# Эффекты электрон-электронного взаимодействия в спиновом резонансе в двумерной системе со спин-орбитальным взаимодействием Дрессельхауза

## © С.С. Криштопенко¶

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

(Получена 23 мая 2014 г. Принята к печати 16 июня 2014 г.)

Исследовано влияние электрон-электронного взаимодействия на частоту спинового резонанса в двумерной электронной системе со спин-орбитальным взаимодействием Дрессельхауза. Продемонстрирована осциллирующая зависимость многочастичных поправок от магнитного поля. Показано, что в зависимости от знака *g*-фактора учет многочастичного взаимодействия приводит или к уменьшению, или к увеличению частоты спинового резонанса. Установлено, что кубичное по волновому вектору слагаемое в спин-орбитальном взаимодействии дрессельхауза частично уменьшает величину обменных поправок к энергии спинового резонанса в двумерной системе.

### 1. Введение

Спин-орбитальное взаимодействие (СОВ), являясь релятивистским по своей природе, приводит к возникновению гиротропии в двумерных (2D) полупроводниковых системах и появлению спинового расщепления в энергетическом спектре квазичастиц в отсутствие внешнего магнитного поля. Данное расщепление для состояний вблизи дна зоны проводимости линейно по квазиимпульсу и связано с отсутствием центра инверсии в системе. Спиновое расщепление в 2D системах на основе полупроводников А<sup>ШВV</sup> обусловлено двумя основными слагаемыми в эффективном 2D гамильтониане, известными также как СОВ Рашбы [1] и Дрессельхауза [2]. Первый вклад возникает в квантовых ямах (КЯ) с различными барьерами либо с асимметричным профилем потенциала, а также в присутствии внешнего электрического поля (structure inversion asymmetry, SIA). Второй вклад обусловлен отсутствием центра пространственной инверсии в элементарной ячейке материалов, из которых выращена 2D структура (bulk inversion asymmetry, BIA).<sup>1</sup>

Гамильтониан СОВ Дрессельхауза в объемных полупроводниках А<sup>Ш</sup>В<sup>V</sup> для состояний вблизи дна зоны проводимости имеет вид

$$\hat{H}_{SO}(\hat{\mathbf{k}}) = \gamma \left\{ \left( \widehat{k}_y \, \widehat{k}_x \, \widehat{k}_y - \widehat{k}_z \, \widehat{k}_x \, \widehat{k}_z \right) \widehat{\sigma}_x + \left( \widehat{k}_z \, \widehat{k}_y \, \widehat{k}_z - \widehat{k}_x \, \widehat{k}_y \, \widehat{k}_z \right) \widehat{\sigma}_y + \left( \widehat{k}_x \, \widehat{k}_z \, \widehat{k}_x - \widehat{k}_y \, \widehat{k}_z \, \widehat{k}_y \right) \widehat{\sigma}_z \right\} \tag{1}$$

где  $\gamma$  — константа взаимодействия Дрессельхауза,  $\hat{\sigma}_i$ и  $\hat{k}_i$  (i = x, y, z) — матрицы Паули и операторы компонент обобщенного импульса. Оси x, y, z ориентированы вдоль кубических осей кристалла [100], [010] и [001] соответственно. Отметим, что  $\widehat{H}_{SO}(\mathbf{k})$  отличается от гамильтониана, полученного в [2]. Форма (1) для СОВ Дрессельхауза учитывает правильный порядок для компонент обобщенного импульса в присутствии однородного магнитного поля [6].

В 2D системах из-за размерного квантования компонента импульса вдоль оси роста, например оси *z*, заменяется в гамильтониане на  $-i\partial/\partial z$ . Гамильтониан COB можно получить с помощью усреднения по адиабатически быстрому движению вдоль оси роста. Проводя такое усреднение и учитывая, что  $\langle \hat{k}_z \rangle = 0$  и  $\langle \hat{k}_z^2 \rangle \neq 0$ , где скобки означают квантово-механическое усреднение по волновой функции размерного квантования, легко получить 2D форму COB Дрессельхауза [7], в котором помимо слагаемого  $\hat{H}_D^{(1)}(\hat{k}_x, \hat{k}_y)$ , линейного по  $\hat{k}_x$  и  $\hat{k}_y$ , присутствует слагаемое, кубичное по квазиимпульсу,  $\hat{H}_D^{(3)}(\hat{k}_x, \hat{k}_y)$ :

$$\begin{aligned} \widehat{H}_{SO}(\widehat{\mathbf{k}}) &= \widehat{H}_D^{(1)}(\widehat{k}_x \widehat{k}_y) + \widehat{H}_D^{(3)}(\widehat{k}_x, \widehat{k}_y), \\ \widehat{H}_D^{(1)}(\widehat{k}_x, \widehat{k}_y) &= \beta \left(\widehat{k}_x \widehat{\sigma}_x - \widehat{k}_y \widehat{\sigma}_y\right), \\ \widehat{H}_D^{(3)}(\widehat{k}_x, \widehat{k}_y) &= \gamma \left(\widehat{k}_y \widehat{k}_x \widehat{k}_y \widehat{\sigma}_x - \widehat{k}_x \widehat{k}_y \widehat{k}_x \widehat{\sigma}_y\right), \end{aligned}$$
(2)

где  $\beta = -\gamma \langle \hat{k}_z^2 \rangle$  — 2D константа Дрессельхауза, зависящая от ширины КЯ. Часто слагаемым  $\hat{H}_D^{(3)}(\hat{k}_x, \hat{k}_y)$  пренебрегают, полагая  $\langle \hat{k}_z^2 \rangle \gg k_F^2$ , где  $k_F = \sqrt{2\pi n_S}$  — волновой вектор Ферми ( $n_S$  — концентрация 2D электронов). Недавние эксперименты [8–10] свидетельствуют о значительной роли кубического слагаемого в СОВ Дрессельхауза в 2D системах даже при низких значениях концентрации электронного газа.

<sup>¶</sup> E-mail: sergey.krishtopenko@mail.ru

<sup>&</sup>lt;sup>1</sup> Помимо вкладов, обусловленных SIA и BIA, в гамильтониане COB в 2D системах существует также вклад, связанный с симметрией и структурой гетерограниц в КЯ (interface inversion asymmetry, IIA) [3]. Учет вклада гетерограниц в гамильтониан COB в отсутствие магнитного поля приводит лишь к перенормировке вкладов Рашбы и Дрессельхауза [3–5].

Использование спинового резонанса (СР) для измерения константы СОВ впервые было предложено в работах [11,12]. Из-за чрезвычайной чувствительности к СОВ и высокой точности при определении положения линии поглощения СР успешно использовался для определения константы СОВ Рашбы в 2D системах [13–17]. СОВ Дрессельхауза в КЯ, помещенных в магнитное поле, приводит к анизотропии спинового расщепления электронных уровней, описываемой как анизотропия эффективного g-фактора в плоскости 2D системы [18,19]. Плоскостная анизотропия g-фактора в КЯ GaAs/AlGaAs, определяемого из измерений СР, экспериментально наблюдалась в работах [20,21].

Помимо того, что СОВ приводит к анизотропии эффективного g-фактора в сильных магнитных полях и увеличению энергии СР в слабых магнитных полях,<sup>2</sup> оно также обусловливает дополнительную перенормировку энергии СР в 2D системе, связанную с электронэлектронным (e-e) взаимодействием (нарушение теоремы Лармора) [22]. Влияние е-е-взаимодействия на энергию СР подробно изучалось для 2D систем с СОВ Рашбы [22-24], а также для КЯ на основе узкозонных полупроводников, таких как InAs и InSb [25-30]. Настоящая работа посвящена исследованию перенормировки энергии СР, обусловленной *e*-*e*-взаимодействием, в 2D электронной системе с СОВ Дрессельхауза, кубичным,  $\widehat{H}_{D}^{(3)}(\widehat{k}_{x}, \widehat{k}_{y})$ , и линейным,  $\widehat{H}_{D}^{(1)}(\widehat{k}_{x}, \widehat{k}_{y})$ , по импульсу. Эффектами непараболичности и беспорядка при этом пренебрегали.

# 2. Теория

Рассмотрим 2D систему в отсутствие беспорядка, помещенную в магнитное поле, направленное вдоль оси zперпендикулярно плоскости системы. Для расчета энергий и волновых функций одноэлектронных состояний вместо операторов импульса в плоскости (x, y) удобно ввести "лестничные операторы" следующим образом:

$$b^+ = rac{a_B}{\sqrt{2}} (k_x + ik_y),$$
  
 $b = rac{a_B}{\sqrt{2}} (k_x - ik_y),$   
 $bb^+ - b^+b = 1,$ 

где  $a_B = \sqrt{\hbar c/eB}$  — магнитная длина, B — величина магнитной индукции. В результате гамильтониан для описания одночастичных состояний можно представить в виде

$$\widehat{H}_{(1e)} = \hbar\omega_c \left(b^+ b + \frac{1}{2}\right) + \frac{g^*}{2}\mu_{\rm B}B\sigma_z + \widehat{H}_{SO}^{(ax)} + \widehat{H}_{SO}^{(wp)},$$

$$\widehat{H}_{SO}^{(ax)} = \widetilde{\beta} \begin{pmatrix} 0 & ib^+ \\ -ib & 0 \end{pmatrix} + \widetilde{\gamma} \begin{pmatrix} 0 & ib^+ bb^+ \\ -ibb^+ b & 0 \end{pmatrix}, \quad (3)$$

где  $m^*$  и  $g^*$  — эффективная масса и g-фактор электронов,  $\mu_{\rm B} > 0$  — магнетон Бора,  $\omega_c = eB/m^*c$ ,  $\tilde{\beta} = \sqrt{2}\beta/a_B$  и  $\tilde{\gamma} = \gamma/\sqrt{2}a_B^3$ . Слагаемое  $\widehat{H}_{SO}^{(wp)}$  в (3), появляющееся из анизотропной части кубического слагаемого СОВ Дрессельхауза  $\widehat{H}_D^{(3)}(\hat{k}_x \hat{k}_y)$ , имеет вид

$$\widehat{H}_{SO}^{(wp)} = -\widetilde{\gamma} \begin{pmatrix} 0 & ib^3 \\ -i(b^+)^3 & 0 \end{pmatrix}.$$
 (4)

Легко видеть, что в отсутствие слагаемого (4) закон дисперсии 2D электронов является изотропным и одночастичная задача может быть решена аналитически. Собственные значения "редуцированного" гамильтониана  $\hat{H}_{(1e)} - \hat{H}_{SO}^{(wp)}$  имеют две ветви, нумеруемые *a* и *b*:

$$\tilde{E}_{n}^{(a)} = \hbar \omega_{c} n + \sqrt{E_{0}^{2} + B_{n}^{2} n}, \quad n = 0, 1, 2, \dots$$
 (5)

И

$$\tilde{E}_{n}^{(b)} = \hbar\omega_{c}n - \sqrt{E_{0}^{2} + B_{n}^{2}n}, \quad n = 1, 2, 3, \dots,$$
 (6)

где

$$E_0 = \frac{1}{2} \left( \hbar \omega_c + g^* \mu_{\rm B} B \right)$$
$$\widehat{B}_n = \widetilde{\beta} + \widetilde{\gamma} n.$$

Соответствующие волновые функции удобно представить в виде

$$\begin{split} \tilde{\Psi}_{n,k}^{(a)}(x, y, z) &= \sin \varphi_n \begin{pmatrix} |n, k\rangle \\ 0 \end{pmatrix} - i \cos \varphi_n \begin{pmatrix} 0 \\ |n-1, k\rangle \end{pmatrix}, \\ \tilde{\Psi}_{n,k}^{(b)}(x, y, z) &= \sin \varphi_n \begin{pmatrix} 0 \\ |n-1, k\rangle \end{pmatrix} - i \cos \varphi_n \begin{pmatrix} |n, k\rangle \\ 0 \end{pmatrix}, \end{split}$$
(7)

где  $|n-1, k\rangle$  соответствует нормированной волновой функции гармонического осциллятора [31],

$$\sin \varphi_n = \frac{E_0 + \sqrt{E_0^2 + \widehat{B}_n^2}}{\sqrt{\left(E_0 + \sqrt{E_0^2 + \widehat{B}_n^2 n}\right)^2 + \widehat{B}_n^2 n}}$$
$$\cos \varphi_n = \frac{\widehat{B}_n \sqrt{n}}{\sqrt{\left(E_0 + \sqrt{E_0^2 + \widehat{B}_n^2 n}\right)^2 + \widehat{B}_n^2 n}}.$$

Электронный спиновый резонанс соответствует переходу между уровнями (n, a) и (n + 1, b). В слабых магнитных полях при больших значениях n, таких что  $k_F^2 \approx 2n/a_B^2$ , энергия СР принимает вид

$$E_{\rm ESR} = \left| \sqrt{\left( g^* \mu_{\rm B} B + \hbar \omega_c \right)^2 \left( \Delta_D^{(1)} + \Delta_D^{(2)} / 4 \right)^2} - \hbar \omega_c \right|, \quad (9)$$

где  $\Delta_D^{(1)} = 2\beta k_F$  и  $\Delta_D^{(3)} = 2\gamma k_F^3$  — расщепления энергетического спектра в нулевом магнитном поле, соответствующие линейной и кубичной частям СОВ Дрессельхауза.

<sup>&</sup>lt;sup>2</sup> В нулевом магнитном поле энергия СР определяется спиновым расщеплением энергетического спектра носителей заряда.

Учет анизотропного члена  $\widehat{H}_{SO}^{(wp)}$  в энергии и волновых функциях одночастичных состояний проводился по теории возмущений с точностью до второго порядка на волновых функциях (7). Прямая диагонализация  $\widehat{H}_{(1e)}$  в базисе собственных функций "редуцированного" гамильтониана  $\widehat{H}_{(1e)} - \widehat{H}_{SO}^{(wp)}$  при значениях  $m^*$ ,  $g^*$ ,  $\beta$  и  $\gamma$ , характерных для 2D структур на основе GaAs/AlGaAs, показывает, что соответствующий вклад  $\widehat{H}_{SO}^{(wp)}$  не превышает 1-2% даже в слабых магнитных полях (при которых  $k_F^2 \approx 2n/a_B^2$ ), что оправдывает использование теории возмущений. Отметим, что использование теории возмущений при вычислении энергий и волновых функций одночастичных состояний вместо численной диагонализации  $\widehat{H}_{(1e)}$  позволяет значительно экономить время расчета при решении многочастичной задачи.

Полный гамильтониан 2D системы с учетом e-e-взаимодействия  $H_{\text{int}}$  в представлении вторичного квантования имеет вид

$$H = H_{(0)} + H_{\text{int}},$$

$$H_{(0)} = \int d^2 \mathbf{r} \Psi^+(\mathbf{r}) H_{(1e)} \Psi(\mathbf{r}),$$

$$H_{\text{int}} = \frac{1}{2} \int d^2 \mathbf{r}_1 \int d^2 \mathbf{r}_2$$

$$\times \Psi^+(\mathbf{r}_1) \Psi^+(\mathbf{r}_2) V(|\mathbf{r}_1 - \mathbf{r}_2|) \Psi(\mathbf{r}_2) \Psi(\mathbf{r}_1), \quad (10)$$

где  $\mathbf{r} = (x, y)$  — радиус-вектор в плоскости системы,  $V(|\mathbf{r}_1 - \mathbf{r}_2|)$  — кулоновский потенциал, верхний индекс "+" соответствует эрмитову сопряжению. В (10) были введены полевые операторы  $\Psi(\mathbf{r})$  и  $\Psi^+(\mathbf{r})$ , содержащие фермионные операторы рождения и уничтожения,  $a_{n,k,i}$ ,  $a_{n,k,i}^+$ , и волновые функции одночастичных состояний,  $\varphi_{n,k}^{(a)}(x, y)$  и  $\varphi_{n,k}^{(b)}(x, y)$ , вычисленные с учетом  $\widehat{H}_{SO}^{(wp)}$ :

$$\Psi(\mathbf{r}) = \sum_{n,k,i} \varphi_{n,k}^{(i)}(x, y) a_{n,k,i},$$
  

$$\Psi^{+}(\mathbf{r}) = \sum_{n,k,i} \varphi_{n,k}^{(i)+}(x, y) a_{n,k,i}^{+},$$
(11)

где *i* = *a*, *b*. Использование преобразования Фурье для кулоновского потенциала,

$$V(|\mathbf{r} - \mathbf{r}'|) = \int \frac{d^2\mathbf{q}}{(2\pi)^2} \tilde{D}(q) e^{i\mathbf{q}(\mathbf{r} - \mathbf{r}')},$$
 (12)

позволяет свести вычисление матричных элементов e-e-взаимодействия  $H_{\text{int}}$  на волновых функциях  $\varphi_{n,k}^{(a)}(x, y)$  и  $\varphi_{n,k}^{(b)}(x, y)$  к вычислению матричных элементов  $\langle n_1, k_1 | e^{i\mathbf{qr}} | n_2, k_2 \rangle$  [24].

Фурье-образ кулоновского потенциала  $\tilde{D}(q)$  в 2D системе имеет вид

$$\tilde{D}(q) = \frac{2\pi e^2}{\varepsilon q} F(q), \qquad (13)$$

где  $\varepsilon$  — статическая диэлектрическая проницаемость системы, F(q) — геометрический форм-фактор, учитывающий ненулевую толщину 2D системы в направлении

Физика и техника полупроводников, 2015, том 49, вып. 2

оси z, а также поля электростатических изображений. Далее движением электронов вдоль оси z будем пренебрегать, полагая F(q) = 1.

После некоторых вычислений можно получить следующие выражения для  $H_{(0)}$  и  $H_{int}$ :

$$H_{(0)} = \sum_{n,k,i} E_n^{(i)} a_{n,k,i}^+ a_{n,k,i},$$

$$H_{\text{int}} = \frac{1}{2} \sum_{n_1...n_4} \sum_{i_1...i_4} \sum_{k_1k_2} \int \frac{d^2q}{(2\pi)^2} \tilde{V}_{n_1,n_2,n_3,n_4}^{(i_1,i_2,i_3,i_4)}(\mathbf{q})$$
  
×  $e^{iq_x(k_1-k_2+q_y)a_B^2} a^+_{n_1,k_1,i_1} a^+_{n_2,k_2,i_2} a_{n_3,k_2-q_y,i_3} a_{n_4,k_{1+q_y},i_4},$  (14)

где  $E_n^{(i)}$  — собственные значения энергии гамильтониана  $\widehat{H}_{(1e)}$ , а в матричном элементе e-e-взаимодействия  $\widetilde{V}_{n_1,n_2,n_3,n_4}^{(i_1,i_2,i_3,i_4)}(\mathbf{q}) \propto \widetilde{D}(q)$  удерживаются слагаемые с точностью до второго порядка малости по матричному элементу  $\widehat{H}_{SO}^{(wp)}$ .

Для нахождения энергии СР с учетом e-e-взаимодействия удобно воспользоваться экситонным представлением [32–34]. При переходе электрона между уровнями Ландау в 2D системе происходит рождение квазиэлектрон-квазидырочных пар (квазиэлектронов над уровнем Ферми и квазидырок под уровнем Ферми), в результате система переходит из основного состояния в возбужденное. Для описания возбужденного состояния в возбужденное. Для описания возбужденного состояния 2D системы, образованного электроном, перемещенным на незаполненный или частично заполненный уровень Ландау (n, i), и эффективной дыркой, появляющейся на прежнем уровне (n', i'), определим оператор рождения магнитного экситона с импульсом k,

$$A_{n,n',i,i'}^{+}(\mathbf{k}) = \sum_{p} e^{ik_{x}(p+k_{y}/2)a_{B}^{2}}a_{n,p,i}^{+}a_{n',p+k_{y},i'}, \qquad (15)$$

который удовлетворяет следующему коммутационному соотношению:

$$\begin{split} \left[ A_{n_1,n_2,i_1,i_2}^+(\mathbf{k}_1), A_{n_3,n_4,i_3,i_4}(\mathbf{k}_2) \right] \\ &= A_{n_1,n_4,i_1,i_4}^+(\mathbf{k}_1 + \mathbf{k}_2) e^{-\frac{i}{2}a_B^2(\mathbf{k}_1 \times \mathbf{k}_2)|_z} \delta_{n_2,n_3} \delta_{i_2,i_3} \\ &- A_{n_3,n_2,i_3,i_2}^+(\mathbf{k}_1 + \mathbf{k}_2) e^{\frac{i}{2}a_B^2(\mathbf{k}_1 \times \mathbf{k}_2)|_z} \delta_{n_1,n_4} \delta_{i_1,i_4}. \end{split}$$
(16)

Энергия такого магнитного экситона  $E_{\rm ex}$ , отсчитываемая от энергии основного состояния системы  $|0\rangle$ , удовлетворяет уравнению

$$E_{\text{ex}}A^{+}_{n,n',i,i'}(\mathbf{k})|0\rangle = \left(E^{(i)}_{n} - E^{(i')}_{n'}\right)A^{+}_{n,n',i,i'}(\mathbf{k})|0\rangle + \left[H_{\text{int}}, A^{+}_{n,n',i,i'}(\mathbf{k})\right]|0\rangle.$$
(17)

Для вычисления коммутатора в правой части (17) выражение (14) удобно переписать в виде

$$\widehat{H}_{\text{int}} = \frac{1}{2} \sum_{n_1...n_4} \sum_{i_1...i_4} \int \frac{d^2 q}{(2\pi)^2} \widetilde{V}_{n_{1,n_2.n_3,n_4}}^{(i_1,i_2,i_3,i_4)}(\mathbf{q}) \\ \times A_{n_1,n_4,i_1,i_4}^+(\mathbf{q}) A_{n_2,n_3,i_2,i_3}^+(-\mathbf{q}) \\ - \frac{1}{2} \sum_{n_1,n_2,n_3} \sum_{i_1,i_2,i_3} \int \frac{d^2 q}{(2\pi)^2} \widetilde{V}_{n_1,n_2,n_3,n_4}^{i_1,i_2,i_3,i_4}(\mathbf{q}) A_{n_1,n_2,i_1,i_3}^+(0).$$
(18)

Далее, используя коммутационные соотношения между экситонными операторами, а также удерживая в правой части выражения (17) только члены, пропорциональные произведению фермионных операторов рождения и уничтожения, умноженному, в свою очередь, на оператор числа частиц, и учитывая, что

$$\langle 0|a_{n_1,p_1i_1}^+a_{n_2,p_2,i_2}|0\rangle = \delta_{n_1,n_2}\delta_{p_1,p_2}\delta_{i_1,i_2}v_{n_1}^{(i_1)},\tag{19}$$

где  $v_n^{(i)}$  — фактор заполнения уровня Ландау (n, i), получаем следующее выражение для  $[H_{\text{int}}, A_{n,n',i,i'}^+(\mathbf{k})]$ (см. также [24–26]):

$$\begin{split} & \left[H_{\text{int}}, A_{n,n',i,i'}^{+}(\mathbf{k})\right] |0\rangle = -\sum_{n_{2},i_{2}} \nu_{n_{2}}^{(i_{2})} \left(\tilde{E}_{n,n_{2},n,n_{2}}^{(i,i_{2},i,i_{2})}(0)\right. \\ & \left. - \tilde{E}_{n',n_{2},n',n_{2}}^{(i',i_{2},i',i_{2})}(0)\right) A_{n,n',i,i'}^{+}(\mathbf{k}) |0\rangle - \left(\nu_{n}^{(i)} - \nu_{n'}^{(i')}\right) \\ & \times \sum_{n_{1},n_{4},i_{1},i_{4}} \frac{\tilde{V}_{n_{1},n',n,n_{4}}^{(i_{1},i',i,i_{4})}(\mathbf{k})}{2\pi} A_{n_{1},n_{4},i_{1},i_{4}}^{+}(\mathbf{k}) |0\rangle \\ & + \left(\nu_{n}^{(i)} - \nu_{n'}^{(i')}\right) \sum_{n_{1},n_{2},i_{1},i_{2}} \tilde{E}_{n',n_{1},n,n_{2}}^{(i',i_{1},i,i_{2})}(\mathbf{k}) A_{n_{1},n_{2},i_{1},i_{2}}^{+}(\mathbf{k}) |0\rangle. \end{split}$$

В выражении (20) матричный элемент  $\tilde{E}_{n_1,n_2,n_3,n_4}^{(i_1,i_2,i_3,i_4)}(\mathbf{k})$  определяется как

$$\tilde{E}_{n_1,n_2,n_3,n_4}^{(i_1,i_2,i_3,i_4)}(\mathbf{k}) = \int \frac{d\mathbf{q}}{(2\pi)^2} \tilde{V}_{n_1,n_2,n_3,n_4}^{(i_1,i_2,i_3,i_4)}(\mathbf{q}) e^{ia_B^2(\mathbf{q}\times\mathbf{k})_z}.$$
 (21)

Видно, что второе и третье слагаемые в (20) обеспечивают замешивание всех возможных состояний 2D системы, содержащих магнитные экситоны.

Рассмотрим подробно возбуждение магнитного экситона, связанное с переходом электрона между уровнями Ландау (n, a) и (n + 1, b), энергия которого в длинноволновом пределе соответствует энергии СР. Можно показать, что в сильных магнитных полях, таких что  $B > B_{\rm cr}$ , где  $B_{\rm cr}$  определяется из условия

$$\frac{(\hbar\omega_c)^2}{\left(\tilde{\beta} + \tilde{\gamma}n\right)^2} \approx \frac{2n + 2 + \sqrt{4n(n+2) + A^2}}{4(4 - A^2)},$$
$$A = 1 + \frac{g^*m^*}{2m_0},$$
(22)

замешиванием возбуждения квазиэлектрон-квазидырочной пары между уровнями Ландау (n, a) и (n + 1, b) с другими магнитными экситонами можно пренебречь (см., например, [24]). Таким образом, энергия СР с учетом *e*-*e*-взаимодействия принимает вид

$$\begin{split} E_{\text{ESR}} &= \left| E_n^{(a)} - E_{n+1}^{(b)} + \Delta_{\text{ESR}}^{(e-e)} \right| \qquad \text{при} \qquad E_n^{(a)} \ge E_{n+1}^{(b)}, \\ E_{\text{ESR}} &= \left| E_{n+1}^{(b)} - E_n^{(a)} - \Delta_{\text{ESR}}^{(e-e)} \right| \qquad \text{при} \qquad E_n^{(a)} < E_{n+1}^{(b)}, \end{split}$$

где поправка к энергии СР, обусловленная многочастичными эффектами  $\Delta_{\rm ESR}^{(e-e)},$  определяется как

$$\Delta_{\text{ESR}}^{(e-e)} = \left(\nu_n^{(a)} - \nu_{n+1}^{(b)}\right) \tilde{E}_{n+1,n,n,n+1}^{(b,a,a,b)}(0) - \sum_{n_2,i_2} \nu_{n_2}^{(i_2)} \left(\tilde{E}_{n,n_2,n,n_2}^{(a,i_2,a,i_2)}(0) - \tilde{E}_{n+1,n_2,n+1,n_2}^{(b,i_2,a,i_2)}(0)\right).$$
(24)

Нетрудно показать, что в отсутствие СОВ, т.е. при  $\beta = 0, \ \gamma = 0, \ \Delta_{\mathrm{ESR}}^{(e-e)} = 0$ , энергия СР в полном соответствии с теоремой Лармора равна  $g^*\mu_{\mathrm{B}}B$  [35].

# 3. Результаты и обсуждение

Для иллюстрации полученных теоретических результатов в настоящем разделе рассматривается "модельная" 2D система со значениями статической диэлектрической проницаемости  $\varepsilon = 12.5$ , эффективной массы электронов  $m^* = 0.067m_0$  ( $m_0$  — масса свободного электрона) и g-фактора, изменяющимися в интервале от -0.4 до 0.4, которые характерны для 2D структур на основе GaAs/AlGaAs [8–10,20,21]. Концентрация 2D электронов полагается равной  $n_S = 4.0 \cdot 10^{11}$  см<sup>-2</sup>. Из результатов различных экспериментальных исследований 2D структур на основе GaAs/AlGaAs известно, что значения константы  $\gamma$  лежат в интервале между -3 и -35 эВ · Å<sup>3</sup> [10,36–40]. В настоящей работе, в соответствии с [10], значение  $\gamma$  полагается равным -11 эВ · Å<sup>3</sup>.

На рис. 1 и 2 представлены результаты расчетов частоты СР как функции магнитного поля при различных значениях g-фактора. Точечные кривые соответствуют одноэлектронному приближению, сплошные кривые — результаты расчетов, выполненных с учетом e-e-взаимодействия. На вставках к рис. 1 и 2 приведены "одноэлектронные" частоты СР с учетом (сплошная кривая) и без учета (точечная кривая) кубичного члена в СОВ Дрессельхауза. Стрелками отмечены магнитные поля, соответствующие целочисленным факторам заполнения уровней Ландау. Отметим, что выполненные расчеты не учитывают замешивание возбуждения между уровнями Ландау (n, a) и (n + 1, b) с другими магнитными экситонами, т.е. ограничиваются областью магнитных полей  $B > B_{\rm cr}$ , где  $B_{\rm cr}$  определяется из условия (22). При выбранных значениях параметров для модельной 2D системы значение  $B_{\rm cr} \approx 0.16$  Тл для номера уровня Ландау n<sub>F</sub>, пересекающегося с уровнем Ферми, достигалось при  $n_{\rm F} \sim 50$ . При фиксированном значении магнитного поля n<sub>F</sub> вычисляется из условия

$$2\pi a_B^2 \sum_{n=0}^{n_F} \left( \nu_n^{(a)} + \nu_{n+1}^{(b)} \right) = n_S.$$
 (25)



**Рис. 1.** Частота спинового резонанса как функция магнитного поля при  $\beta = 5 \cdot 10^3$  эВ · Å,  $\gamma = -11$  эВ · Å<sup>3</sup> и  $g^* = 0.4$  в одноэлектронном приближении (точечная кривая) и с учетом e-e-взаимодействия (сплошная кривая). Стрелками отмечены магнитные поля, соответствующие целочисленным факторам заполнения уровней Ландау. На вставке — результаты "одноэлектронных" расчетов при  $\gamma = -11$  (сплошная кривая) и 0 зВ · Å<sup>3</sup> (точечная кривая).



**Рис. 2.** Частота спинового резонанса в зависимости от магнитного поля при  $\beta = 5 \cdot 10^3$  зВ · Å,  $\gamma = -11$  зВ · Å<sup>3</sup> и  $g^* = -0.4$ в одноэлектронном приближении (точечная кривая) и с учетом e-e-взаимодействия (сплошная кривая). Магнитные поля, соответствующие целочисленным факторам заполнения уровней Ландау, отмечены стрелками. На вставке — результаты "одноэлектронных" расчетов при  $\gamma = -11$  (сплошная кривая) и 0 зВ · Å<sup>3</sup> (точечная кривая).

Как видно из рис. 1 и 2, поведение "одноэлектронной" частоты СР в магнитном поле определяется знаком g-фактора 2D электронов. При  $g^* > 0$  зависимость частоты СР от магнитного поля имеет U-образный вид (рис. 1), при  $g^* < 0$  имеет место V-образная зависимость от магнитного поля (рис. 2), причем частота СР обраща-

ется в нуль при условии

$$\frac{(\hbar\omega_c)^2}{\left(\tilde{\beta} + \tilde{\gamma}n_{\rm F}\right)^2} \approx \frac{2n_{\rm F} + 1 + \sqrt{4n_{\rm F}(n_{\rm F} + 1) + A^2}}{4(1 - A^2)},\qquad(26)$$

где А определяется так же, как и в выражении (22).

В слабых магнитных полях "одноэлектронная" частота СР определяется расщеплением Дрессельхауза в нулевом магнитном поле, т. е.  $\Delta_D^{(1)}$  и  $\Delta_D^{(3)}$ ; в сильных магнитных полях "одночастичная" энергия СР стремится к зеемановской энергии. Особенности "одноэлектронной" частоты СР, возникающие при четных факторах заполнения уровней Ландау, связаны с осцилляциями уровня Ферми в магнитном поле. При увеличении магнитного поля уровень Ферми перескакивает с одной пары расщепленных по спину уровней Ландау на более низколежащую пару, спиновое расщепление которой из-за СОВ зависит от номера уровня Ландау n, в результате происходит скачок спинового расщепления на уровне Ферми и соответственного частоты СР.

Учет е-е-взаимодействия приводит к значительной перенормировке частоты СР в области магнитных полей, в которой СОВ Дрессельхауза оказывает заметное влияние на величину спинового расщепления уровней Ландау. Данные рис. 1 и 2 показывают, что вклад в частоту СР, обусловленный *е*-*е*-взаимодействием, зависит от знака эффективного g-фактора в 2D системе. Видно, что при положительных значениях g-фактора е-е-взаимодействие приводит к уменьшению частоты СР при любых значениях магнитных полей и факторов заполнения уровней Ландау. При g\* < 0 вклад от е-е-взаимодействия в частоту СР может быть как положительным, так и отрицательным в зависимости от магнитного поля. В области слабых магнитных полей, соответствующих  $B \ll B_0$  (где  $B_0$  определяется из условия (26)), *e*-*e*-взаимодействие приводит к уменьшению частоты СР по сравнению с "одноэлектронными" значениями. В сильных магнитных полях, таких что  $B \gg B_0$ , е-е-взаимодействие приводит к увеличению частоты СР по сравнению с "одноэлектронными" значениями. В окрестности  $B \approx B_0$  зависимость частоты СР от магнитного поля имеет сложный характер.

Осциллирующее поведение "многочастичной" поправки в магнитном поле связано с осцилляциями разности факторов заполнения уровней Ландау, вовлеченных в переход, соответствующий спиновому резонансу. При нулевой температуре в отсутствие беспорядка в 2D системе плотности состояний на уровнях Ландау описываются  $\delta$ -функциями Дирака и спин-расщепленные уровни Ландау не перекрываются, что приводит к выраженным осцилляциям "многочастичной" частоты СР даже в слабых магнитных полях. При учете конечной ширины уровней Ландау (см., например, [41]) при уменьшении магнитного поля осцилляции частоты СР должны замываться из-за увеличения перекрытия плотностей состояний спин-расщепленных уровней Ландау ( $n_{\rm F}$ , a) и ( $n_{\rm F}$  + 1, b). Кроме этого можно ожидать появле-



**Рис. 3.** Многочастичные поправки к частоте СР как функции магнитного поля при  $\beta = 5 \cdot 10^3$  эВ · Å и  $g^* = 0.4$  с учетом ( $\gamma = -11$  эВ · Å<sup>3</sup>, сплошная кривая) и без учета ( $\gamma = 0$  эВ · Å<sup>3</sup>, точечная кривая) слагаемого в гамильтониане СОВ Дрессельхауза, кубичного по волновому вектору.



**Рис. 4.** Поправки, связанные с e-e-взаимодействием, к частоте СР в зависимости от магнитного поля при  $\beta = 5 \cdot 10^3$  эВ · Å и  $g^* = -0.4$  с учетом ( $\gamma = -11$  эВ · Å<sup>3</sup>, сплошная кривая) и без учета ( $\gamma = 0$  эВ · Å<sup>3</sup>, точечная кривая) кубичного по волновому вектору слагаемого в гамильтониане СОВ Дрессельхауза.



**Рис. 5.** Многочастичные поправки к энергии СР при различных значениях *g*-фактора и  $\beta = -\gamma k_{\rm F}^2/4$ .

ния дополнительного сдвига частоты СР, связанного с присутствием случайного потенциала примесей в 2D системе с СОВ [42].

На рис. 3 и 4 представлены результаты расчетов поправок к частоте СР, связанных с e-e-взаимодействием, с учетом (сплошная кривая) и без учета (точечная кривая) кубичного по волновому вектору слагаемого в гамильтониане СОВ Дрессельхауза. Стрелками отмечены магнитные поля, соответствующие целочисленным факторам заполнения уровней Ландау. Видно, что учет  $\widehat{H}_D^{(3)}(\widehat{k}_x, \widehat{k}_y)$  в гамильтониане Дрессельхауза (2) приводит к уменьшению обменных поправок к частоте СР. Поскольку  $\gamma < 0$ , то кубичное слагаемое в (2) частично компенсирует вклад линейного члена  $\widehat{H}_D^{(1)}(\widehat{k}_x, \widehat{k}_y)$  и приводит к уменьшению вклада СОВ в частоту СР в соответствии с теоремой Лармора приводит к уменьшению величины поправок, связанных с e-e-взаимодействием.

Из выражения (9) следует, что при  $\beta = -\gamma k_{\rm F}^2/4$  спиновое расщепление Дрессельхауза в нулевом магнитном поле практически отсутствует, и с точностью до членов  $\widehat{H}_{SO}^{(wp)}$  "одноэлектронная" энергия СР в слабых магнитных полях определяется как  $g^*\mu_{\rm B}B$ . Как видно из рис. 5, учет e-e-взаимодействия в этом случае приводит лишь к незначительной перенормировке энергии СР, величина которой не превышает 1% при магнитных полях > 0.5 Тл. При этом при положительных (отрицательных) значениях *g*-фактора наблюдается уменьшение (увеличение) частоты СР во всем рассматриваемом диапазоне магнитных полей.

# 4. Заключение

В настоящей работе выполнены теоретические исследования нарушения теоремы Лармора и рассчитаны поправки, обусловленные e-e-взаимодействием, к энергии спинового резонанса в 2D системе со спин-орбитальным взаимодействием Дрессельхауза. Представлена осциллирующая зависимость "многочастичной" частоты СР от магнитного поля, связанная с осцилляциями уровня Ферми в магнитном поле. Показано, что величина многочастичных поправок к энергии СР зависит не только от взаимного соотношения линейного и кубичного слагаемых в СОВ Дрессельхауза, но также от знака электронного g-фактора в 2D системе.

Работа выполнена при поддержке РФФИ (грант 13-02-00894), Российской академии наук, гранта президента РФ (МК-4758.2014.2, НШ-1214.2014.2) и фонда некоммерческих программ "Династия".

#### Список литературы

- Yu.A. Bychkov, E.I. Rashba. J. Phys. C: Sol. St. Phys., 17, 6039 (1984).
- [2] G. Dresselhaus. Phys. Rev., 100, 580 (1955).

- [3] L.E. Golub, E.L. Ivchenko. Phys. Rev. B, 69, 115333 (2004).
- [4] П.С. Алексеев. Письма ЖЭТФ, 98, 92 (2013) [JETP Letters, 98, 84 (2013)].
- [5] Ж.А. Девизорова, В.А. Волков. Письма ЖЭТФ, 98, 110 (2013) [JETP Lett., 98, 101 (2013)].
- [6] П.С. Алексеев, М.В. Якунин, И.Н. Яссиевич. ФТП, 41, 1110 (2007) [Semiconductors, 41, 1092 (2007)].
- [7] М.И. Дьяконов, В.Ю. Качоровский. ФТП, 20, 176 (1986)
   [Sov. Phys. Semicond., 20, 110 (1986)].
- [8] J.D. Koralek, C.P. Weber, J. Orenstein, B.A. Bernevig, S.-C. Zhang, S. Mack, D.D. Awschalom. Nature (London), 458, 610 (2009).
- [9] M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger, P. Olbrich, C. Schönhuber, I. Caspers, V.V. Bel'kov, L.E. Golub, D. Weiss, K. Richter, J. Nitta, S.D. Ganichev. Phys. Rev. B, 86, 081 306 (2012).
- [10] M.P. Walser, U. Siegenthaler, V. Lechner, D. Schuh, S.D. Ganichev, W. Wegscheider, G. Salis. Phys. Rev. B, 86, 195 309 (2012).
- [11] Э.И. Рашба, В.И. Шека. ФТТ, **3**, 1735 (1961) [Sov. Phys. Solid. State, **3**, 1257 (1961)].
- [12] E.I. Rashba, V.I. Sheka. In: *Landau Level Spectroscopy*, ed. by G. Landwehr and E.I. Rashba (North-Holland, Amsterdam, 1991) p. 131.
- [13] Z. Wilamowski, N. Sandersfeld, W. Jantsch, D. Többen, F. Schäffler. Phys. Rev. Lett., 87, 026 401 (2001).
- [14] Z. Wilamowski, W. Jantsch, H. Malissa, U. Rössler. Phys. Rev. B, 66, 195 315 (2002).
- [15] G.A. Khodaparast, R.E. Doezema, S.J. Chung, K.J. Goldammer, M.B. Santos. Phys. Rev. B, 70, 155 322 (2004).
- [16] Z. Wilamowski, H. Malissa, F. Schäffler, W. Jantsch. Phys. Rev. Lett., 98, 187 203 (2007).
- [17] Y. Kozuka, S. Teraoka, J. Falson, A. Oiwa, A. Tsukazaki, S. Tarucha, M. Kawasaki. Phys. Rev. B, 87, 205411 (2013).
- [18] В.К. Калевич, В.Л. Коренев. Письма ЖЭТФ, 57, 557 (1993) [JETP Letters, 57, 571 (1993)].
- [19] Π.C. Αлексеев. ΦΤΠ, 47, 1253 (2007) [Semiconductors, 47, 1241 (2013)].
- [20] Yu.A. Nefyodov, A.V. Shchepetilnikov, I.V. Kukushkin, W. Dietsche, S. Schmult. Phys. Rev. B, 83, 041 307 (2011).
- [21] Yu.A. Nefyodov, A.V. Shchepetilnikov, I.V. Kukushkin, W. Dietsche, S. Schmult. Phys. Rev. B, 84, 233 302 (2011).
- [22] M. Califano, T. Chakraborty, P. Pietiläinen, C.-M. Hu. Phys. Rev. B, 73, 113 315 (2006).
- [23] A. Shekhter, M. Khodas, A.M. Finkel'stein. Phys. Rev. B, 71, 165 329 (2005).
- [24] S.S. Krishtopenko. Semicond. Sci. Technol., 29, 085005 (2014).
- [25] S.S. Krishtopenko, V.I. Gavrilenko, M. Goiran. Phys. Rev. B, 87, 155 113 (2013).
- [26] S.S. Krishtopenko. J. Phys.: Condens. Matter, 25, 105601 (2013).
- [27] S.S. Krishtopenko. J. Phys.: Condens. Matter, 25, 365602 (2013).
- [28] S.S. Krishtopenko, V.I. Gavrilenko, M. Goiran. J. Phys.: Condens. Matter, 24, 252 201 (2012).
- [29] S.S. Krishtopenko, V.I. Gavrilenko, M. Goiran. Sol. St. Phenomena, **190**, 554 (2012).
- [30] С.С. Криштопенко, К.П. Калинин, В.И. Гавриленко, Ю.Г. Садофьев, М. Goiran. ФТП, 46, 1186 (2012) [Semiconductors, 46, 1163 (2012)].

- [31] S.S. Krishtopenko, V.I. Gavrilenko, M. Goiran. J. Phys.: Condens. Matter, 23, 385 601 (2011).
- [32] С.М. Дикман, В.М. Жилин, Д.В. Кулаковский. ЖЭТФ, 128, 1025 (2005) [JETP, 101, 892 (2005)].
- [33] S.M. Dickmann, I.V. Kukushkin. Phys. Rev. B, 71, 241 310 (2005).
- [34] S.M. Dickmann, T. Ziman. Phys. Rev. B, 85, 045318 (2012).
- [35] C. Kallin, B.I. Halperin. Phys. Rev. B, 30, 5655 (1984).
- [36] W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska, D. Bertho, F. Kobbi, J.L. Robert, G.E. Pikus, F.G. Pikus, S.V. Iordanskii, V. Mosser, K. Zekentes, Y.B. Lyanda-Geller. Phys. Rev. B, 53, 3912 (1996).
- [37] D. Richards, B. Jusserand, G. Allan, C. Priester, B. Etienne. Sol. St. Electron., 40, 127 (1996).
- [38] W.J.H. Leyland, R.T. Harley, M. Henini, A.J. Shields, I. Farrer, D.A. Ritchie. Phys. Rev. B, 76, 195 305 (2007).
- [39] S. Faniel, T. Matsuura, S. Mineshige, Y. Sekine, T. Koga. Phys. Rev. B, 83, 115 309 (2011).
- [40] P.S. Eldridge, J. Hübner, S. Oertel, R.T. Harley, M. Henini, M. Oestreich. Phys. Rev. B, 83, 041 301 (2011).
- [41] D. Antoniou, A.H. MacDonald. Phys. Rev. B, 43, 11686 (1991).
- [42] M. Duckheim, D. Loss. Nature Phys., 2, 195 (2006).

Редактор Л.В. Шаронова

# Effect of electron–electron interaction in spin resonance in 2D systems with Dresselhaus spin–orbit interaction

#### S.S. Krishtopenko

Institute for Physics of Microstructures, Russian Academy of Sciences, 60950 Nizhny Novgorod, Russia Lobachevsky State University, 603950 Nizhny Novgorod, Russia

**Abstract** We report an electron–electron interaction effect on the spin resonance fraquency in 2D electron system with Dresselhaus spin–orbit interaction. The oscillating behaviour of the many-body corrections in magnetic field is demonstrated. We show that many-body-interaction can lead to both enhancement and reduction of spin resonance energy, depending on the sign of electron *g*-factor. We demonstrate that the cubic term in Hamiltonian of Dresselhaus spin–orbit interaction partially reduces the magnetude of the exchange corrections to the energy of electron spin resonance in 2D systems.