16

Формирование кластера бикарбоната натрия в структуре натрийзамещенного гидроксилапатита

© Н.В. Ткаченко¹, А.С. Камзин²

 ¹ Харьковский национальный университет имени В.Н. Каразина, Харьков, Украина
 ² Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

E-mail: mykola.v.tkachenko@univer.kharkov.ua

(Поступила в Редакцию 3 сентября 2014 г.)

С использованием метода твердофазной реакции в интервале температур $640-820^{\circ}$ С в парах воды синтезирован керамический натрийзамещенный карбонизированный гидроксилапатит. Установлено, что замещения ионов Ca²⁺ в катионной и анионной подсистемах ионами Na⁺, а групп PO₄³⁻ и OH⁻ ионами CO₃²⁻ приводит к значительному ускорению усадки и синтезу плотной керамики при существенно более низких температурах, чем в случае незамещенного гидроксилапатита. Спекание в парах воды приводит к уплотнению карбонатных групп в канальных позициях, что помимо карбонатного упорядочения A1- и B1-типов (в ИК-спектрах полосы с воновыми числами 879 и 872 cm⁻¹ соответственно) индуцирует появление упорядочений A2- и B2-типов (867 и 865 cm⁻¹), а также протонизацию карбонатных групп как в A-, так и в B-позициях и формирование кластеров бикарбоната натрия (856 и 859 cm⁻¹).

1. Введение

Минеральной составляющей кости является гидроксилапатит (ГА) с различными замещениями как в катионных, так и в анионных позициях [1-4]. В структуре биологического апатита наиболее представленными являются ионы натрия и карбоната [5]. Натрий может бытьлокализован как в позиции Са1, так и в позиции Са2 ГА, причем обычно наблюдается взаимосвязь между содержанием натрия и концентрацией карбонатных ионов (увеличение содержания натрия приводит к увеличению концентрации карбоната), которые вместе с кислородной вакансией формируют кластерные дефекты в структуре апатита. Эта взаимосвязь вызвана сохранением зарядового баланса формируемого соединения. В гидроксилапатите ионы СО3²⁻ могут замещать как гидроксильные (OH^{-}) , так и фосфатные (PO_{4}^{3-}) группы. При замещении ОН- образуется карбонизированный ГА (КГА) А-типа, а при замещении РО₄³⁻ — КГА В-типа. При одновременном замещении обеих анионных позиций образуется КГА смешанного АВ-типа. Методами рентгеновской и ИК-спектроскопии в работе [6] установлено, что в том случае, когда ионами натрия замещаются преимущественно катионные места 6*h*, т.е. позиции Са2, весь карбонат локализуется в В-позициях. Преимущественное замещение В-позиций наблюдалось авторами [7] при синтезе натрийзамещенной керамики в атмосфере сухого СО2. Увеличение концентрации натрия в гидроксилапатите также сопровождалось увеличением степени его карбонизации. В [8] показано, что при одновременном замещении натрием Ca1 и Ca2 формируется карбонизированный гидроксилапатит АВтипа. Однако при этом, хотя рентгеновские измерения на монокристаллах указывают на полную занятость А-позиций, ИК-спектроскопические исследования свидетельствуют о полном отсутствии растягивающих асимметричных колебаний (v_3) выше $1500 \,\mathrm{cm}^{-1}$ и преобладании внеплоскостных изгибных колебаний (v2), характерных для карбонизированного апатита В-типа, при $873 \, \text{cm}^{-1}$. Одновременное замещение натрием позиций Ca1 и Ca2 приводит к уменьшению взаимодействия между ионами ОН- и Na+, в результате чего ОН- группа значительно смещается вдоль канальных позиций, а карбонатные ионы локализуются на двух гранях тетраэдра РО₄. В работе [9] с помощью твердотельного ядерного магнитного резонанса впервые обнаружено, что в случае статистического упорядочения ионов Na⁺ по катионным позициям КГА происходит перемещение канального гидроксильного иона в положение, находящееся рядом с карбонатной группой В-типа. Такая процедура приводит не только к близости карбонатного иона к гидроксильной группе в В-позиции, но и к уплотнению карбонатных групп А-типа из-за замещения только одного гидроксильного иона вместо двух и вызывает протонизацию карбонатных групп как А-, так и В-типа. Однако по данным ИК-исследований убедительно доказать присутствие бикарбонатных ионов в структуре КГА не удалось, хотя в [6] в спектре натрийсодержащих образцов, полученных при высоком давлении и температуре 1200°С, наблюдались полосы, характерные для бикарбоната натрия, но их появление было сочтено артефактом.

Структурное разнообразие положения карбонатных ионов в натрийзамещенной гидроксилапатитной керамике, вероятно, в большой степени зависит от пути и методики синтеза исходных порошков, а также от условий их спекания. В частности, существенным может оказаться изменение атмосферы CO₂ на влажную. Поэтому целью

389

настоящей работы является изучение структуры натрийзамещенной керамики, формирующейся при синтезе во влажной атмосфере.

2. Эксперимент

2.1. Приготовление материалов. Исходный порошок КГА получался в результате реакции между карбонатом кальция (Merck, Дармштадт, Германия, аналитическая чистота) и ортофосфорной кислотой (Merck, Дармштадт, Германия, аналитическая чистота) [10]. Введение добавок натрия производилось путем пропитки исходного порошка раствором гидрокарбоната натрия. Концентрация раствора изменялась таким образом, чтобы после отжига при высоких температурах в керамике находилось 0.25-1.5 wt.% Na с шагом 0.25 wt.%. Из этого порошка образцы готовились путем одноосного прессования в стальной пресс-форме под давлением 120 МРа. Для получения керамики их спекали в течение 2h при температуре 1100°С в атмосфере, создаваемой продувкой паров H₂O через нагреваемый объем печи.

2.2. Методы исследования. Структурные измерения выполнены на дифрактометре Philips APDW 40С в Си K_{α} -излучении ($\lambda = 0.154$ nm) с никелевым фильтром в интервале дифракционных углов $2\theta = 20-70^{\circ}$ с шагом сканирования 0.01° и временем сканирования 1 s. ИК-спектры регистрировались с помощью спектрометра BIO-RAD FFS 175 (Германия) по КВг-методике с разрешением 0.5 сm⁻¹ и усреднением по двумстам сканирования. Дифференциальный термический анализ (ДТА) и динамические дилатометрические измерения выполнены на изготовленных в лаборатории установках, работающих в интервале температур от комнатной до 1200°С. Скорость нагрева образцов составляла 5 K/min.

3. Результаты и их обсуждение

Исследования исходных порошков с добавками бикарбоната натрия показали (рис. 1), что на кривых ДТА (кривая 2) наблюдается экзотермический пик в достаточно широком интервале температур (500-750°C) с максимумом при 640°С, свидетельствующий, вероятно, о реакции между КГА и карбонатом натрия, в результате которой синтезируется Na-замещенный КГА. В результате данной реакции в интервале температур 640-820°С на кривых температурной зависимости динамической усадки прессовок, нагреваемых с такой же скоростью, как и при ДТА, наблюдается эффект повышения усадки (кривая 3). Этот интервал температур частично перекрывается с интервалом, в котором появляется экзотермический пик на кривой ДТА, и следует сразу за ним. Ускорение усадки при этом нисколько не связано с плавлением карбоната натрия, наступающим при более высоких температурах (пик на кривой 1 рис. 1 при температуре ~ 865°С), а является результатом химической реакции, во время которой ионы Са²⁺

Рис. 1. ДТА бикарбоната натрия (1) и порошка КТА с добавкой 1 wt.% Na (2), а также температурная зависимость динамической усадки образца, изготовленного из указанного порошка (3).

Рис. 2. Зависимость температуры, при которой наблюдается максимальная скорость усадки образцов, от концентрации ионов натрия. Прямой линией отмечена температура плавления карбоната натрия, образующегося при разложении бикарбоната натрия.

замещаются ионами Na⁺, а в анионной подрешетке идет интенсивное перемещение ионов PO_4^{3-} и OH⁻, замещающихся карбонатным ионом CO_3^{2-} . Вероятно, процесс наблюдаемых катионных и анионных замещений сопровождается образованием вакансий, движение которых стимулирует процесс усадки образцов. При этом температура, при которой наблюдается максимальная скорость усадки (рис. 2), уменьшается с увеличением концентрации натрия, коррелирующим с увеличением концентрации карбонатных ионов в рассматриваемой керамике. Это уменьшение температуры, вероятно, является отражением возрастающего количества вакансий в обеих подрешетках КГА-керамики и интенсивности их перемещения во время спекания образцов.

Рис. 3. Дифрактограммы керамических образцов незамещенного (1) и натрийзамещенного КГА с добавкой 1.5 wt.% Na (2).

Рис. 4. Зависимость постоянных решетки КГА от концентрации ионов натрия.

На рис. З приведены типичные дифрактограммы керамических образцов незамещенного и натрийзамещенного гидроксилапатита (1.5 wt.% Na). Во всем исследуемом интервале концентраций натрия образцы являются однофазными и принадлежат к пространственной группе $P6_3/m$. При этом постоянные решетки испытывают существенную зависимость от концентрации натрия (рис. 4): постоянная *а* уменьшается, а *с* — увеличивается. В силу того что ионные радиусы Ca²⁺ и Na⁺ приблизительно одинаковы, изменения параметров решетки, вероятно, связаны не с катионным замещением, а с сопутствующими ему замещениями в анионной подрешетке, происходящими в системе для компенсации зарядового несоответствия.

Обычно такими сопутствующими ионами являются карбонатные, которые могут замещать как фосфатные, так и канальные гидроксильные позиции. При этом в зависимости от типа замещения и способа получения КГА [11–13] карбонатный ион в канале может иметь различную ориентацию, в результате чего различается

КГА A1- или A2-типов. В случае A1-типа образуется "закрытая" конфигурация [11], когда два атома кислорода и плоскость иона CO_3^{2-} лежат вблизи оси c. В КГА AB-типа [13,14], синтезированных при высоком давлении, обнаружена "открытая" конфигурация (A2), образующаяся в результате переполнения канальных позиций карбонатными ионами. В этом случае равносторонний треугольный кластер канального карбонатного иона разделен осью c пополам. Вероятно, присутствие карбоната в A2-позиции обусловлено необходимостью частично компенсировать заряд карбонатного иона, заместившего фосфатный.

Различным локализациям карбонатного иона отвечают определенные полосы пропускания на ИК-спектрах в областях v_3 и v_2 . В частности, в работах [12–14] для КГА *АВ*-типа полосы при 1540 и 1449 сm⁻¹ отнесены к *А*1-типу замещения, а 1569 и 1507 сm⁻¹ — к *А*2-типу. В области v_2 обычно в эксперименте четко видны две синглетные полосы при 871 сm⁻¹ (*В*-тип замещения) и 878 сm⁻¹ (*А*-тип замещения). Математическая аппроксимация области v_2 , в которой наблюдается слабозаметное плечо на высокочастотной стороне пика, гауссовскими функциями [14–17] часто позволяет выделить третью полосу при 862–866 сm⁻¹. В работах [15,16] эту полосу связывают с нестабильными положениями карбонатного иона. В более поздних работах [14,17] ее приписывают карбонату *А*2-типа.

Что касается положения карбонатного иона в В-позициях, то во многих работах показано, что он локализован вблизи наклонных граней замещенного фосфатного тетраэдра. Поэтому отнесение В-карбоната к В1- или В2-типу может быть связано с замещением карбонатом разных граней фосфатного тетраэдра [12,18], зависимостью от угла отклонения его плоскости от наклонной поверхности фосфатного тетраэдра: при отклонении на 18° реализуется конфигурация карбоната В1-типа, а при 3.5° — В2-типа [14]. Кроме того, в [19,20] с помощью нейтронографических исследований показано, что карбонатный ион может лежать в зеркальной плоскости тетраэдра, т.е. и это положение карбонатного иона может относиться к одной из разновидностей карбонатного замещения В-типа. В этом вопросе в литературе единого мнения нет. Тем не менее в природных апатитах [17] без уточнения конкретной конфигурации низкочастотные v3-пики приписаны типу *B*1 при 1409 сm⁻¹ и типу *B*2 при 1427 сm⁻¹. При большом многообразии различных структурных положений, перекрывании вкладов от А- и В-карбонатов, а также при снятии вырождения колебаний карбонатного иона, находящегося в позициях с симметрией ниже чем тригональная, в результате чего как А-, так и В-колебания проявляются в виде дублетов, область v₃ ИК-спектра является сложной для расшифровки. В этом смысле более привлекательной является область v_2 , так как она в апатитовых биоматериалах характеризуется синглетными полосами и анализ ИК-спектров может дать более точную информацию о стереохимическом окружении карбонатных групп. Трудность состоит в том, что по интенсивности полоса v_2 составляет всего ~ 5% от полосы v_3 , и колебания, соответствующие карбонату A2- или B2-типа, проявляются в виде ступенек или плеч на высокочастотной стороне пиков или их интенсивность сравнима с фоновой. В экспериментах с Naзамещенными хлор- и фторапатитами [13] в области v_2 обнаружены полосы при 881 сm⁻¹ (A), 873–875 сm⁻¹ (B1) и (впервые) 864 сm⁻¹ (B2) и сделан вывод, что карбонатная группа B2 расположена вблизи наклонной поверхности замещенной фосфатной группы.

На основе данных ИК-измерений нами показано, чтопри спекании во влажной атмосфере при увеличении концентрации ионов Na⁺ интенсивность карбонатных полос в областях v2 и v3 увеличивается. При этом область v3 становится более структурированной, чем в случае спекания в сухом СО₂ (рис. 5), что отражает большое разнообразие окружений карбонатных ионов в образовавшейся структуре. Область v₂ ИК-спектра также существенно отличается от аналогичной области спектра образцов, полученных спеканием в атмосфере сухого СО₂ [8]. Так, при увеличении концентрации Na (выше 0.25 wt.% Na) в ИК-спектрах появляется широкая полоса пропускания приблизительно в интервале 850-865 cm⁻¹ с центром при 857 cm⁻¹ (рис. 6). Интенсивность ее при увеличении содержания Na увеличивается, а ширина полосы практически не изменяется. Поскольку увеличение содержания натрия в структуре рассматриваемой керамики ведет к увеличению в ней концентрации карбонатных ионов, возникновение этой полосы, вероятно, отражает локализацию их в местах, соседствующих с междоузельными протонами, принудительно внедренными в структуру КГА за счет спекания образцов в атмосфере Н₂О. При удобном соотношении углов и расстояний возможно формирование кластеров типа бикарбоната натрия, полоса внеплоскост-

Рис. 5. Домен v_3 ИК-спектров керамических образцов с содержанием ионов натрия 0.75 wt.%, синтезированных в атмосфере сухой двуокиси углерода (1) и во влажной атмосфере (2).

Рис. 6. Домен ν_2 ИК-спектров керамических образцов с концентрацией добавок ионов Na⁺ 0 (1), 0.25 (2), 0.5 (3), 0.75 (4), 1.0 (5), 1.25 (6) и 1.5 wt.% (7).

Рис. 7. Компьютерное разложение домена v_2 ИК-спектров образцов с содержанием натрия 1 wt.%.

ных изгибных колебаний карбонатного иона в котором ($\sim 840\,cm^{-1})$ слегка смещена в сторону больших волновых чисел.

Данная область спектра во всем использованном интервале концентраций натрия хорошо аппроксимируется шестью гауссовскими пиками. Разложение выполнялось с помощью программы Fityk version 0.9.8. Для примера на рис. 7 приведено разложение области v_2 ИК-спектра образца с добавкой натрия 1.0 wt.%. Пики при 879 и 872 cm⁻¹ относятся соответственно к A1- и B1типам КГА. Пик 867 сm⁻¹, согласно работам [14–17], соответствует колебаниям ν_2 A2-типа, а 865 сm⁻¹ — В2-типа. Пик при 858 сm⁻¹, связанный с локальным образованием в структуре кластеров бикарбоната натрия, состоит из двух пиков (при 856 и 859 сm⁻¹) и отвечает внеплоскостным колебаниям карбонатных групп, входящих в кластеры NaHCO₃, формирующиеся соответственно в фосфатных и гидроксильных позициях структуры КГА.

4. Заключение

В работе показано, что условия синтеза натрийзамещенной керамики КГА существенно влияют на химический состав керамики и распределение карбонатных ионов по анионным позициям. Синтез керамики происходит в температурном интервале 640-820°С и сопровождается экзотермической реакцией и ускорением процесса усадки прессовок. Кроме того, синтез керамики во влажной атмосфере способствует протонизации карбонатных групп в А- и В-позициях, их уплотнению в канальных позициях и приводит к формированию упорядочений А1- и А2-типов, проявляющихся в ИКспектрах в виде полос при 879 и $867 \,\mathrm{cm}^{-1}$, а также *В*1- и *В*2-типов (полосы при 872 и 865 сm⁻¹). При этом в областях как А- так и В-позиций в структуре КГА образуются кластеры бикарбоната натрия. Их наличие фиксируется полосами пропускания при 856 и 859 ст-1 соответственно.

Авторы благодарят профессора 3.3. Зымана (Харьковский национальный университет имени В.Н. Каразина, Украина) за полезные консультации, профессора М. Epple (Duisburg-Essen University, Germany) и доктора О. Prymak (Duisburg-Essen University, Germany) за предоставление возможности проведения проверочных измерений на современном оборудовании.

Список литературы

- [1] F.C.M. Driessens. In: Bioceramics of calcium phosphates / Ed. K. de Groot. CRC Press, Boca Raton (1983).
- [2] T.S.B. Narasaraju, D.E. Phebe. J. Mater. Sci. 31, 1 (1996).
- [3] Biomaterials science: An introduction to materials in medicine / Eds B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. Academic Press, NY–London (2004). 484 p.
- [4] Handbook of Biomineralisation: Medical and clinical aspects / Eds M. Epple, E. Bäeuerlein. Wiley-VCH, Weinheim (2007).
 424 p.
- [5] J.C. Elliot. Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam (1994). 404 p.
- [6] M.E. Fleet, Xi. Liu. Biomaterials **28**, 916 (2007).
- [7] Z.Z. Zyman, M.V. Tkachenko. Proc. Appl. Ceram. 7, 4, 153 (2013).
 [8] VIELE A. C. L. M. C. L. M. K. M. K.
- [8] H.El Feki, J.M. Savariault, A.B. Salah, M. Jemal. Solid State Sci. 2, 577 (2000).
- [9] H.E. Mason, A. Kozlowski, B.L. Phillips. Chem. Mater. 20, 294 (2008).

- [10] Z.Z. Zyman, M.V. Tkachenko, D.V. Polevodin. J. Mater. Sci.: Mater. Med. 19, 2819 (2008).
- [11] M.E. Fleet, X. Liu. J. Solid State Chem. 174, 412 (2003).
- [12] M.E. Fleet, X. Liu. J. Solid State Chem. 177, 3174 (2004).
- [13] M.E. Fleet, X. Liu, P.L. King. Am. Mineral. 89, 1422 (2004).
- [14] M.E. Fleet. Biomaterials 30, 1473 (2009).
- [15] C. Rey, B. Collins, T. Goehl, I.R. Dickson, M.J. Glimcher. Calcif. Tissue Int. 45, 157 (1989).
- [16] C. Rey, V. Renugopalakrishnan, M. Shimizu, B. Collins, M.J. Glimcher. Calcif. Tissue Int. 49, 259 (1991).
- [17] R.C. Tacker. Am. Mineral. 93, 168 (2008).
- [18] T.I. Ivanova, O.V. Frank-Kamenetskayam, A.B. Kol'tsov, V.L. Ugolkov. J. Solid State Chem. 160, 340 (2001).
- [19] Th. Leventouri, B.C. Chakoumakos, N. Papanearchou, V. Perdikatsis. J. Mater. Res. 16, 2600 (2001).
- [20] Th. Leventouri. Biomaterials 27, 3339 (2006).