07,01

Низкотемпературное внутреннее трение волокнистых композитов с медной матрицей

© В.А. Белошенко, В.Ю. Дмитренко, А.Н. Пилипенко, В.В. Чишко

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Донецк, Украина

E-mail: chishko@ukr.net

(Поступила в Редакцию 29 мая 2014 г. В окончательной редакции 2 июля 2014 г.)

В области 100-300 К исследованы температурные зависимости внутреннего трения и модуля сдвига композитов с медной матрицей, армированных волокнами различного функционального назначения (Cu, Fe, Al, NbTi). Обнаружен пик внутреннего трения, локализованный в узкой области температур, вызванный термически активированным релаксационным процессом. Показано, что характер его поведения обусловлен рядом технологических факторов, в совокупности определяющих прочность адгезионной связи компонентов композита. Установленный факт позволяет использовать внутреннее трение в качестве неразрушающего метода контроля адгезионной прочности соединения волокно-матрица.

1. Введение

Внутреннее трение (BT) — один из наиболее структурно-чувствительных метолов, используемых в физическом материаловедении [1]. Интерес к низкочастотному ВТ металлических материалов при низких температурах обусловлен как традиционными задачами физики твердого тела и материаловедения (исследования динамики дефектов структуры, процессов старения, структурных и фазовых переходов и т.д.), так и рядом других вопросов, для решения которых необходимо проводить низкотемпературные измерения ВТ [2]. Демпфирующие свойства при низких температурах достаточно хорошо изучены в металлах и сплавах [1]. В меньшей степени это относится к композитам, где присутствуют границы раздела, приводящие к дополнительной диссипации энергии, вклад которых зависит от природы и структурного состояния компонентов [3], а также от прочности сцепления последних [4,5]. Значительное внимание уделялось разработке и исследованию высокодемпфирующих дисперсно-упрочненных металлических композитов, в частности с алюминиевой и магниевой матрицей [6]. Данные по низкотемпературному ВТ волокнистых композитов с медной матрицей ограничены в основном сверхпроводящей системой Cu-Nb [7-10]. В целом интерес к композитам с медной матрицей обусловлен уникальным комплексом их физико-механических свойств (превосходной тепловой и электрической проводимостью, высокими механическими характеристиками, износо- и коррозионной стойкостью и др.) в сочетании с технологичностью изготовления.

Целью настоящей работы является исследование низкочастотного ВТ композитов с медной матрицей, армированных металлическими волокнами различного функционального назначения.

2. Материалы и методы исследований

В качестве объектов исследования использовались волокнистые композиты Cu–Fe, Cu–NbTi, Cu–Cu, Cu–Al и сплав Cu–50 wt.% Fe, имеющий волокнистую структуру (микрокомпозит). Использованные схемы деформационной обработки и количество волокон n_f приведены в таблице.

Композиты Cu-Fe, Cu-Cu и Cu-Al с различным числом волокон изготавливались с помощью пакетной технологии, в основе которой лежит деформирование биметаллической составной заготовки (оболочка + сердечник) при комнатной температуре методом гидроэкструзии (ГЭ). На этапе первой сборки 211 деформированных конструктивных биметаллических элементов размещались в медной оболочке, при этом обеспечивались плотная упаковка, а также отсутствие пор и концентраторов напряжений при последующей деформации. При второй сборке 211 деформированных элементов первой сборки размещались в идентичной матричной оболочке, при этом создавался волокнистый композит с 211 × 211 = 211² волокнами. Композиты, содержащие 211³ и 85 · 211³ волокон, получались повторением указанной операции с конструктивными элементами второй сборки. После ГЭ деформирование образцов осуществлялось методом волочения. Подробное описание этой технологии приведено в работах [11,12].

Композиты Cu–NbTi изготавливались с использованием на первом этапе знакопеременной пластической деформации методом равноканального многоуглового прессования (РКМУП) [13] с последующими ГЭ и волочением. Величина накопленной при РКМУП деформации составляла e = 9.8 и 13.1. Методика получения образцов описана в работе [14].

Микрокомпозит Cu-50 wt.% Fe получался методом вакуумного переплава, после чего деформировался горя-

Композит	Деформационная обработка	Количество волокон <i>n_f</i>	Температура пика <i>T</i> _{max} , К	Высота пика за вычетом ϕ она Q_{max}^{-1} , 10^{-3}	Энергия активации <i>H</i> , eV
Cu–NbTi	РКМУП $(e = 9.8) + \Gamma \Im + волочение$	1	150	2.5	0.32
	РКМУП $(e = 13.1) + \Gamma \Theta + волочение$		150	3.8	0.32
Cu-Fe	ГЭ + волочение	211	147	7.6	0.32
		211^{2}	158	5.5	0.34
		$85 \cdot 211^3$	154	4.6	0.33
Cu-50 wt.% Fe	Горячая экструзия + ГЭ +волочение	—	170	0.2	0.37
Cu-Cu	ГЭ + волочение	211	154	0.7	0.37
Cu-Al	$\Gamma \Im$ + волочение	1	140	0.02	0.3

Характеристика исследуемых композитов и параметры максимума ВТ

чей экструзией (при 1250 K) для устранения усадочных раковин, пор и микротрещин. Дальнейшее деформирование осуществлялось методом ГЭ и волочения.

Измерения ВТ и динамического модуля сдвига осуществлялись с помощью автоматизированной системы релаксационной спектроскопии [15]. Разработанная система, обеспечивая удобство в эксплуатации и высокую достоверность получаемых данных, позволяет производить измерения температурной зависимости BT (T3BT) в интервале 80-1100 К, частотной зависимости ВТ в диапазоне от 10^{-4} до 60 Hz, амплитудной зависимости ВТ в диапазоне относительной деформации $10^{-6} - 10^{-4}$, а также температурной зависимости модуля сдвига. Исследуемые образцы имели диаметр 0.5-2.0 mm и длину рабочей части 90 mm. Амплитуда колебаний соответствовала амплитудно-независимой области и составляла $1 \cdot 10^{-5}$, частота — 2.5–60 Hz, скорость изменения температуры — 2 К/min. Термообработка (ТО) исследуемых композитов (нагрев до заданной температуры со скоростью 2 K/min с последующим охлаждением до комнатной) проводилась в вакууме непосредственно в установке ВТ без перемонтажа образца.

Рентгеноструктурные исследования композитов Cu-Fe проводились на дифрактометре ДРОН-УМ1 в Со-излучении. Параметры решетки меди определялись по линии (311), железа — по линии (211).

3. Результаты и их обсуждение

На рис. 1 приведена ТЗВТ композитов Cu-Fe с различным числом волокон. Поведение ВТ биметаллического образца ($n_f = 1$) при охлаждении аналогично таковому для чистой меди [14]. С увеличением n_f до 211 растет уровень ВТ и обнаруживается острый симметричный пик при температуре $T_{\text{max}} = 147$ К. С дальнейшим ростом количества волокон пик сдвигается в область более высоких температур. Смещение температурного положения пика в зависимости от n_f имеет немонотонный характер: при $n_f = 85 \cdot 211^3$ T_{max} уменьшается от 175 до 154 К. При указанных температурах характерные особенности наблюдаются также на зависимостях динамического модуля сдвига.

Изучение влияния ТО, выполненное на композите Cu-Fe с $n_f = 85 \cdot 211^3$, позволило установить, что с отжигом положение пика смещается в область более высоких температур (рис. 2). При этом с ростом температуры нагрева его высота уменьшается вплоть до исчезновения пика после нагрева до 725 К.

Рис. 1. ТЗВТ компонентов Cu-Fe с различным количеством волокон. n_f : I - 1, 2 - 211, $3 - 211^2$, $4 - 211^3$, $5 - 85 \cdot 211^3$.

Рис. 2. ТЗВТ композита Cu-Fe ($n_f = 85 \cdot 211^3$) после деформации (I), ТО при 375 К (2) и 525 К (3).

Исследования ТЗВТ указанных композитов на различных частотах колебаний (f = 2.5, 13, 50 Hz) показали, что с уменьшением f температурное положение пика сдвигается в область более низких температур (на 25 K). Данный факт позволяет заключить, что наблюдаемый низкотемпературный пик обусловлен термически активированным релаксационным процессом. Энергию активации H можно определить из экспериментально наблюдаемого смещения T_{max} с изменением частоты с использованием соотношения [9]

$$H = \frac{kT_{\max}(f_1)T_{\max}(f_2)}{T_{\max}(f_2) - T_{\max}(f_1)} \ln \frac{f_2}{f_1}$$

где k — постоянная Больцмана, $T_{\max}(f_1)$ и $T_{\max}(f_2)$ — температуры максимума ВТ при значениях частоты колебаний f_1 и f_2 .

Значения *H* для композита Cu–Fe с $n_f = 85 \cdot 211^3$, определенные из T3BT, измеренных при частотах 2.5 и 13 Hz, составили 0.234 eV; при 2.5 и 50 Hz — 0.248 eV; при 13 и 50 Hz — 0.269 eV. Расчет энергии активации с использованием формулы Верта–Маркса дает бо́льшую величину *H*, при этом в зависимости от количества волокон композита Cu–Fe также наблюдаются различные ее значения (см. таблицу).

Аналогичные ТЗВТ наблюдаются для волокнистых композитов Cu-NbTi, Cu-Cu, Cu-Al (рис. 3) и микрокомпозита Cu-50 wt.% Fe. Наличие низкотемпературного пика ВТ у этих материалов, а также локализация его температурного положения в узкой области (145-175 К) свидетельствуют о сходных механизмах его появления. Отсутствие данного пика на ТЗВТ компонентов исследуемых композитов (Cu, Fe, NbTi, Al) [1,14] позволяет связать его с наличием и состоянием границ раздела в композите. Подобная картина наблюдалась для наноламината Cu-Nb в работе [8], где было высказано предположение, что пик обусловлен деформацией на границе раздела под действием термоупругих напряжений. О деформационной природе низкотемпературного пика исследуемых материалов свидетельствует также его поведение при ТО.

Наблюдаемый пик ВТ может быть обусловлен следующими причинами: 1) различным уровнем микронапряжений в образцах; 2) разницей в коэффициентах линейного температурного расширения (КЛТР) компонентов композита; 3) особенностями совместной деформации компонентов, обусловленными различиями типов кристаллической решетки и величин модулей сдвига; 4) недостаточной адгезионной прочностью соединения волокно-матрица.

Проанализируем их подробнее. Для композита Cu–NbTi в работе [16] установлено, что у образцов, полученных без применения РКМУП и с таковым (e = 13.12), величина микронапряжений второго рода составляет $1.91 \cdot 10^{-3}$ и $1.96 \cdot 10^{-3}$ соответственно. Исходя из этого действие первого фактора представляется сомнительным. Различия в типах кристаллической

Рис. 3. ТЗВТ композитов Cu–Cu (*a*), Cu–NbTi (*b*) и Cu–Al (на вставке). $I - \Gamma \Im +$ волочение, 2 -РКМУП (e = 9.8) + $\Gamma \Im$ + волочение, 3 - РКМУП (e = 13.1) + $\Gamma \Im$ + волочение.

решетки, величинах КЛТР и модулей сдвига тоже не могут быть причиной появления обсуждаемого пика ВТ, о чем свидетельствует наличие пика на ТЗВТ композитов Cu–Cu и Cu–Al (рис. 3, *a*). Следовательно, его появление наиболее вероятно обусловлено рядом технологических факторов, а именно видом и режимом деформации, возможностью образования химических соединений и твердых растворов на границе раздела, в совокупности определяющих прочность адгезионной связи компонентов композита. Об этом может свидетельствовать также наблюдаемый значительный разброс значений энергии активации процесса, не характерный для конкретного физического механизма диссипации. Подобный результат наблюдался в работе [4] в случае композита медь–стекло.

Предполагаемая нами причина появления низкотемпературного пика ВТ подтверждается следующими фактами.

1. Отсутствие пика в композите Cu–NbTi, полученном без применения РКМУП (рис. 3, *b*), которое может быть связано с сохранением хорошей адгезии между медью

Рис. 4. Зависимости параметра решетки медного (1) и железного (2) компонентов композитов Cu–Fe от диаметра и количества волокон железа.

и сплавом при осесимметричной деформации ГЭ и волочением в отличие от знакопеременной деформации РКМУП. Об этом также свидетельствует увеличение высоты пика за вычетом фона Q_{max}^{-1} с ростом степени деформации РКМУП (рис. 3, *a* и таблица).

2. Низкая высота пика в композите Cu-Cu c $n_f = 211$ и микрокомпозите Cu-50 wt.% Fe, а также его отсутствие в композите Cu-Cu c $n_f = 1$ (рис. 3, *a* и таблица). Совместная деформация однородных материалов (Cu-Cu) и использование горячей экструзии при получении Cu-50 wt.% Fe априори предполагают хорошее сцепление компонентов.

3. Корреляция между сдвигом по температуре и уменьшением высоты пика в композите Cu-Fe с поведением предела прочности при увеличении количества волокон [17]. Появлению пика на ТЗВТ композита при $n_f = 211$ (рис. 1) соответствует падение предела прочности с 810 до 560 MPa. Увеличение числа волокон до 211³ приводит к возрастанию прочности композита от 560 до 980 МРа, коррелирующему с уменьшением высоты пика, смещением его в область более высоких температур и увеличением энергии активации процесса. С наблюдаемым при $n_f = 85 \cdot 211^3$ разупрочнением композита совпадает сдвиг пика на ТЗВТ в область низких температур. По данным рентгеноструктурных исследований при увеличении количества волокон (уменьшении их диаметра) наблюдается рост параметров решеток железа и меди (рис. 4), что свидетельствует об образовании твердого раствора в этих металлах [18] и соответственно об увеличении прочности связи между компонентами композита. Это коррелирует с уменьшением высоты пика ВТ (см. таблицу).

4. Выводы

1. Установлено, что низкотемпературный пик на ТЗВТ волокнистых композитов с медной матрицей обусловлен термически активированным релаксационным процессом, каковым может быть релаксация внутренних напряжений на границе раздела компонентов, возникающих при низкой адгезионной прочности связи волокноматрица.

2. Наличие пика ВТ, локализованного в узкой области температур и связанного с технологическими особенностями изготовления волокнистых композитов на основе меди, позволяет использовать ВТ в качестве метода качественной оценки адгезионной прочности соединения волокно-матрица.

Список литературы

- M.S. Blanter, I.S. Golovin, H. Neuhauser, H.-R. Sinning. Internal friction in metallic materials. Springer-Verlag, Berlin– Heidelberg (2007). 539 p.
- [2] В.М. Аржавитин, В.А. Финкель, Ю.Н. Шахов. Вопр. атом. науки и техники. Сер. Вакуум, чистые материалы, сверхпроводники (15), 1, 127 (2006).
- [3] Л.А. Чиркина, В.С. Оковит, М.А. Тихоновский, О.И. Волчок, М.Б. Лазарева, В.В. Калиновский, И.В. Колодий. Вопр. атом. науки и техники. Сер. Вакуум, чистые материалы, сверхпроводники (18), 6, 141 (2009).
- [4] Б.С. Лунин. Вестн. МГУ. Сер. Химия 46, 2, 220 (2005).
- [5] C.M. Su, M. Wuttig. J. Alloys Comp. 211/212, 428 (1994).
- [6] H. Lu, X. Wang, T. Zhang, Z. Cheng, Q. Fang. Materials 2, 958 (2009).
- [7] Е.Н. Ватажук, П.П. Паль-Валь, Л.Н. Паль-Валь, В.Д. Нацик, М.А. Тихоновский, А.А. Куприянов. ФНТ 35, 528 (2009).
- [8] В.И. Бетехтин, Ю.Р. Колобов, Б.К. Кардашев, Е.В. Голосов, М.В. Нарыкова, А.Г. Кадомцев, Д.Н. Клименко, М.И. Карпов. Письма в ЖТФ 38, 3, 88 (2012).
- [9] Е.Н. Ватажук, В.Д. Нацик. ФНТ 37, 792 (2011).
- [10] О.И. Волчок, В.С. Оковит, Л.А. Чиркина, М.А. Тихоновский, В.В. Калиновский, А.А. Куприянов, И.В. Колодий. Вестн. ХНУ. Сер. Физика 821, 97 (2008).
- [11] В.А. Белошенко, В.Н. Варюхин, В.Ю. Дмитренко, Ю.И. Непочатых, В.З. Спусканюк, А.Н. Черкасов, Б.А. Шевченко. ЖТФ 79, 12, 68 (2009).
- [12] В.А. Белошенко, В.З. Спусканюк, В.Ю. Дмитренко, В.В. Чишко, Л.Ф. Сенникова, Ю.И. Непочатых. Вопр. материаловедения 70, 90 (2012).
- [13] V. Beloshenko, V. Spuskanyuk. Int. J. Mater. Chem. 2(4), 145 (2012).
- [14] В.А. Белошенко, И.М. Крыгин, А.Н. Пилипенко, В.В. Чишко. Физика и техника высоких давлений 23, 84 (2013).
- [15] А.Н. Пилипенко. Физика и техника высоких давлений 23, 135 (2013).
- [16] V.A. Beloshenko, V.P. Dyakonov, V.V. Chishko, N.I. Matrosov, O.N. Mironova, D. Gajda, A.J. Zaleski, R. Puzniak. Functional Mater. 16, 174 (2009).
- [17] В.А. Белошенко, В.Н. Варюхин, В.Ю. Дмитренко, Ю.И. Непочатых, А.Н. Черкасов. Физика и техника высоких давлений 20, 110 (2010).
- [18] T. Ambrose, A. Gavrin, C.L. Chien. J. Magn. Magn. Mater. 124, 15 (1993).