18,12

Спектры спин-поляризации в щелевой графеновой сверхрешетке

© А.Н. Король^{1,2}, В.Н. Исай², Н.В. Медвидь²

 ¹ Laboratory on Quantum Theory in Linköping, ISIR, Linköping, Sweden
² Национальный университет пищевых технологий, Киев, Украина
E-mail: korolam@ukr.net
(Поступила в Редакцию 5 июня 2014 г.)

Рассматривается одномерная сверхрешетка, построенная на основе однослойного щелевого графена. В континуальной модели с помощью метода трансферных матриц рассчитываются спин-зависимые транспортные

характеристики данной структуры. Показано, что спин-поляризация может достигать максимальной величины в широком диапазоне значений параметров задачи.

В последние годы активно изучаются энергетические спектры и транспортные характеристики различных наноструктур на основе графена, в том числе в условиях воздействия внешних потенциалов — скалярного и векторного [1–21].

Экспериментально была продемонстрирована возможность регулируемого задания этих потенциалов. При этом очевидно, что изучение влияния электрического и магнитного полей на свойства графеновых наноструктур важно с практической точки зрения. В частности, сделан весомый вклад в современную спинтронику, показано, что с помощью определенного ряда графеновых структур можно осуществлять разделение электронов с различным направлением спина (спиновых каналов), так, что эти структуры могут служить в качестве спинфильтров. Тут следует иметь в виду, что графен является перспективным материалом для спиновой фильтрации, поскольку квазичастицы имеют в нем большую длину свободного пробега, и это позволяет использовать баллистический режим пролета носителей заряда. Добавим к сказанному, что, как показано в работах [13,14], использование графеновых сверхрешеток (СР) может увеличить спин-поляризацию электронных пучков.

Расчет коэффициента трансмиссии, кондактанса, спинполяризации, магнетосопротивления чаще всего проводится с помощью метода трансферных матриц для безмасссовых дирак-вейлевских фермионов на основе континуальной модели для одно- или двухслойного графена.

При выборе векторного потенциала **A** обычно используется калибровка Ландау, а зависимость потенциала *A* от координаты вдоль направления CP задается линейной или плавной периодической функцией, либо соответствующий компонент вектора **A** считается постоянной величиной (модель Кронига–Пенни) [10–13].

В цитируемых статьях рассматривалась преимущественно бесщелевая графеновая сверхрешетка, а в данной работе мы акцентируем внимание не на бесщелевой сверхрешетке (соответствующей безмассовому уравнению вейль-дираковского типа), а на решетке, имеющей в энергетическом спектре запрещенную зону для случая нормального падения электронов на CP (gapped graphene superlattice в англоязычной литературе). Созданию и изучению таких СР уделяется особое внимание, поскольку наличие запрещенной зоны играет ключевую роль в получении полупроводниковых приборов транзисторного типа [16-20]. В частности, химическими методами удалось получить ширину щели, равную нескольким десятым электрон-вольта. В данной работе рассчитываются спин-зависимые транспортные характеристики указанной сверхрешетки. Анализируется влияние различных параметров СР на спин-поляризацию Р, в первую очередь влияние на величину Р ширины запрещенной зоны. Результаты работы показывают, что спин-поляризация достигает максимального значения в широком диапазоне значений параметров задачи.

Магнитное воздействие на слой графена можно осуществить с помощью ферромагнитных полосок, накладываемых на магнитный изолятор, который приводится в непосредственное соприкосновение с графеновой поверхностью [14,15]. Влияние обменного поля учитывается соответствующей энергией V_m в гамильтониане, так что внешний потенциал можно записать в виде $U = V_e + \xi V_m$ для барьерных слоев и U = 0 для внебарьерных участков СР, V_e — высота электростатического барьера; $\xi = 1$ для спина вверх и $\xi = -1$ — для спина вниз (другие возможности не рассматриваются).

В дальнейшем рассмотрении задачи будем основываться на уравнении вейль-дираковского типа

$$\left[v_{\rm F}(\boldsymbol{\sigma},\,\mathbf{p}) + m\,v_{\rm F}^2\boldsymbol{\sigma}_z + U(x)\hat{I}\,\right]\Psi = E\Psi,\tag{1}$$

где $V_{\rm F} \approx 10^6 \,\mathrm{m/c}$ — скорость Ферми, $\mathbf{p} = (p_x, p_y)$ — оператор импульса, $\boldsymbol{\sigma} = (\sigma_x, \sigma_y), \sigma_x, \sigma_y, \sigma_z$ — матрицы Паули для псевдоспина, U(x) — внешний потенциал, зависящий лишь от координаты x, \hat{I} — единичная двумерная матрица, массовое слагаемое обозначим далее, как это принято в литературе, символом Δ . Функция Ψ представляет собой двукомпонентный псевдоспинор $\Psi = [\tilde{\Psi}_A, \tilde{\Psi}_B]^T, \tilde{\Psi}_A, \tilde{\Psi}_B$ — огибающие функции для графеновых подрешеток A и B, T — символ транспони-

рования. Предположим, что потенциал U(x) состоит из периодически повторяющихся прямоугольных барьеров вдоль оси Ox, причем внутри каждого *j*-го барьера $U_j(x) = \text{солst.}$ Тогда, учитывая трансляционную инвариантность решения по оси Oy, можна записать $\tilde{\Psi}_{A,B} = \Psi_{A,B}e^{ik_y y}$ и из уравнения (1) получить для $\Psi_{A,B}$

$$\frac{d^2\Psi_{A,B}}{dx^2} + (k_j^2 - k_y^2)\Psi_{A,B} = 0,$$
 (2)

где $k_j = \text{sign}(s_{j^+})[(E - U_j)^2 - \Delta^2]^{1/2}$; $s_{\pm} \equiv E - U(x) \pm \Delta$, приняты единицы измерения: $v_F = \hbar = 1$. Если представить решения для собственных функций $\psi_{A,B}$ в виде суммы плоских волн, движущихся в прямом и обратном направлении вдоль оси Ox, то получится

$$\Psi(x) = \left[a_j e^{iq_j x} \begin{pmatrix} 1\\ g_j^+ \end{pmatrix} + b_j e^{-iq_j x} \begin{pmatrix} 1\\ g_j^- \end{pmatrix}\right], \quad (3)$$

где $q_j = \operatorname{sign}(s_{j^+})\sqrt{k_j^2 - k_y^2}$, если $k_j^2 > k_y^2$, и $q_j = i\sqrt{k_y^2 - k_j^2}$ в противном случае, $g_j^{\pm} = \frac{\pm q_j + ik_y}{E}$, верхняя строка в (3) относится к подрешетке A, нижняя — к B.

Ключевой величиной, через которую выражается кондактанс и спин-поляризация рассматриваемой системы, является коэффициент трансмиссии электронов через решетку *T*. Кондактанс при низких температурах можно найти, воспользовавшись формулой Ландауэра–Буттикера

$$G_{\uparrow\downarrow} = G_0 \int_{0}^{\frac{\pi}{2}} T_{\uparrow\downarrow} \cos\theta \, d\theta, \qquad (4)$$

где

$$G_0 = \frac{2e^2mv_{\rm F}L}{\hbar^2},$$

L — ширина графенового образца по оси Oy, е — элементарный заряд, т — масса электрона, v_F — скорость Ферми, стрелки обозначают направление спина. Спинполяризация определяется формулой

$$P = 100\% (G_{\uparrow} - G_{\downarrow}) / (G_{\uparrow} + G_{\downarrow}). \tag{5}$$

Коэффициент трансмиссии находится в результате сшивания волновых функций на границах барьер–яма, и поскольку эта процедура неоднократно описывалась в литературе (см., например, [2,5,8,21]), мы не будем на ней останавливаться и перейдем к анализу полученных результатов.

Сразу подчеркнем, что результаты расчетов, представленные на всех рисунках, получены для случая нормального падения электронной волны на СР ($k_y = 0$).

На рис. 1 изображены зависимости от энергии трех величин: верхний рисунок — коэффициент трансмиссии; средний рисунок — приведенный кондактанс G/G_0 , нижний рисунок — спин-поляризация P для одинаковых значений параметров: ширина барьера b и квантовой

Рис. 1. Зависимость от энергии электронов трех величин: коэффициента трансмиссии (верхний рисунок), приведенного кондактанса (средний рисунок) и спин-поляризации (нижний рисунок).

ямы w b = w = 1, $\Delta = 1$, число периодов СР N = 10, $V_e = 2$, $V_m = 0.01$.

Видно, что спин-поляризация достигает максимального значения |P| = 1 (или 100%) в точках, соответствующих переходу от запрещенной зоны к разрешенной и наоборот. В интервалах энергии, отвечающих разрешенным состояниям, наблюдаются осцилляции P(E)со значением |P| < 1, число которых равно количеству соответствующих осцилляций в зависимости T(E). Переходные интервалы энергии *ab*, *cd* отвечают запрещенным зонам.

Из определяющей величину *Р* формулы (5) очевидно, что близкая к стопроцентной спин-поляризация реали-

зуется тогда, когда значения кондактанса для спинов с ориентацией вверх и вниз различаются достаточно сильно. В рассматриваемой здесь структуре это имеет место при условии, что энергия электрона со спином, например, вверх $E \uparrow$ попадает в разрешенную зону, а со спином вниз E_{\downarrow} — в запрещенную, или наоборот, причем необходимо, чтобы значения T для щели были достаточно малы. Если же $E \uparrow$ и E_{\downarrow} соответствуют максимуму и минимуму T в разрешенной зоне (см., например, интервал *bc* на рис. 1), то значения P не достигают единицы. Также спин-поляризация меньше единицы при энергиях, соответствующих щелям, для которых T недостаточно мало, например при энергиях E > 4 на нижнем рисунке.

Поскольку мы рассматриваем спин-поляризацию именно в щелевой сверхрешетке, важной является зависимость величины P от ширины запрещенной зоны Δ . Эта зависимость иллюстрируется рис. 2. При малых значениях Δ величина P < 1 для всех энергий (при $\Delta = 0$, т.е. для бесщелевой решетки, P близко к нулю (если $k_y = 0$)).

Для достаточно больших Δ существует набор значений энергии, для которого спин-поляризация достигает максимума (см. рис. 2); чем значение Δ больше, тем больше энергий, для которых P = 1 на всей шкале энергий. Отметим также, что поскольку с ростом Δ

Рис. 2. Спин-поляризация как функция энергии для разных значений ширины запрещенной зоны Δ . Значения параметров: $N = 10, b = w = 1, V_e = 2, V_m = 0.01, \Delta = 0.7$ и 0.3 для верхнего и нижнего рисунков соответственно.

Рис. 3. Зависимость спин-поляризации от энергии для случая разных значений ширины запрещенной зоны в парных и непарных барьерах; значения параметров: N = 10, b = w = 1, $V_e = 2$, $V_m = 0.01$, в парных барьерах $\Delta = 1$, в непарных $\Delta = 0.7$ и 0.3 для верхнего и нижнего рисунков соответственно.

ширины щелей увеличиваются, то происходит смещение значений энергии, для которых P = 1, на оси энергий.

Интересно рассмотреть случай, когда величина Δ неодинакова в разных барьерах; в частности, пусть в парных барьерах $\Delta = \Delta_1$, а в непарных $\Delta = \Delta_2$. Соответствующий расчет для спин-поляризации представлен на рис. 3. Сверхрешетка в данном случае приобретает квазипериодический характер и отвечает начальной генерации СР Фибоначчи; ее спектры также приобретают квазипериодические черты. Это накладывает свой отпечаток и на спектры поляризации. Именно, происходит расщепление разрешенных зон согласно закону Фибоначчи, приводящее к образованию дополнительных пиков с $P \sim 1$. В данном случае, поскольку каждая разрешенная зона распадается на две с одновременным появлением одной новой щели, количество пиков с $P \approx 1$ и $P \approx -1$ удваивается. При этом происходит также смещение пиков с $|P| \approx 1$ по оси энергий. Таким образом, результатом квазипериодического влияния является концентрация пиков с высоким значением спинполяризации в фиксированном энергетическом интервале (за счет увеличения их числа) и их смещение на оси энергий.

Как известно, в периодических и квазипериодических графеновых щелевых СР образуется особая сверхрешеточная дираковская щель (запрещенная зона, [2,3]). Характерной особенностью этой зоны является то, что ее расположение на оси энергий не зависит от величины периода СР b + w, но чувствительно к отношению b/w. Это обстоятельство находит свое выражение и в спектре P(E). Соответствующий сверхрешеточной дираковской зоне интервал энергии проявляется в спин-поляризации и отмечен на рис. 4 как ΔE . Как следует из работы [3], середина этого интервала приходится на значение энергии, приблизительно равное $V_e/2$. С изменением

Рис. 4. Спин-поляризация как функция энергии для разных значений ширины потенциальных барьеров и квантовых ям; значения параметров: N = 10, $V_e = 2$, $V_m = 0.01$, $\Delta = 1$, для верхнего рисунка b = w = 0.6, для среднего рисунка b = 1.2, w = 0.7, для нижнего рисунка b = 0.7, w = 1.2.

Рис. 5. Зависимость спин-поляризации от энергии для таких параметров: b = w = 1, $V_e = 2$, $\Delta = 1$ для всех рисунков; $V_m = 0.01$ и 0.1 для первого (начиная сверху) и третьего рисунков, $V_m = 0.02$ для второго и четвертого рисунков, N = 10 для трех первых рисунков и N = 40 для четвертого рисунка.

величины периода b + w положение этого интервала не изменяется, а другие фрагменты спектра сдвигаются по оси энергий.

Из рис. 5 видно, что максимальная спин-поляризация достигается уже при совсем незначительных значениях эффективного обменного потенциала V_m . Как уже отмечалось, это имеет место благодаря сильному (на много порядков) отличию коэффициента трансмиссии T в разрешенных и запрещенных зонах. Также рис. 5 показывает, как изменяется спектр P(E) с увеличением

обменного потенциала, видно, что с ростом V_m вместо отдельных пиков образуются интервалы энергий, для которых |P| = 1; при дальнейшем увеличении V_m эти интервалы расширяются.

Также рис. 5 показывает, что на спектры спин-поляризации сильное влияние имеет эффект сверхрешетки. Сравнивая второй (сверху) и четвертый рисунки, убеждаемся в том, что увеличение числа периодов решетки приводит к существенному расширению интервалов энергии, для которых спин-поляризация максимальна.

В заключение отметим, что, варьируя значения различных параметров изучаемой структуры, можно гибко регулировать спектры спин-поляризации. Например, рост значения спин-поляризации достигается за счет либо ширины запрещенной зоны, либо числа периодов сверхрешетки, либо величины обменного потенциала.

Список литературы

- Q. Zhao, J. Gong, C.A. Muller. Phys. Rev. B 85, 104201 (2012).
- [2] L. Wang, X. Chen. J.Appl. Phys. 109, 033710 (2010).
- [3] L. Wang, S. Zhu. Phys. Rev. B 81, 205444 (2010).
- [4] V.H. Nguyen, A. Bournel, P. Dollfus. Semicond. Sci. Technol. 26, 125012 (2011).
- [5] M. Barbier, P. Vasilopoulos, F.M. Peeters. Phys. Rev. B 80, 205 415 (2009).
- [6] P. Zhao, X. Chen. Appl. Phys. Lett. 99, 182108 (2011).
- [7] T. Ma, C. Liang, L. Wang. Appl. Phys. Lett. 100, 252402 (2012).
- [8] Yu.P. Bliokh, V. Freilikher, S. Savel'ev. Phys. Rev. B 79, 075 123 (2009).
- [9] П.В. Ратников. Письма в ЖЭТФ 90, 515 (2009).
- [10] L. Dell'Anna, A. Martino. Phys. Rev. B 83, 155449 (2011).
- [11] R.M. Mazir, P. Vasilopoulos, A. Matulis, F.M. Peeters. Phys. Rev. B 77, 235 443 (2008).
- [12] Yu-Xian Li. J. Phys. Cond. Matter 22, 015 302 (2010).
- [13] J. Sun, H.A. Fertig, L. Brey. Phys. Rev. Lett. 105, 156 801 (2010).
- [14] Z.P. Niu, F.X. Li, B.G. Wang, L. Sheng, D.Y. Xing. Eur. Phys. J. B 66, 245 (2008).
- [15] E. Faizabadi, M. Esmaeilzadeh, F. Sattari. Eur. Phys. J. B 85 (2012).
- [16] M.Y. Han, B. Ozyilmaz, Y. Zhang, F. Kim. Phys. Rev. Lett. 98, 206 805 (2007).
- [17] G. Giovanetti, P.A. Khomyakov, G. Brocks, P. Kelly, J. van der Brink. Phys. Rev. B 76, 073 103 (2007).
- [18] S.Y. Zhou, G. Gweon, A.V. Fedorov, F. Guinea, A.H. Castro Neto, A. Lanzara, P. First, W. de Heer, D.-H. Lee. Natur. Mater. 6, 770 (2007).
- [19] R. Balog, B. Jorgensen, L. Nilsson, M. Anderson, E. Rienks, M. Bianchi. Natur. Mater. 9, 315 (2010).
- [20] S. Casolo, R. Martinazzo, G.F. Tantardini. J. Phys. Chem. C 115(8), 3250 (2011).
- [21] А.Н. Король, В.Н. Исай. ФТТ 55, 2468 (2013).