03,04

Высокотемпературная теплоемкость YVO₄

© Л.Т. Денисова, Л.Г. Чумилина, В.М. Денисов

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия E-mail: antluba@mail.ru

(Поступила в Редакцию 19 мая 2014 г.)

Получены данные по молярной теплоемкости YVO₄ в зависимости от температуры (363–1000 K). По экспериментальным данным рассчитаны термодинамические свойства оксидного соединения. Получено обобщенное уравнение, описывающее влияние температуры на теплоемкость ортованадата иттрия в области 25–1000 K.

1. Введение

Монокристаллы ортованадата иттрия YVO₄, активированные ионами редких земель, в настоящее время используются в качестве активных сред лазеров с диодной накачкой [1-4]. На основе таких ванадатов, содержащих лазант-ионы Nd³⁺ и Yb³⁺, созданы само-ВКР-лазеры (ВКР — вынужденное комбинационное рассеяние), в которых кристаллы одновременно выполняют роль генератора стимулированного излучения (СИ) и $\gamma^{(3)}$ -нелинейного преобразователя возбужденного СИ в сдвинутое по частоте стоксовое лазерное излучение [5]. Трудность получения монокристаллов YVO₄ в первую очередь связана с высокой температурой плавления [6]. Это приводит к тому, что в качестве тиглей необходимо использовать иридий [1-4], который требует специальной атмосферы [2-4,7]. Все это может привести к образованию дефектов, вызванных термоактивационными процессами. Наличие таких дефектов может сказаться и на лазерных характеристиках полученных кристаллов. Для оптимизации условий синтеза ортованадатов редкоземельных металлов, уточнения фазовых равновесий методами термодинамики требуются сведения о термодинамических свойствах соответствующих ортованадатов. Для соединения YVO₄ теплоемкость и термодинамические свойства исследованы только в области температур 13-347 K [8].

Целью настоящей работы являются экспериментальное изучение высокотемпературной теплоемкости YVO₄ и определение по этим данным его термодинамических свойств.

2. Эксперимент

Учитывая высокую температуру плавления YVO_4 (2083 ± 25 K [6]) и низкую температуру плавления V_2O_5 (948 K [9]), а также возможность потери V_2O_5 при синтезе [10], соединение YVO_4 получали твердофазным методом. Предварительно исходные оксиды прокаливали на воздухе ($Y_2O_3 - 1073$ K, $V_2O_5 - 733$ K). Стехиометрическая смесь перетиралась в агатовой ступке, прессовалась в таблетки и отжигалась на воздухе при температуре 873 K в течение 15 h. Поскольку при этой температуре выход продукта реакции $Y_2O_3 + V_2O_5 = 2YVO_4$ не превышает 80% [10], операцию синтеза повторяли при температурах 993 и 923 К в течение того же времени. Затем отжиг проводился в интервале температур 973-1173 К с шагом 100 К в течение 10 h при каждой температуре. Окончательный отжиг проводился при $T = 1273 \,\mathrm{K}$ в течение 20 h с перетиранием через 10 h. В промежутках прокаленные образцы каждый раз перетирались и прессовались. Контроль полученных образцов проводился с использованием рентгенофазового анализа на приборе X'Pert Pro MPD (PANalytical, Huдерланды) на излучении CuK_{α} . Регистрация выполнялась высокоскоростным детектором PIXcel с графитовым монохроматором в интервале углов 10-130° с шагом 0.013°. Полученные данные показаны на рис. 1. Параметры решетки определены путем полнопрофильного уточнения методом минимизации производной разности [11]. Эти значения для YVO₄ в сравнении с результатами других авторов приведены в табл. 1.

Можно заключить, что параметры решетки синтезированного YVO₄ (пр. гр. $I4_1/amd$, V = 318.811(7) Å³) хорошо согласуются с имеющимися данными.

Молярная теплоемкость C_p измерялась в платиновых тиглях методом дифференциальной сканирующей калориметрии на приборе STA 449 C Jupiter (NETZSCH). Методика измерений подобна описанной нами ранее [14].

3. Результаты и их обсуждение

Влияние температуры на теплоемкость YVO₄ показано на рис. 2. Из этих данных следует, что с ростом

Таблица	 Параме 	гры элемента	рной	ячейки	YVO ₄
---------	----------------------------	--------------	------	--------	------------------

<i>a</i> , Å	<i>c</i> , Å	Лит. ссылка
7.119	6.290	[2]
7.12	6.29	[3]
7.118	6.203	[8]
7.114	6.258	[12]
7.116	6.289	[13]
7.11939(7)	6.28996(4)	Наши данные

Рис. 1. Дифрактограмма YVO4 при комнатной температуре.

Рис. 2. Температурная зависимость теплоемкости YVO₄. *1* — экспериментальные данные, *2* — аппроксимирующая кривая, *3* — расчет по модели Дебая.

температуры значения молярной теплоемкости ортованадата иттрия закономерно увеличиваются, а на зависимости $C_p = f(T)$ аномалий в измеренном интервале температур не наблюдается. Полученная зависимость теплоемкости YVO₄ от температуры может быть описана уравнением Майера–Келли [15]

$$C_p = a + bT + cT^{-2},$$
 (1)

которое в единицах $J/(mol \cdot K)$ имеет следующий вид:

$$C_p = 130.59 + 25.6 \cdot 10^{-3} \,\mathrm{T} - 22.08 \cdot 10^5 \,\mathrm{T}^{-2}.$$
 (2)

Коэффициент корреляции для уравнения (2) равен r = 0.9989. Максимальное отклонение экспериментальных точек от аппроксимирующей кривой при T > 850 К составляет 0.6%.

С использованием соотношения (2) по известным термодинамическим уравнениям определены изменения

энтальпии $H^0(T) - H^0$ (363 K) и энтропии $S^0(T) - S^0$ (363 K). Результаты расчетов приведены в табл. 2.

Заметим, что при температурах выше 840 К значения C_p , полученные нами, превышают классический предел Дюлонга-Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице YVO₄ (s = 6).

По экспериментальным значениям C_p для YVO₄ нами определена температура Дебая, которая оказалась равной 728 К. Используя найденное нами значение характеристической температуры Дебая Θ_D и таблицы функций Дебая (Θ_D/T [16]), мы рассчитали C_p . Полученные данные показывают, что при температурах выше 650 К имеется разница между экспериментальными и рассчитанными значениями C_p (рис. 2), причем с ростом температуры это различие увеличивается. Отметим, что в модели Дебая рассчитывают C_V , а не C_p . Существует много уравнений, позволяющих найти разность C_p-C_V [16,17]. Тем не менее для того чтобы ими воспользоваться, требуются дополнительные сведения. Так, например, для расчета C_V на основе экспериментальных данных C_p по уравнению [17]

$$C_p = C_V (1 + G\beta T) \tag{3}$$

необходимы сведения для постоянной Грюнайзена Gи коэффициента объемного расширения β . Для YVO₄ такие данные нами не найдены. Рассчитать C_V по известным значениям C_p при любой температуре можно по приближенной формуле Нернста–Линдемана [16]

$$C_p - C_V = 0.0214 \frac{T}{T_m} C_p^2.$$
 (4)

С использованием значения температуры плавления T_m YVO₄ [6], равного 2083 ± 25 K, по уравнению (4) были найдены величины C_V в исследованном интервале температур. Установлено, что значения C_V при росте температуры до 1000 K увеличиваются до предела Дюлонга–Пти, не превышая его при этом.

Таблица 2. Сглаженные величины теплоемкости и рассчитанные по ним термодинамические свойства YVO₄

<i>Т</i> , К	$C_p, $ J/(mol · K)	$H^{0}(T) - H^{0}$ (363 K), kJ/mol	$S^{0}(T) - S^{0}$ (363 K), J/(mol · K)
363	123.1	_	_
400	127.0	4.630	12.14
450	131.2	11.09	27.36
500	134.6	17.74	41.36
550	137.4	24.54	54.32
600	139.8	31.47	66.38
650	142.0	38.51	77.66
700	144.0	45.66	88.26
750	145.9	52.91	98.25
800	147.6	60.25	107.7
850	149.3	67.67	116.7
900	150.9	75.18	125.3
950	152.5	82.76	133.5
1000	154.0	90.42	141.4

Рис. 3. Зависимость теплоемкости YVO₄ от температуры. *1* — наши данные, *2* — данные [8].

На рис. 3 приведены данные по теплоемкости YVO₄, полученные нами (363–1000 K) и авторами работы [8] (13–347 K). Видно, что имеется хорошее согласие этих результатов. Установлено, что в области температур 25–1000 K полученные зависимости $C_p = f(T)$ могут быть описаны одним общим уравнением [18]

$$C_p = k_0 + k \ln T + k_1 T^{-1} + k_2 T^{-2} + k_3 T^{-3}, \quad (5)$$

имеющим для указанного интервала температур следующий вид:

$$C_p = 64.39 + 14.72 \ln T - 12.07 \cdot 10^3 T^{-1} + 431.34 \cdot 10^3 T^{-2} + 497.24 \cdot 10^4 T^{-3}.$$
(6)

Можно отметить, что другие известные уравнения для описания температурной зависимости теплоемкости [19] хуже описывают общие данные по теплоемкости YVO₄, чем уравнение (5).

4. Заключение

Исследована температурная зависимость теплоемкости YVO₄. Установлено, что модель Дебая не описывает экспериментальные данные по C_p во всем исследованном интервале температур. Обобщены имеющиеся данные по теплоемкости YVO₄ и получено уравнение, описывающее зависимость $C_p = f(T)$ в области температур 25–1000 К.

Список литературы

- Ю.К. Воронько, А.А. Соболь, В.Е. Шукшин, А.И. Загуменный, Ю.Д. Заварцев, С.А. Кутовой. ФТТ 51, 9, 1776 (2009).
- [2] X. Meng, L. Zhu, H. Zhang, C. Wang, Y.T. Chow, M. Lu. J. Cryst. Growth 200, 199 (1990).

- [3] J. Chen, F. Guo, N. Zhuang, J. Lan, X. Hu, S. Gao. J. Cryst. Growth 243, 450 (2002).
- [4] D. Zhong, B. Teng, J. Li, S. Zhang, B. Zhang, C. Wang. X. Tian, J. Liu. J. Cryst. Growth **358**, 16 (2012).
- [5] А.А. Каминский. ДАН **450**, *3*, 279 (2013).
- [6] E.M. Levin. J. Am. Ceram. Soc. 50, 7, 381 (1967).
- [7] П.А. Арсеньев, Л.М. Ковба, Х.С. Багдасаров, Б.Ф. Джуринский, А.В. Потемкин, Б.И. Покровский, Ф.М. Спиридонов, В.А. Антонов, В.В. Илюхин. Соединения редкоземельных элементов. Системы с оксидами элементов І–ІІІ групп. Наука, М. (1983). 280 с.
- [8] К.С. Гавричев, М.А. Рюмин, А.В. Тюрин, В.М. Гуревич, Л.Н. Комиссарова. ЖНХ 55, 12, 2049 (2010).
- [9] Н.А. Торопов, В.П. Барзаковский, В.В. Лапин, Н.Н. Кудрявцева. Диаграммы состояния силикатных систем. Справочник. В. 1. Двойные системы. Наука, Л. (1969). 822 с.
- [10] Х.С. Багдасаров. Е.И. Гетьман, Н.И. Михайличенко, И.В. Мохосоева, М.В. Мохосоев, В.И. Попов. Изв. АН СССР. Неорган. материалы 5, 9, 1581 (1969).
- [11] L.A. Solovyov. J. Appl. Cryst. 37, 743 (2004).
- [12] В.А. Наумов. ЖСХ 3, 5, 608 (1962).
- [13] C.-H. Huang, J.-C. Chen. J. Cryst. Growth 229, 184 (2001).
- [14] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, *7*, 1274 (2010).
- [15] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 8, 3243 (1932).
- [16] С.М. Скуратов, В.П. Колесов, В.Ф. Воробьев. Термохимия.
 Ч. II. Изд-во МГУ, М. (1966). 434 с.
- [17] Л.А. Резницкий. Калориметрия твердого тела. Изд-во МГУ, М. (1981). 184 с.
- [18] P. Richet, G. Fiquet. J. Geophys. Res. 96, 445 (1991).
- [19] К.В. Чудненко. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Гео, Новосибирск (2010). 287 с.