Парамагнитные и спин-стекольные свойства пирохлорподобных оксидов $Ln_2Mn_{2/3}Mo_{4/3}O_7$ (Ln = Sm, Gd, Tb и Y)

© А.В. Королев, Г.В. Базуев*

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

(Поступила в Редакцию 4 июня 2003 г.)

В интервале температур 2–300 К изучены магнитные свойства сложных оксидов Ln₂Mn_{2/3}Mo_{4/3}O₇ (Ln = Sm, Gd, Tb и Y) с пирохлорподобной структурой. Для всех соединений в области парамагнитного состояния температурная зависимость магнитной восприимчивости описывается обобщенным законом Кюри–Вейса с температурно-независимой составляющей $\sim 10^{-6}$ cm³/g и постоянной Вейса $\Theta < 0$ и $|\Theta| < 16$ К. В области низких температур (T < 10-12 K) соединения обладают спин-стекольными свойствами, при которых наблюдаются характерные явления магнитного и температурного гистерезиса, а также типичные зависимости мнимой и действительной составляющих динамической магнитной восприимчивости от температуры и частоты переменного магнитного поля в широком интервале времен релаксации намагниченности. Полученные данные позволяют предполагать, что *d*-электроны ответственны за формирование фрустированных обменных взаимодействий в соединениях, в то время как 4*f*-электроны в случае соединений с Sm и Tb обеспечивают сильные эффекты магнитной анизотропии.

Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований № 02-03-32972.

1. Введение

Семейство химических соединений, изоструктурных минералу пирохлора NaCaTa₂O₆(OH, F) [1], весьма значительно. К нему принадлежит большая группа сложных оксидов общего состава A2B2O7, где A — двухвалентные щелочно-земельные элементы или трехвалентные редкоземельные элементы [2]. В позициях В располагаются пяти- и четырехвалентные элементы соответственно. Этим случаям отвечают следующие химические формулы $A_2^{2+}B_2^{5+}O_7$ и $A_2^{3+}B_2^{4+}O_7$. Рассматриваемые соединения имеют гранецентрированную кубическую решетку с пространственной группой *Fd3m* и восемь формульных единиц в элементарной ячейке. Атомы А расположены в 16д-позициях и координированы восьмью ионами кислорода. В-атомы располагаются в октаэдрах (16с-позиции). В отличие от перовскитов АВО3, в которых связанные вершинами октаэдры BO₆ образуют линейные цепи в трех направлениях, в пирохлорах октаэдры соединены в зигзагообразные цепи в направлении (110) с углом связи В-О-В ~ 135°. Чтобы подчеркнуть наличие в решетке двух независимых катионных подсистем, формулу пирохлора можно записать в виде $A_2O'(B_2O_6)$.

А- и В-катионы в структуре A₂B₂O₇ образуют подрешетку связанных углами тетраэдров, что может приводить к интенсивной фрустрации магнитного взаимодействия и необычным низкотемпературным свойствам [3]. Такое катионное окружение делает невозможным антиферромагнитное взаимодействие между катионами одноосных направлений [4]. По-видимому, по этой причине многие пирохлоры характеризуются отсутствием дальнего магнитного порядка. Как правило, сложные оксиды со структурой пирохлора демонстрируют спинстекольное поведение. Однако, согласно [5], такие соединения могут быть и в ферромагнитном состоянии. Так, ферромагнитными являются полупроводниковые оксиды на основе ванадия (IV) $Ln_2V_2O_7$ (Ln = Lu, Yb, Tm) [6,7].

Отметим, что соединения типа пирохлоров обладают сверхпроводимостью ($Cd_2Re_2O_7$ [8]) и, кроме того, рассматриваются в качестве возможных веществ со "spin-ice" поведением ($Ln_2Ti_2O_7$ [9]).

Мп-содержащие пирохлоры Ln2Mn2O7 обнаруживают сложную зависимость магнитных характеристик от природы элемента в А-позиции. Так, если оксиды с Ln = Sc, Y, Lu характеризуются спин-стекольным поведением и проявляют полупроводниковые свойства [10], то соединения Tl₂Mn₂O₇ и In₂Mn₂O₇ являются ферромагнетиками при T ≤ 120 K и металлическими проводниками [11]. Мо-содержащие пирохлоры Ln₂Mo₂O₇ демонстрируют ферромагнитные свойства в случае Ln = Nd-Gd и спин-стекольное поведение для большинства тяжелых редкоземельных металлов Ln = Tb-Er и Y [12,13]. Соединения Ln₂Mo₂O₇ первой группы имеют металлический характер проводимости, в то время как вторая группа — ярко выраженные полупроводники. Повидимому, именно характер проводимости играет определяющую роль при установлении магнитного порядка в этих соединениях.

В работах [14–16] (см. также ссылки в них) синтезированы оксиды более сложных составов: $Ln_2A_{2/3}B_{4/3}O_7$, где Ln — трехвалентные редкоземельные 4f-ионы, A — двухвалентные ионы Mn, Co, Ni, a B — пятивалентные ионы Nb, Ta, Mo, Re; $Ln_2A_{4/3}B_{2/3}O_7$, где A — трехвалентные ионы Fe и Mn, a B — катион W⁶⁺;

 $Ln_2Mn^{3+}BO_7$, где В — Nb⁵⁺ и Ta⁵⁺. Структура этих оксидов была определена как пирохлорподобная с ромбоэдрическим искажением. Исследования [17,18] методами высокоразрешающей электронной спектроскопии, электронографии и структурного рентгеновского анализа показали, что эти соединения могут существовать в двух модификациях: тригональной (пространственная группа $P3_121$, z = 6, структурный тип циркелита) и моноклинной (пространственная группа C2/c, z = 8, структурный тип цирокнолита CaZrTi₂O₇).

Магнитные свойства пирохлорподобных оксидов Ln₂A_{2/3}B_{4/3}O₇ при низких температурах практически не исследованы. В работе [16] установлено, что соединение Y₂Mn_{2/3}Re_{4/3}O₇ обладает спонтанным магнитным моментом ниже 190 К. Предположительно магнитная структура соединения Y₂Mn_{2/3}Re_{4/3}O₇ является неколлинеарной [16]. В этом соединении с понижением температуры наблюдается переход металлполупроводник при $T \approx 120$ К [19]. При высоких температурах (300–400 К) магнитная восприимчивость χ следует закону Кюри–Вейса

$$\chi = C/(T - \Theta), \tag{1}$$

где *С* и Θ — константы Кюри и Вейса соответственно, с отрицательным значением величины Θ и эффективным магнитным моментом μ_{eff} , свидетельствующим о присутствии катионной комбинации $Mn^{2+}(d^5)$ – $Re^{5+}(d^2)$. Отметим, что для другого соединения $Er_2Mn_{2/3}Mo_{4/3}O_7$, полученные в [18] данные по величине μ_{eff} позволяют предполагать катионную комбинацию Mn^{2+} – Mo^{5+} , т. е. в обоих соединениях марганец находится в двухвалентном состоянии. Оксиды $Ln_2Mn_{2/3}Mo_{4/3}O_7$, так же как $Ln_2Mn_{2/3}Re_{4/3}O_7$, обладают при низких температурах полупроводниковой проводимостью [14].

Из вышесказанного ясно, что рассматриваемые соединения имеют широкий спектр магнитных состояний, зависящих как от степени локализации электронов, так и от особенностей их кристаллической структуры. Однако до сих пор нет полной ясности в вопросе об определяющей роли указанных факторов в формировании этих магнитных состояний в пирохлорподобных соединениях. Решение этого вопроса, в частности, требует получения более полной информации о магнитных свойствах соединений типа Ln₂A_{2/3}B_{4/3}O₇. Как уже отмечалось, магнитные свойства таких соединений пока изучены слабо. Цель настоящей работы — установить возможные магнитные состояния в ряде сложных оксидов Ln₂Mn_{2/3}Mo_{4/3}O₇, где Ln = Y, Tb, Gd и Sm. По аналогии с ранее изученным соединением Y2Mn2/3Re4/3O7 [16] можно предполагать существование катионной комбинации Mn²⁺⁻ Мо⁵⁺ в этих оксидах и соответственно существование дальнего магнитного порядка. Согласно [20], такая катионная комбинация в перовските LaMn_{2/3}Mo_{1/3}O₃ приводит к ферримагнетизму с температурой Кюри $T_C = 89 \, \text{K}.$

2. Экспериментальная часть

Изучаемые соединения получены методом твердофазных реакций из оксидов Ln_2O_3 (Ln = Y, Sm, Gd, Тb) (99.95%) основного вещества; MnO, приготовленнного из MnO₂ (99.9%) восстановлением в водороде при 800°С, и металлического молибдена (99.9%). Синтез проводился в вакууме 10⁻³ Ра при температуре 1423 К. Контроль протекания химических реакций осуществляли рентгенографическим методом, используя Си К_а-излучение. Параметры решеток определялись из измерений на дифрактометре STADI-P (STOE) межплоскостных расстояний решетки. Обработка данных проводилась по методу наименьших квадратов. В качестве внешнего стандарта использовался поликристаллический кремний (a = 5.43075(5) Å), а в качестве внутреннего — Al₂O₃ (эталонный образец Национального института стандартов и технологий США — NIST SRM 676, $a_h = 4.75919(44)$ Å, $c_h = 12.99183(174)$ Å).

Магнитные измерения проводились в Центре магнитометрии ИФМ УрО РАН на СКВИД-магнитометре MPMS-XL-5 фирмы QUANTUM DESIGN. Температурный интервал измерений 2–300 К. Регулируемая напряженность магнитного поля H устанавливалась в пределах вплоть до 50 kOe. Из измерений статического магнитного момента образца определялись намагниченность M и статическая магнитная восприимчивость $\chi = M/H$, а с помощью метода измерения динамической магнитной восприимчивости получались действительная χ' и мнимая χ'' составляющие динамической восприимчивости при амплитудном значении переменного магнитного поля до 4 Oe и частоте f от 1 до 642 Hz.

3. Результаты и их обсуждение

По данным рентгенографических исследований все полученные сложные оксиды являются изоструктурными и не содержат каких-либо дополнительных фаз. В качестве примера на рис. 1 показана рентгенограмма соединения Sm₂Mn_{2/3}Mo_{4/3}O₇, которая является типичной для изучаемой серии соединений. В табл. 1 приведены параметры элементарных ячеек для всех соединений. Параметры даны на основе ромбоэдрического описания решетки с $a_{
m hex} \sim a_c \cdot 2^{1/2}, \ c_{
m hex} \sim c_c \cdot 3^{1/2},$ где a_c и с_с — параметры решетки в кубическом описании пирохлора. Позиции атомов в решетке не уточнялись. Однако их, вероятно, можно указать, основываясь на данных работы [17]. В этой работе изучено соединение Er₂Mn_{2/3}Mo_{4/3}O₇, которое можно рассматривать как аналогичное исследуемым оксидам. Это соединение было отнесено к моноклинной сингонии с пространственной группой C2/1 и параметрами a = 12.781 Å, b = 7.378 Å, c = 11.643 Å, $\beta = 100.53^{\circ}$. В элементарной ячейке этого оксида два сорта катионов Er^{3+} находятся в 8*а*-позициях, ион Mo^{5+} расположен в позиции 8*f*, катионы Mn²⁺ первого типа — в 4*е*-позициях, а кати-

Рис. 1. Рентгенограмма соединения $Sm_2Mn_{2/3}Mo_{4/3}O_7$.

оны Mn^{2+} второго типа и ион Mo^{5+} в соотношении 0.33Mn + 0.67Mo занимают вторую позицию 4e.

Основные данные магнитных измерений, в особенности в области парамагнитного состояния образцов, приведены на рис. 2. Сразу отметим, что при детальном анализе подобного рода данных для реальных образцов необходимо учитывать вклад в восприимчивость χ не только от механизма типа Кюри–Вейса, но и от других механизмов намагничивания. Особенно важен такой учет при малых значениях эффективного магнитного момента μ_{eff} и соответственно малых значениях экспериментально определяемой восприимчивости в области достаточно высоких температур $kT \gg \mu H (\mu - z$ -проекция магнитного момента иона). Учитывая нелинейный характер температурной зависимости обратной восприимчивости для исследованных соединений, будем использовать обобщенный закон Кюри–Вейса

$$\chi = \chi_0 + C/(T - \Theta), \qquad (2)$$

где χ_0 — восприимчивость, вызванная другими механизмами намагничивания. Примем, что величина χ_0 практически не зависит от температуры, т.е. при обработке экспериментальных данных полагаем $\chi_0(T) = \text{const. Bы$ $ражение}$ (2) принципиально точнее отражает реальное

Таблица 1. Параметры кристаллической структуры $Ln_2Mn_{2/3}Mo_{4/3}O_7$

Соединение	Параметры		
	a,Å	c,Å	
$\frac{Sm_2Mn_{2/3}Mo_{4/3}O_7}{Gd_2Mn_{2/3}Mo_{4/3}O_7}\\Tb_2Mn_{2/3}Mo_{4/3}O_7\\Y_2Mn_{2/3}Mo_{4/3}O_7$	15.075(2) 14.95(1) 14.90(1) 14.80(1)	17.398(3) 17.37(1) 17.33(1) 17.24(1)	

намагничивание вещества, чем уравнение (1), а основные дополнительные вклады в восприимчивость, такие, например, как диамагнитные, а также типа Ван-Флека или типа Паули, как правило, являются слабо зависящими от температуры. Тот факт, что восприимчивость χ_0 любой природы, как правило, слабо зависит от температуры по сравнению с функцией C/T, служит основанием для использования условия $\chi_0 = \text{const}$ в уравнении (2) при анализе экспериментальных зависимостей $\chi(T)$ для парамагнитных образцов с локализованными магнитными моментами. Следует особо отметить, что наряду с чисто физическими причинами введения дополнительного члена χ_0 в (1) можно указать и совершенно тривиальные, вызванные технологическим загрязнением образца ферромагнитными или другими примесями с высокими значениями восприимчивости или намагниченности.

На первый взгляд нелинейная зависимость $\chi^{-1}(T)$ (рис. 2, a) может рассматриваться как признак ферримагнитного основного состояния соединений Y₂Mn_{2/3}Mo_{4/3}O₇ и Sm₂Mn_{2/3}Mo_{4/3}O₇. На основании такого нелинейного вида зависимости $\chi^{-1}(T)$ в области 77-1050 К в работе [14] высказано предположение о ферримагнетизме соединения Y2Mn2/3Mo4/3O7. Однако полученные для $\chi^{-1}(T)$ данные (рис. 2, *a*, *b*) не описываются гиперболой Нееля, и, как показано далее, основное магнитное состояние соединения $Y_2Mn_{2/3}Mo_{4/3}O_3$ оказывается не ферримагнитным, а спин-стекольным. В случае соединения с Sm можно пытаться привлечь еще одну причину нелинейного характера функции $\chi^{-1}(T)$, а именно возможность смешивания основного мультиплета иона Sm³⁺ (основное состояние ${}^{6}H_{5/2}$) с вышележащим. Этот вопрос требует отдельного рассмотрения; в настоящей работе ограничимся анализом всех экспериментальных данных, в том числе и для соединения Sm₂Mn_{2/3}Mo_{4/3}O₇, в области парамагнитного состояния в рамках уравнения (2).

Рис. 2. Построение Кюри–Вейса $\chi^{-1}(T)$ (*1*) и то же с поправкой на температурно-независимую магнитную восприимчивость $\chi_0 (\chi - \chi_0)^{-1}(T)$ (*2*) для соединений Ln₂Mn_{2/3}Mo_{4/3}O₇. Ln = Y, Sm (*a*) и Gd, Tb (*b*).

Как уже отмечалось, восприимчивость $\chi = M/H$, и эксперименты при разных значениях Н позволяют аттестовать образцы на предмет их загрязнения ферромагнитными примесями. Такие эксперименты выполнены при $H > 500 \,\text{Oe}$ (вплоть до значений $H = 50 \,\text{kOe}$), и во всех случаях в области парамагнитного состояния зависимости $\chi(T)$ в пределах погрешности измерений сливаются в одну линию. Этот результат позволяет полагать, что содержание ферромагнитных примесей в образцах ничтожно ($< 10^{-4} - 10^{-5}$ %) и восприимчивость χ_0 , вероятно, имеет прямое отношение к физике магнетизма соединений. Значения χ_0 , Θ , C и эффективного магнитного момента μ_{eff} , приходящегося на формульную единицу, приведены в табл. 2. Они получены как результаты обработки экспериментальных кривых $\chi(T)$ по формуле (2) с использованием стандартных методов определения трех параметров для описания соответствующей функции. Представление результатов в виде функций $\chi(T)$ не является достаточно наглядным для иллюстрации такой обработки. В то же время, как уже отмечалось, построение $\chi^{-1}(T)$, $(\chi - \chi_0)^{-1}(T)$ (рис. 2, *a*, *b*) наглядно демонстрирует целесообразность использования обобщенного закона Кюри–Вейса для анализа экспериментальных данных и определения физических параметров χ_0 , Θ , *C* соединений. В случае соединений Gd₂Mn_{2/3}Mo_{4/3}O₇ и Tb₂Mn_{2/3}Mo_{4/3}O₇ восприимчивость χ во всем используемом в экспериментах диапазоне температур оказывается существенно выше значения χ_0 , поэтому зависимость $\chi^{-1}(T)$ слабо отличается от прямой $(\chi - \chi_0)^{-1}(T)$ (рис. 2, *b*).

Как видно из табл. 2, для всех соединений восприимчивость χ_0 является положительной и имеет значения, которые являются типичными для большинства парамагнитных веществ, не имеющих локализованных магнитных моментов. Вероятно, восприимчивость χ_0 является результатом намагничивания матрицы соединений, т. е. электронной подсистемы, которая не включена в формирование локализованных моментов. В настоящее время трудно сказать что-нибудь более определенное об этой характеристике.

Постоянная Вейса Θ для всех соединений является отрицательной и не превышает по абсолютному значе-

Таблица 2. Температурно-независимая магнитная восприимчивость χ_0 , константы Вейса Θ , Кюри *C*, эффективный магнитный момент μ_{eff} , намагниченность M_{50} , измеренная при T = 2 K, H = 50 kOe, расчетные предельные значения намагниченности насыщения M_S , коэрцитивная сила H_C и температура спин-стекольного замерзания T_f для соединений $\text{Ln}_2\text{Mn}_{2/3}\text{Mo}_{4/3}\text{O}_7$

Свойство		Ln			
		Y	Sm	Gd	Tb
$\begin{array}{c} \chi_0, \ 10^{-6} \ \mathrm{cm}^3/\mathrm{g} \\ \Theta, \mathrm{K} \end{array}$		2.2 -5.5	4.4 -4.0	$1.8 \\ -14.7$	5.5 -16
$C, 10^{-4}$ $K \cdot cm^3/g$	Эксперимент Теория Mn ²⁺ -Mo ⁵⁺ Теория	52 75 57	46 61 49	297 325 311	400 456 442
$\mu_{\mathrm{eff}},\mu_{\mathrm{B}}$	$Mn^{4+}-Mo^{4+}$ Эксперимент Теория $Mn^{2+}-Mo^{5+}$ Теория $Mn^{4+}-Mo^{4+}$	4.3 5.2 4.5	4.6 5.3 4.7	11.8 12.4 12.1	13.8 14.7 14.5
$M_{50}, M_S,$ emu/g	Эксперимент (50 kOe, 2 K) Теория Mn ²⁺ -Mo ⁵⁺ Теория	11.1 57.5 65.7	9.9 52.1 58.5	80.2 110.4 116.7	64.6 128.6 134.8
H_C , Oe T_{ℓ} K	$ Mn^{\hat{4}+} - Mo^{4+} H^+_C H^C (500 Oe) $	1070 1040 10	2470 1120 12.5	$145 \\ 145 \\ \sim 5$	1380 1210 12.5

Рис. 3. Изотермы намагниченность-поле при температуре T = 2 K для соединений $\text{Ln}_2\text{Mn}_{2/3}\text{Mo}_{4/3}\text{O}_7$, измеренные по замкнутому циклу +50-0-50-0-+50 kOe. a — в полном масштабе, b — фрагменты петли магнитного гистерезиса вблизи начала координта.

нию ~ 16 K (табл. 2). Этот результат указывает на присутствие в изученных соединениях антиферромагнитных взаимодействий. Абсолютные значения Θ для соединений с Gd и Tb в несколько раз выше, чем для соединений с Y и Sm, что можно понять как результат формирования взаимодействий как в 3*d*-, так и в 4*f*-электронных подсистемах с возможными обменными связями типа d-d, f-f и d-f. Отметим, что для установления стандартных корреляций величины Θ и параметра Де Жаннэ данных недостаточно, в то же время малые значения Θ позволяют считать антиферромагнитные взаимодействия слабыми.

$$\mu_{\rm eff}^2 = 2\mu_R^2 + (2/3)\mu_{\rm Mn}^2 + (4/3)\mu_{\rm Mo}^2, \qquad (3)$$

где μ_R — эффективный магнитный момент для свободного иона Ln^{3+} , а μ_{Mn} и μ_{Mo} — эффективные спиновые магнитные моменты для ионов марганца и молибдена. Расчет выполнен для двух катионных комбинаций этих ионов: для комбинации $Mn^{2+}(d^5)$ – $Mo^{5+}(d^1)$ и $Mn^{4+}(d^3)$ -Мо⁴⁺(d^2). Видно (табл. 2), что в случае первой комбинации для всех соединений теоретические значения µ_{eff} и С существенно выше экспериментальных. В модели Mn⁴⁺-Mo⁴⁺ результаты эксперимента существенно ближе к теоретическим. Однако, как уже отмечалось, из анализа экспериментов по определению постоянной Кюри С для соединений Ln₂Mn_{2/3}Mo_{4/3}O₇ (Ln = Y, Er [14,16]) и LaMn_{2/3}Mo_{1/3}O₃ [20] в области 77-1000 К была установлена катионная комбинация ионов марганца и молибдена: $Mn^{2+}(d^5)-Mo^{5+}(d^1)$. Двухвалентный Mn и пятивалентный Mo зафиксированы также в [21] при флуоресцентном рентгеновском анализе перовскита BaLaMnMoO₆. В то же время приведенный выше анализ данных для четырех соединений склоняет нас к модели Mn⁴⁺-Mo⁴⁺. Для разрешения возникшего противоречия необходимо проведение дополнительных исследований, например высокотемпературных измерений магнитной восприимчивости; также целесообразно изучить рентгеновские и фотоэмиссионные спектры.

Если основное состояние образцов рассматривать как парамагнитное, то при $T = 2 \,\mathrm{K}$ магнитное поле $H = 50 \,\mathrm{kOe}$ во всех случаях является достаточно высоким для достижения насыщения кривой M(H) $(\mu H \gg kT)$. Несложно рассчитать величину намагниченности насыщения M_S, т.е. предельное значение намагниченности при ориентации всех *z*-проекций локализованных магнитных моментов вдоль прикладываемого поля Н. Данные расчета для рассматриваемых моделей Mn²⁺-Mo⁵⁺ и Mn⁴⁺-Mo⁴⁺ приведены в табл. 2. Видно, что значения M_S , вычисленные в рамках первой модели, незначительно ниже, чем для второй. В то же время теоретические значения намагниченности M_S оказываются существенно выше намагниченности М₅₀, измеренной при H = 50 kOe и T = 2 K (рис. 3, *a*, табл. 2). Лишь в случае соединения с Gd можно говорить о небольшом различии между теорией и экспериментом. Из изложенного выше ясно, что экспериментальная функция M(H) (рис. 3, *a*) не доходит до насыщения и, вероятно, выход этой функции на уровень M_S следует ожидать при $H \gg 50$ kOe.

Приведенные на рис. З петли магнитного гистерезиса измерены по замкнутому циклу изменения магнитного поля, начиная от +50 kOe. Образцы охлаждались при H = 0; в дальнейшем такой режим охлаждения будем обозначать как ZFC. Для всех соединений, за исключением Gd₂Mn_{2/3}Mo_{4/3}O₇, петли гистерезиса оказываются

Рис. 4. Температурные зависимости намагниченности для соединений $Ln_2Mn_{2/3}Mo_{4/3}O_7$ (Ln = Y, Sm(a) и Gd, Tb(b)), измеренные дважды в процессе нагрева образца в поле H = 500 Ое после его охлаждения при нулевом значении H (кривые ZFC) и H = 500 Ое (кривые FC).

несимметричными относительно начала координат. Они смещены как в сторону отрицательных значений H, так и в сторону положительных величин М. Количественно смещение петли по оси Н можно охарактеризовать, например, двумя значениями коэрцитивной силы Н_С для нисходящей — H_C^+ (+50--50 kOe) и восходящей — H_{C}^{-} (-50-+50 kOe) ветвей петли гистерезиса. Чем больше разность $\Delta H_C = H_C^+ - H_C^-$, тем в большей мере смещена петля. Как видно из табл. 2, для соединений с Sm, Tb и Y величина ΔH_C составляет 1350, 170 и 30 Ое соответственно. В такой же последовательности от соединения к соединению меняется среднее значение коэрцитивной силы $(H_C^+ + H_C^-)/2$, т.е. ширина петли при М = 0. Наименее выражены гистерезисные свойства для соединения с Gd. В этом соединении коэрцитивная сила хотя и значительно ниже, чем в трех других, но имеет вполне значимую величину (табл. 2).

Рассмотренные данные по изучению изотерм M(H) указывают на то, что при достаточно низкой температуре соединения находятся не в парамагнитном состоянии.

Поскольку при низких температурах наблюдается явление магнитного гистерезиса, то совершенно очевидно, что здесь намагниченность образца должна зависеть от магнитной предыстории, например от режима охлаждения образца при разных значениях *H*. На рис. 4

Рис. 5. Действительная χ' и мнимая χ'' составляющие динамической магнитной восприимчивости для образца соединения $Y_2Mn_{2/3}Mo_{4/3}O_7$ при температуре T = 2 К в зависимости от частоты синусоидально изменяющегося переменного магнитного поля с амплитудным значением 4 Ое.

Рис. 6. Температурные зависимости статической магнитной восприимчивости χ , измеренной в режиме ZFC (см. рис. 4, *a*) при H = 500 Oe, и действительной χ' составляющей динамической магнитной восприимчивости при значениях частоты f = 1 и 642 Hz синусоидально изменяющегося переменного магнитного поля с амплитудным значением 4 Oe. Измерения выполнены для образца соединения Y₂Mn_{2/3}Mo_{4/3}O₇.

показаны температурные зависимости намагниченности, измеренные при H = 500 Ое. Для каждого соединения измерения при нагреве образца от температуры T = 2 К выполнены дважды: после охлаждения образца от комнатной температуры при H = 0 (режим ZFC) и после охлаждения образца также от комнатной температуры, но при напряженности H = 500 Ое (режим FC).

Наблюдаемый характер функций M(H) и M(T) для соединений с Y, Sm и Tb (рис. 3, 4) является типичным для систем, в которых основное магнитное состояние характеризуется как спин-стекольное. Для соединений с Y, Sm, Tb температура замерзания T_f спинового стекла определена как температура слияния двух измеренных зависимостей M(T) вблизи максимума функции M(T), полученной в режиме ZFC. В случае соединения с Gd зависимость M(T) не имеет максимума, здесь значение критической температуры T_f оценено также по точке слияния двух кривых M(T). В рассматриваемом ряду соединений наиболее высокие значения T_f характерны для соединений с Sm и Tb; незначительно ниже T_f для соединения с Y; и наконец, наименьшее значение T_f получено для соединения с Gd (табл. 2).

Дополнительным подтверждением формирования спин-стекольного состояния в исследуемых веществах являются эксперименты по изучению температурной частотной зависимостей действительной χ' и И мнимой χ["] составляющих динамической магнитной восприимчивости. Эти эксперименты выполнены на образцах Y₂Mn_{2/3}Mo_{4/3}O₇ при амплитудном значении напряженности синусоидально изменяющегося магнитного поля $H_{\sim} = 4$ Oe. Типичные частотные зависимости $\chi'(f)$ и $\chi''(f)$ для низкотемпературной области $T \le 10 \,\mathrm{K}$ показаны на рис. 5. В области температур 10 < T < 12 К вид этих зависимостей несколько трансформируется с сохранением основных особенностей, а при T > 13-14 К можно считать, что $\chi'(f) = \text{const.}$ Значение восприимчивости χ'' в области высоких температур T > 14 K в рамках выбранных режимов измерения установить не удается, т.е. погрешность определения этой характеристики превышает само значение χ'' .

Вероятной причиной частотных зависимостей $\chi'(f)$ и $\chi''(f)$ при низких температурах (рис. 5) является специфический процесс релаксации намагниченности в спин-стекольной системе локализованных моментов. Как правило, такие системы отличаются тем, что время релаксации намагниченности τ для данного образца лежит в широком диапазоне значений и характеризуется определенной функцией распределения $g(\tau)$. Предполагая, что $\tau_{\min} \ll 1/f \ll \tau_{\max}$ (τ_{\min} и τ_{\max} — минимальное и максимальное время релаксации в рассматриваемой системе), можно установить связь между χ'' и χ' в виде [22]

$$\chi'' \approx -(\pi/2)^* \partial \chi' / \partial \ln f.$$
(4)

Величина χ' изменяется незначительно в используемом диапазоне частот f (рис. 5, 6), и в пределах погрешности измерений зависимость $\chi'(\ln f)$ оказывается практически линейной для всех температур T < 13 K. В таком случае очевидно, что с помощью (4) описать сложную экспериментальную зависимость $\chi''(T)$ не удается. Тем не менее значения χ'' , определенные по формуле (4), оказываются приблизительно соответствующими экспериментальным (рис. 7), а экспериментальные зависимости $\chi''(T)$, измеренные при разных значениях f, проходят вблизи расчетной функции $\chi''(T)$. Можно попытаться дать более точный анализ частотных зависимостей динамической восприимчивости, например, путем моделирования функции распределения $g(\tau)$. Решение такого рода задач выходит за рамки настоящей работы. В то же время приведенные примеры, на наш взгляд, дают правильное на полуколичественном уровне понимание того, что именно релаксационные процессы в изучаемой спин-стекольной системе играют существенную роль

Рис. 7. Температурная зависимость мнимой χ'' составляющей динамической магнитной восприимчивости для образца соединения Y₂Mn_{2/3}Mo_{4/3}O₇ при различных значениях частоты *f* синусоидально изменяющегося переменного магнитного поля с амплитудным значением 4 Ое. Штриховая линия — расчетная функция.

в процессах намагничивания. Вероятно, эти процессы вызывают эффект смещения петли магнитного гистерезиса (рис. 3).

Данные рис. 6 позволяют предполагать, что величина минимального времени релаксации τ_{\min} чрезвычайно мала. Как видно из этого рисунка, температурные зависимости динамической $\chi'(T)_{f=const}$ и статической $\chi(T)_{f=0}$ ($\chi_{dc} = M/H$) восприимчивости имеют типичный вид для спин-стекольных систем с гигантским разбросом минимального и максимального времени релаксации. Температура замерзания T_f , определяемая по положению максимума рассматриваемых кривых (рис. 6) в статическом режиме измерений, т.е. при f = 0, составляет ~ 10 K, однако при частоте f, равной всего лишь 1 Hz, величина T_f увеличивается приблизительно на 2 K и продолжает возрастать при дальнейшем повышении частоты.

4. Заключение

Обобщая полученные результаты, обратим внимание на основные положения работы и наиболее интересные соображения, которые могут стать основной для дальнейших исследований пирохлорподобных соединений.

Во-первых, температурные зависимости магнитной восприимчивости $\chi(T)$ в парамагнитной области нельзя описать единообразно для всех соединений Ln₂Mn_{2/3}Mo_{4/3}O₇ (Ln = Y, Sm, Gd, Tb) в рамках простого закона Кюри–Вейса. С привлечением же обобщенного закона Кюри–Вейса с добавочным членом в виде температурно-независимой магнитной восприимчивости, имеющей вполне разумные значения, такое описание оказывается состоятельным. Экспериментально

определенные при таком описании эффективные магнитные моменты для всех соединений малы по сравнению с теоретическими, вычисленными для катионной комбинации Mn²⁺–Mo⁵⁺. Для однозначной интерпретации этих результатов необходимы дополнительные исследования.

Во-вторых, обменные взаимодействия в соединениях являются слабыми (с несомненным участием взаимодействий антиферромагнитного характера). При этом основную роль, по-видимому, играют взаимодействия в системе *d*-электронов и частично взаимодействия типа f - d. Наиболее вероятно, что взаимодействия носят случайный характер. Последнее обеспечивает при достаточно низких температурах формирование экспериментально наблюдаемого спин-стекольного состояния. Такое состояние характерно как для магнитных моментов ионов марганца и молибдена при нулевом магнитном моменте в редкоземельной подсистеме (Y₂Mn_{2/3}Mo_{4/3}O₇), так и для магнитных моментов редкоземельных ионов (Sm, Gd, Tb). Существенную роль в формировании спин-стекольного состояния в случае редкоземельных ионов с отличным от нуля орбитальным моментом (Sm, Tb) играет магнитная кристаллическая анизотропия. Вероятно, магнитная анизотропия является одной из основных причин наблюдаемых низких значений М₅₀ и сильного эффекта магнитного гистерезиса в соединениях с Sm и Tb. Однако в случае соединения с "немагнитным" Ү было бы удивительным проявление чисто магнитной кристаллической анизотропии 3d- и 4d-ионов в формировании магнитных свойств. По-видимому, как в этом соединении, так и в соединении с Gd обменные взаимодействия являются превалирующими в иерархии взаимодействий, устанавливающих определенные направления магнитных моментов. При этом взаимодействия типа f-d существенно снижают "жесткость" фиксации случайных направлений магнитных моментов *d*-электронов и соответственно приводят к более легкому намагничиванию образца с Gd. По-видимому, 4f-электроны играют неоднозначную роль. С одной стороны, их участие в формировании обменных взаимодействий приводит к облегчению процесса намагничивания всего ансамбля магнитных моментов, а с другой — 4*f*-ионы с отличным от нуля орбитальным моментом (Sm, Tb) создают условия для затрудненного процесса намагничивания.

Таким образом, в исследованных соединениях дальний магнитный порядок, ожидаемый в связи с тем, что именно такой порядок характерен для соединений $Y_2Mn_{2/3}Re_{4/3}O_7$ [16] и La $Mn_{2/3}Mo_{1/3}O_3$ [20], в которых существуют катионные комбинации Mn^{2+} –Re⁵⁺ и Mn^{2+} –Mo⁵⁺, не наблюдается. В то же время можно предполагать, что одно из важных условий формирования в четырех изученных соединениях Ln₂Mn_{2/3}Mo_{4/3}O₇ (Ln = Y, Sm, Tb, Gd) спин-стекольного состояния заключается в беспорядочном размещении ионов марганца и молибдена по эквивалентным позициям в решетке.

Список литературы

- [1] А.С. Поваренных. Кристаллохимическая классификация минеральных видов. Наук. думка, Киев (1966).
- [2] M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Prog. Solid State Chem. 15, 55 (1983).
- [3] J.E. Greedan. J. Mater. Chem. 11, 37 (2001).
- [4] S.T. Bramwell, M.J. Harris. J. Phys.: Cond. Matter 10, L215 (1998).
- [5] M.A. Subramanian, C.C. Torardi, D.C. Johnson, J. Pannetier, W. Sleightn. J. Solid State Chem. 72, 24 (1988).
- [6] Г.В. Базуев, О.В. Макарова. В.З. Оболдин, Г.П. Швейкин. ДАН СССР 230, 869 (1976).
- [7] Г.В. Базуев, А.А. Самохвалов, Ю.Н. Морозов, И.И. Матвеенко, В.С. Бабушкин, Т.И. Арбузова, Г.П. Швейкин. ФТТ 19, 3274 (1977).
- [8] R. Jin, J. He, S. McCall, C.S. Alexander, F. Drymiotis, D. Mandrus. Phys. Rev. B 64, 180 503R (2001).
- [9] A.P.Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry. Nature **399**, 6734, 333 (1999).
- [10] J.E. Greedan, N.P. Raju, A. Maignan, Ch. Simon, J.S. Pedersen, A.M. Niraimathi, E. Gmelin, M.A. Subramanian. Phys. Rev. B 54, 10, 7189 (1996).
- [11] M.A. Subramanian, B.H. Toby, A.P. Ramirez, W.J. Marshall, A.W. Sleight, G.H. Kwei. Science **273**, *5271*, 81 (1996).
- [12] Г.В. Базуев, Г.П. Швейкин, Т.И. Арбузова, В.Н. Деркаченко. ДАН СССР 297, 2, 389 (1987).
- [13] K. Miyoshi, Y. Nishimura, K. Honda, K. Fujiwara, J. Takeuchi. Physica B 284–288, 1463 (2000).
- [14] Г.В. Базуев, О.В. Макарова, Г.П. Швейкин. ЖНХ **29**, 875 (1984).
- [15] Г.В. Базуев, О.В. Макарова, Н.А. Кирсанов. ЖНХ 34, 23 (1989).
- [16] Г.В. Базуев, Т.И. Чупахина, В.Н. Красильников. Письма в ЖЭТФ 74, 7, 440 (2001).
- [17] H. Nakano, N. Kamegashira. J. Am. Cer. Soc. 84, 6, 1374 (2001).
- [18] G. Chen, K. Takasaka, N. Kamegashira. J. Alloys. Comp. 233, 206 (1996).
- [19] Г.В. Базуев, Т.И. Чупахина, Э.А. Нейфельд, Г.П. Швейкин. В сб.: Новые неорганические материалы и термодинамика. Тез. докл. Второй семинар СО РАН–УрО РАН. Екатеринбург (2002). Институт химии твердого тела УрО РАН (2002). С. 13.
- [20] Г.В. Базуев. А.С. Борухович, А.А. Сидоров, Т.И. Арбузова, Г.П. Швейкин. Неорган. материалы 25, 1, 95 (1989).
- [21] T. Nakamura, Y. Gohski. Chem. Lett. 11, 1171 (1975).
- [22] L. Lundgren, P. Svedlindh, O. Beckman. J. Magn. Magn. Mater. 25, 33 (1981).