01

Динамика предельно коротких электромагнитных импульсов в хиральных углеродных нанотрубках в присутствии внешнего поля

© Н.Н. Конобеева,¹ М.Б. Белоненко²

¹ Волгоградский государственный университет, 400062 Волгоград, Россия ² Волгоградский институт бизнеса, 400048 Волгоград, Россия e-mail: yana_nn@inbox.ru

(Поступило в Редакцию 3 октября 2013 г. В окончательной редакции 7 февраля 2014 г.)

Проанализировано волновое уравнение для электромагнитного поля, распространяющегося в хиральных углеродных нанотрубках с учетом воздействия на них внешнего постоянного электрического поля. Получено уравнение, описывающее поведение импульса и имеющее вид аналога уравнения Синус–Гордона. Исследована динамика электромагнитного импульса в зависимости от величины внешнего поля, начальной амплитуды и скорости импульса. Проведено сравнение случаев с учетом внешнего поля и без него.

Введение

Настоящая работа посвящена исследованию динамики предельно коротких импульсов, распространяющихся в хиральных углеродных нанотрубках (УНТ) в присутствии внешнего постоянного поля. По характеру симметрии нанотрубки делятся на два вида: хиральные и ахиральные. Хиральные УНТ имеют винтовую симметрию, ахиральные — аксиальную. Уникальные свойства тех и других привлекают к ним большое внимание исследователей в области современной наноэлектроники [1,2]. В работе [3] рассмотрен случай распространения предельно коротких импульсов в массиве хиральных УНТ в отсутствие внешнего поля. В настоящем исследовании анализируется поведение электромагнитного импульса, распространяющегося в УНТ с винтовой симметрией с учетом влияния внешнего постоянного электрического поля, что важно для практических приложений [4]. Актуально проводить теоретические исследования свойств именно таких УНТ, поскольку учет хиральности может приводить к существенному изменению наших знаний о свойствах исследуемых материалов и предсказанию новых эффектов (например, оптического детектирования). Подобные соображения делают хиральные нанотрубки весьма перспективными в устройствах генерации терагерцевых импульсов на основе фемтосекундных оптических импульсов [5,6].

Постановка задачи

Рассмотрим переменное электрическое поле, распространяющееся в системе хиральных углеродных нанотрубок в геометрии, когда электромагнитное поле линейно поляризовано и направлено вдоль оси нанотрубок. Вдоль оси также прикладывается внешнее постоянное электрическое поле. Отметим, что рассматриваются мощные поля, числа заполнения фотонов большие, поэтому свет можно рассматривать классически [7–9]. Дисперсионное соотношение для одномерной структуры хиральных нанотрубок имеет вид [10]

$$E_{q}(\mathbf{k}) = \pm \gamma_{0} \left\{ 1 + 4\cos\left(\frac{q\pi}{N_{x}} - \frac{N_{y}\mathbf{k}a}{N_{x}2}\right)\cos\left(\frac{\mathbf{k}a}{2}\right) + 4\cos^{2}\left(\frac{q\pi}{N_{x}} - \frac{N_{y}\mathbf{k}a}{N_{x}2}\right) \right\}^{1/2},$$
(1)

где $\gamma_0 \approx 2.7 \,\text{eV}$ — интеграл перескока, q — целое число, **k** — волновой вектор вдоль оси нанотрубки типа $(n, m) = (N_x, N_y)$, **k**a изменяется в пределах $[-\pi; \pi]$, $a = 3b/2\hbar$ (nm) — постоянная решетки, $b = 0.142 \,\text{nm}$ — расстояние между соседними атомами углерода.

Гамильтониан системы элементарных возбуждений в данном случае в присутствии внешнего постоянного электрического поля с использованием калибровки $\mathbf{E} = -c^{-1}\partial \mathbf{A}/\partial t$ имеет вид

$$H = \sum_{kq} E_q (\mathbf{k} - \frac{e}{c} A(t) - \mathbf{E}_0 t) C_{kq}^+ C_{kq}, \qquad (2)$$

где C_{kq}^+ , C_{kq} — операторы рождения, уничтожения возбуждений с квазиимпульсом (k, q), A(t) — величина вектора-потенциала электромагнитного поля, который имеет одну компоненту и направлен вдоль оси нанотрубки, E_0 — амплитуда внешнего постоянного поля, $E_q(\mathbf{k})$ — закон дисперсии возбуждений, определяемый из (1), c — скорость света в вакууме, t — время.

Запишем выражение для плотности тока *j*

$$j = e \sum_{kq} v_q (\mathbf{k} - \frac{e}{c} \mathbf{A}(t) - \mathbf{E}_0 t) \langle C_{kq}^+, C_{kq} \rangle, \qquad (3)$$

где $v_q(\mathbf{k}) = \partial E_q(\mathbf{k})/\partial \mathbf{k}$, е — заряд электрона, а скобки означают усреднение с неравновесной матрицей плотности $\rho(t)$: $\langle B \rangle = Sp(B(0)\rho(t))$.

Волновое уравнение можно записать в виде [11]

$$\frac{\partial^2 \mathbf{A}}{\partial x^2} - \frac{1}{c^2} \frac{\partial \mathbf{A}}{\partial t^2} + \frac{4\pi}{c} \mathbf{j} = 0.$$
 (4)

Учитывая, что $[C_{kq}^+C_{kq},H] = 0$, из уравнений движения для матрицы плотности сразу получаем, что $\langle C_{kq}^+, C_{kq} \rangle = \langle C_{kq}^+, C_{kq} \rangle_0$, где $\langle B \rangle = Sp(B(0)\rho(0))$, $\rho_0 = \exp(-H/k_{\rm B}T)/Sp(\exp(-H/k_{\rm B}T))$ ($k_{\rm B}$ — постоянная Больцмана, T — температура). Дисперсионный закон хиральных УНТ можно разложить в ряд Фурье

$$E_q(k) = \frac{1}{2\pi} \sum_{s} a_{sq} \cos(aks) + \sum_{s} b_{sq} \sin(aks),$$
$$a_{sq} = \int dk \cos(aks) E_q(k),$$
$$b_{sq} = \int dk \sin(aks) E_q(k).$$
(5)

Здесь интегрирование ведется по первой зоне Бриллюэна, *s* принадлежит множеству натуральных чисел. Скорость носителей заряда может быть посчитана как

$$v_q(k) = -\frac{1}{2\pi} \sum_{s} asa_{sq} \sin(aks) + \frac{1}{2\pi} \sum_{s} asb_{sq} \cos(aks).$$

Из формулы (3) при A = 0 следует важное тождество на коэффициенты, которое обязано происхождением наличию в правой части (4) полной производной:

$$\int_{0}^{d} v_{q}(k) \frac{\exp\left(-E_{q}(k)\right)}{\exp\left(-E_{q}(k)\right)+1} dk = \int_{0}^{d} \frac{dE_{q}(k)}{dk} F_{0}(E_{q}(k)) dk$$
$$= \int_{0}^{d} F_{0}(E_{q}(k)) dE_{q}(k) = 0, \tag{6}$$

где *d* соответствует импульсу на границе зоны Бриллюэна хиральной нанотрубки. Выражение для тока принимает следующий вид:

.

$$\begin{split} j_q(A) &= \frac{1}{2\pi} \int_0^d dk F_0(-E_q(k)) \\ &\times \left[\sum_s -asa_{sq} \sin \left(as(k - A - E_0 t) \right) \right] \\ &+ \sum_s asb_{sq} \cos \left(as(k - A - E_0 t) \right) \right] \\ &= \frac{1}{2\pi} \int_0^d F_0(E_q(k)) \sum_s \left[-asa_{sq} \sin(ask) \cos \left(as(A + E_0 t) \right) \right] \\ &- asa_{sq} \cos(ask) \left(-\sin \left(as(A + E_0 t) \right) \right) \\ &+ asb_{sq} \cos(ask) \cos \left(as(A + E_0 t) \right) \\ &+ asb_{sq} \sin(ask) \sin \left(as(A + E_0 t) \right) \\ &+ asb_{sq} \sin(as(A + E_0 t)) + \sum_s R_s^q \left(\cos \left(as(A + E_0 t) \right) - 1 \right) \\ &F_0 &= \frac{\exp\left(- E_q(k) \right)}{\exp\left(- E_q(k) \right) + 1}, \end{split}$$

$$B_s^q = \frac{1}{2\pi} \int_0^d dk F_0(E_q(k))$$

$$\times \left[asa_{sq} \cos(ask) + asb_{sq} \sin(ask) \right],$$

$$R_s^q = \frac{1}{2\pi} \int_0^d dk F_0(E_q(k))$$

$$\times \left[-asa_{sq} \sin(ask) + asb_{sq} \cos(ask) \right].$$

В этом случае получаем эффективное уравнение на вектор-потенциал

$$\frac{\partial^2 A}{\partial x^2} - \frac{I}{c^2} \frac{\partial^2 A}{\partial t^2} + \frac{4e}{c} \sum_{s=1}^{\infty} B_s \sin\left(\frac{ae(A+E_0t)}{c}s\right) - 2R_s \sin^2\left(\frac{ae(A+E_0t)}{c}s\right) = 0, B_s = \sum_q B_s^q, \qquad R_s = \sum_q R_s^q,$$
(7)

интегрирование ведется в пределах первой зоны Бриллюэна. Вследствие убывания (начиная с некоторого значения, которое определяется типом нанотрубки) коэффициентов B_s и R_s с ростом s в сумме в уравнении (7) можно ограничиться первыми несколькими слагаемыми и получить обобщение уравнения sine-Gordon (детали расчета и сами коэффициенты можно посмотреть в [12,13]). Другой метод получения уравнения sine-Gordon осуществляется с помощью многомасштабных разложений [14].

Численный анализ эффективного уравнения

Исследуемое уравнение решалось численно [15]. Шаги по времени и координате выбирались из стандартных условий устойчивости. Далее было рассмотрено начальное условие в виде предельно короткого импульса, состоящего из одного колебания поля нулевой площади:

$$A(0,t) = Qe^{-(ut/g)^2/\gamma}, \quad \frac{dA(0,t)}{dx} = \frac{2Qut}{g^2\gamma} e^{-(ut/g)^2/\gamma}, \quad (8)$$

где Q — амплитуда импульса, $\gamma^2 = 1/(1 - u^2/c^2)$, u — скорость импульса, g — ширина импульса, под которой понимается размер его пространственной локализации.

Зависимость предельно короткого импульса от величины внешнего поля представлена на рис. 1. Поскольку в хиральных нанотрубках нет аксиальной симметрии, представляется достаточно важным рассмотреть случай, когда внешнее поле направлено в противоположную сторону. Первоначально направление поля E_0 соответствует положительным значениям оси ординат.

Из приведенной зависимости видно, что при увеличении амплитуды внешнего поля наблюдается увеличение "хвоста" от основного импульса, причем амплитуда

Рис. 1. Зависимость электрического поля, определяемого потенциалом *A* в уравнении (7) от времени *t* для УНТ (12,2); случай (*A*): $a - E_0 = 0. \ b - E_0 = 0.5 \cdot 10^7 \text{ V/m}, \ c - E_0 = 5.0 \cdot 10^7 \text{ V/m}, \ случай \ (B): \ a - E_0 = 0.5 \cdot 10^7 \text{ V/m}, \ b - E_0 = -0.5 \cdot 10^7 \text{ V/m}, \ c - E_0 = 5.0 \cdot 10^7 \text{ V/m}, \ d - E_0 = -0.5 \cdot 10^7 \text{ V/m}, \ d$

Рис. 2. Зависимость электрического поля, определяемого потенциалом A в уравнении (7) от времени t в случае различных значений амплитуды импульса Q: (A) — с учетом внешнего поля с амплитудой $E_0 = 0.5 \cdot 10^7$ V/m; (B) — в отсутствие внешнего поля: для кривой (b) амплитуда импульса в 3 раза больше, чем для кривой (a), для кривой (c) в 5 раз больше, чем для (a) (отношение начальной скорости импульса к скорости света: u/c = 0.95). Ширина импульса $50 \cdot 10^{-13}$ s.

основного импульса остается неизменной при положительном знаке внешнего поля E_0 , что является свидетельством стабилизации импульса под действием внешнего постоянного поля. В случае же противоположной направленности внешнего поля имеет место возрастание по амплитуде хвоста, следующего за основным импульсом, а также изменение амплитуды самого основного импульса.

Зависимость электрического поля от первоначальной амплитуды импульса приведена на рис. 2.

Импульсы как малой, так и большой амплитуды в случае приложения внешнего поля распространяются практически без искажений, испытывая только "расширение" за счет дисперсии. Импульсы, распространяющиеся в УНТ без учета этого поля, испытывают большее искажение, обусловленное эффектами интерференции фронта импульса с его спадом и особенностями нелинейности. Исходя из этого, можно сделать вывод, что внешнее поле препятствует перераспределению энергии между основным импульсом и хвостом, т.е. способствует сохранению первоначального импульса без искажений.

Возникающее изменение формы импульса электромагнитного поля в зависимости от начальной скорости импульса представлено на рис. 3.

Подобное поведение неоднократно наблюдалось в ряде работ и может быть связано с лоренц-инвариант-

Рис. 3. Зависимость электрического поля, определяемого потенциалом A в уравнении (7) от времени t: случай (A) — с учетом внешнего поля с амплитудой $E_0 = 0.5 \cdot 10^7$ V/m; (B) — в отсутствие внешнего поля: a - u/c = 0.93; b - u/c = 0.95; c - u/c = 0.97. Амплитуда импульса Q = 3.0 V, ширина импульса $50 \cdot 10^{-13}$ s.

ностью уравнения (7) и с эффектом "сжатия" импульса при переходе в движущуюся систему координат.

Заключение

Из проведенного исследования можно сделать вывод, что учет внешнего постоянного электрического поля оказывает существенное влияние на процесс распространения и форму предельно коротких импульсов в хиральных нанотрубках. Имеет место стабилизация импульса, что важно для практических приложений при передаче сигналов.

Работа поддержана Российским фондом фундаментальных исследований (грант № 12-02-31654).

Список литературы

- Astakhova T.Yu., Gurin O.D., Menon M., Vinogradov G.A. // Phys. Rev. B. 2001. Vol. 64. P. 035 418.
- Maksimenko S.A., Slepyan G.Ya. Nanoelectromagnetics of low-dimentional structure. In "Handbook of nanotechnology. Nanometer structure: theory, modeling, and simulation". Bellingham: SPIE press, 2004. 145 p.
- [3] Конобеева Н.Н., Белоненко М.Б. // ФТТ. 2013. Т. 55. Вып. 10. С. 2008–2011.
- [4] Садыков Н.Р., Скоркин Н.А. // ФТП. 2012. Т. 46. С. 168.
- [5] Шполянский Ю.А. // Вестник молодых ученых. Сер. физ. 2000. Т. 1. С. 17–27.
- [6] Козлов С.А., Сазонов С.В. // ЖЭТФ. 1997. Т. 111. Вып. 2. С. 404–418.
- [7] Маныкин Э.А., Самарцев В.В. Оптическая эхо-спектроскопия. М.: Наука, 1984. 270 с.
- [8] Козлов С.А., Самарцев В.В. Основы фемтосекундной оптики. М.: Физматлит, 2009. 292 с.
- [9] Скалли М.О., Зубайри М.С. Квантовая оптика. М.: Физматлит, 2003. 511 с.

- [10] *Харрис П*. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. М.: Техносфера, 2003. 336 с.
- [11] Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1990. 432 с.
- [12] Белоненко М.Б., Демушкина Е.В., Лебедев Н.Г. // ФТТ. 2008. Т. 50. Вып. 2. С. 367–373.
- [13] Белоненко М.Б., Глазов С.Ю., Лебедев Н.Г., Мещерякова Н.Е. // ФТТ. 2009. Т. 51. Вып. 8. С. 1657–1662.
- [14] Leblond H., Mihalache D. // Phys. Rev. A. 2012. Vol. 86. P. 043 832.
- [15] Бахвалов Н.С. Численные методы (анализ, алгебра, обыкновенные дифференциальные уравнения). М.: Наука, 1975. 632 с.