободин, В.А. Фотиев. Химия и технология высокотемпературных сверхпроводников. Екатеринбург, ИХТТ УрО РАН (1994). С. 250.
- [3] P. Majewski. Adv. Matter. 6, 6, 460 (1994).
- [4] H.-L. Su, P. Majewski, F. Aldinger. Physica C 249, 3–4, 241 (1995).
- [5] A. Veresov, M. Pulkin, A. Knotko, V. Putlyaev, E.K.H. Salje. In: MRS symp. proc. MRS (2001). Vol. 659. P. II9.6.1.
- [6] A. Veresov, A. Knotko, M. Pulkin, A. Garshev, V. Putlayev. In abstracts of conference "Solid State Chemistry 2001". Oslo, Norway (2001). P. 108.
- [7] В.А. Парфенов, П.С. Клемышев, И.Г. Морозов, А.Ф. Павлов. Neutr. Inelast. Scatt. IAEA, Vienna (1978). Vol. 1. P. 81.
- [8] В.Ф. Турчин. Медленные нейтроны. Госатомиздат, М. (1963).
- [9] А.В. Кнотько, А.В. Гаршев, В.И. Путляев, С.И. Морозов. ФТТ 42, 9, 1537 (2000).
- [10] А.В. Кнотько, В.И. Путляев, С.И. Морозов. ФТТ 44, 7, 1174 (2002).
- B. Renker, F. Gompf, D. Ewert, P. Adelmann, H. Schmidt, E. Gering, H. Mutka. Z. Phys. B 77, *1*, 65 (1989).
- [12] D. Shimada, N. Tsuda, U. Paltzer, F. W. de Wette. Physica C 298, 3–4, 195 (1998).

- [13] П.П. Паршин, М.Г. Землянов, А.В. Иродова. ФНТ 22, 5, 564 (1996).
- [14] П.П. Паршин, М.Г. Землянов, А.В. Иродова, П.И. Солдатов, С.Х. Сулейманов. ФТТ 38, 6, 1665 (1996).
- [15] M. Kakihana, M. Osada, M. Kall, H. Mazaki, H. Yasuoka, M. Yashima, M. Yoshimura, L. Borjesson. Phys. Rev. B 53, 17, 11796 (1996).
- [16] Физические свойства высокотемпературных сверхпроводников / Под ред. Д.М. Гинзберга. Мир, М. (1990. С. 411.
- [17] R.D. Shannon, C.T. Prewitt. Acta Crystallogr. B 25, 5, 935 (1969).
- [18] А.В. Кнотько, А.В. Гаршев, В.И. Путляев. Тез. конф. по неорганической химии и радиохимии, посвященной 100-летию В.И. Спицына. М. (2002). С. 52.
- [19] C. Hinnen, C. Nguyen van Huong, P. Marcus. Journal of Electron Spectroscopy and Related Phenomena. 73, 3, 293 (1995).