Электронографические исследования образования фаз TI—Fe—Se и кинетики фазовых превращений пленок TIFeSe₂

© Э.Б. Аскеров*+¶, А.И. Мададзада*♦, Д.И. Исмаилов♦, Р.Н. Мехтиева+

* Объединенный институт ядерных исследований,

+ Институт радиационных проблем Национальной академии наук Азербайджана,

Az-1143 Баку, Азербайджан

 Институт физики им. Г.М. Абдуллаева Национальной академии наук Азербайджана, Az-1143 Баку, Азербайджан

(Получена 18 марта 2014 г. Принята к печати 28 марта 2014 г.)

Методом электронографического структурного анализа и кинематической электронографией исследованы условия образования фаз в системе TI–Fe–Se и кинетика кристаллизации аморфных пленок TIFeSe₂. Показано, что кристаллизация аморфных пленок TIFeSe₂ описывается аналитическим выражением кинетических кривых фазовых превращений $V_t = V_0[1 - \exp(kt^m)]$. Определены мерность роста при кристаллизации аморфных пленок TIFeSe₂, равная 3, и значения энергии активации зародышеобразования и роста кристалликов.

1. Введение

В диаграмме фазовых равновесий системы Tl—Fe—Se, составленной в [1,2], установлено существование тройного соединения состава TlFeSe₂, принадлежащее к группе полупроводниковых соединений, обладающих магнитными свойствами. Данное соединение кристаллизуется в цепочечной структуре и характеризуется сильно анизотропными взаимодействиями между как одноименными, так и разноименными атомами. Поскольку магнитное свойство TlFeSe₂ определяется в основном взаимодействием между ионами Fe, занимающими тетраэдрические положения, соединенные в линейные цепочки, их следует рассматривать в виде квазиодномерной магнитной системы. Квазиодномерность спиновых систем при этом обусловливается самой кристаллической структурой TlFeSe₂.

В литературе имеются сведения о кристаллических особенностях [3] и приводятся результаты исследований физических свойств [4], а также температурной зависимости электропроводности монокристаллов TlFeSe₂ [5]. Сведения о процессах фазообразования в пленочном состоянии и фазовых превращений в тонких пленках системы Tl–Fe–Se отсутствуют.

Цель данной работы заключается в установлении закономерности образования фаз при взаимодействии тонких пленок, полученных путем испарения Tl, Fe, Se, и изучении влияния последующей термообработки в вакууме на полученные соединения. При этом существенно важным кажется установление кинетических параметров фазовых превращений в пленках TlFeSe₂, поскольку в литературе соответствующие данные полностью отсутствуют.

2. Экспериментальная часть

Образцы, пригодные для электронографических исследований, изготавливались испарением Tl, Fe и Se высокой чистоты на кристаллы NaCl, находящиеся при комнатной температуре.

Исследования по фазообразованию проводились в два этапа: при одновременном испарении компонентов системы T1-Fe-Se и при послойном их осаждении. Для получения пленок данной системы нами создавалось тройное поле компонентов по методу получения образцов переменного состава [6,7], с тем чтобы можно было исследовать всю систему сплавов, а не отдельные соединения. Процесс формирования пленок системы изучался электронографированием на прохождение образцов, образующихся на плоскости конденсации вследствие испарения таллия, железа и селена. Для испарения веществ применялись нагреватели в виде конусообразных спиральных корзиночек из вольфрамовой проволоки диаметром 0.15 мм. Источники испарения таллия и железа располагались на высоте 70 мм над подложками и находились в 140 мм друг от друга. Третий источник, из которого производилось испарение селена, находился посередине плоскости конденсации между источниками Tl и Fe на высоте 75 мм. Степень вакуума $\sim 10^{-4}$ Па, расчетная толщина пленок ~ 30 нм. Расположение источников испарения в таком порядке относительно подложек приводило к получению систем сплавов, содержащих в себе от 0 до 100% таллия (железа) и от 100% селена в центре до 0% в крайних областях коллектора.

3. Экспериментальные результаты

Одновременное испарение химических элементов Tl, Fe и Se приводит к образованию на плоскости конденсации двух аморфных фаз и одной кристаллической фазы в области преимущественного содержания железа. Кристаллизация аморфной фазы с значениями $S = 4\pi \sin \theta / \lambda = 20.15$, 30.39, 40.29, 50.21 нм⁻¹, образующаяся в непосредственной близости от источника таллия, приводила к формированию поликристаллического TlSe с периодами известной тетрагональной ре-

¹⁴¹⁹⁸⁰ Дубна, Россия

[¶] E-mail: elmar@jinr.ru

Рис. 1. Кинематическая электронограмма, показывающая кристаллизацию TIFeSe₂ при 453 К.

шетки a = 0.802, c = 0.700 нм, пространственная группа 14 мсм [8].

Дифракционная картина аморфной фазы полностью совпадает с таковой для аморфного TlSe, полученного испарением синтезированного соединения в вакууме [9]. Вторая аморфная фаза с значениями $S = 4\pi \sin \theta / \lambda = 17.02, 29.09, 44.50$ нм⁻¹, наблюдаемая в более богатой селеном области коллектора, кристаллизуется при температуре 453 К. Термообработка пленок при 463 К и выше не представляется возможной, так как тонкие слои в этом случае начинают механически разрушаться. Процесс термообработки пленок сопровождался переходом аморфной фазы в поликристаллическую (рис. 1). Кристаллические линии, наблюдаемые на кинематической электронограмме, индицируются на основе структурных характеристик моноклинного TlFeSe2 с периодами a = 1.197, b = 0.549, c = 0.713 нм, $\beta = 118.2^{\circ}$, ПГС $C2/M - C_{2h}^{3}[10]$. Идентификацию образующейся кристаллической фазы проводили сравнением экспериментально наблюдаемых d_{hkl} с расчетными соответствующим законом погасания дифракционных отражений. Электронограммы поликристаллических пленок, образующиеся непосредственно под источником Fe, индицируются на основе ромбической решетки с параметрами a = 0.479, b = 0.578, c = 0.358 нм, пространственная группа Pnm. Сравнение электронограммы с данными, приводимыми в [11], позволило нам отнести кристаллическую фазу к составу FeSe₂.

Характер взаимодействия при последовательном осаждении компонентов не отличается от рассмотренного выше одновременного осаждения. Последовательность осаждаемых пленок не влияет на образование фаз. Следует отметить однако, что область, занимаемая кристаллической фазой FeSe₂, в случае послойного осаждения Tl, Fe, Se значительно шире, чем в случае одновременного осаждения.

Для изучения кинетики кристаллизации аморфных пленок TlFeSe₂ были получены изотермические кинематические электронограммы, фиксирующие фазовые превращения при 423, 438 и 453 К. Оценены интенсивности дифракционных линий (202), (222), (314), не перекрывающихся с линиями аморфной фазы и близлежащими рефлексами кристаллического TlFeSe2, что могло бы внести ошибки в измерениях интенсивностей. Путем нормировки осуществлен переход от значений интенсивности к количеству закристаллизовавшегося TlFeSe₂ в зависимости от времени термообработки пленок. При этом максимальное значение интенсивности дифракционного отражения сопоставлялось с полностью закристаллизованным объемом вещества и определялся объем, приходящийся на единицу интенсивности. Это позволяло найти значения объема закристаллизовавшейся части вещества в зависимости от продолжительности времени отжига.

Значения объема закристаллизовавшегося TIFeSe₂ в данный момент времени V_t , определенные по указанным выше рефлексам, оказались почти одинаковыми в пределах разницы ~ 3%. Кинетические кривые кристаллизации аморфного TIFeSe₂ для 423, 438 и 463 К приведены на рис. 2. Сопоставление этих изотерм с аналитическим выражением Аврами–Колмогорова, установленным для

Рис. 2. Кинетические кривые кристаллизации аморфного TIFeSe₂.

кинетических кривых фазовых превращений,

$$V_t = V_0[1 - \exp(kt^m)],$$

показало, что лучшее совпадение имеет место при m = 4. Здесь V_0 — объем аморфной фазы в начале процесса кристаллизации, $k = 0.8\omega_3(\kappa_3 c)$, где ω_3 — скорость возникновения зародышей новой фазы в единице не превращенного объема; c — линейная скорость роста кристалликов; κ_3 — коэффициент формы. Значение m = 4, полученное из наших расчетов, указывает на то, что в случае кристаллизации аморфного TIFeSe₂ происходит трехмерный рост кристалликов. Учитывая, что ω_3 и c подчиняются уравнениям Аррениуса, получим

$$\ln k = A - \frac{1}{RT}(E_z + 3E_p),$$

где E_z — энергия активации зародышеобразования, E_p — энергия активации роста кристалликов. Значения $\ln k$, полученные из кинетических кривых кристаллизации для 423, 438 и 463 К, равны 14.5, 12.0 и 10.3 соответственно. Зависимость $\ln k$ от обратной температуры для TIFeSe₂ оказалась линейной. Значение суммы $E_z + 3E_p$, определенное по наклону кривой зависимости $\ln k$ от 1/T, равно 133.7 ккал/моль. Значение энергии активации зародышеобразования E_z , определенное по температурь ной зависимости $\ln k$ от 1/T, равно 133.7 ккал/моль. Значение энергии активации зародышеобразования E_z , определенное по экспериментально наблюдаемому времени начала кристаллизации, а именно по температурной зависимости $\ln(1/\tau_0)$ (τ_0 — инкубационное время), оказалось равным 25.4 ккал/моль. Значение энергии активации роста, установленное из соотношения $e_p = E_{vol} - E_z/3 = 36$ ккал/моль.

4. Заключение

1. При одновременном и последовательном осаждении Tl, Fe и Se на подложках получены следующие фазы в аморфном или кристаллическом состояниях: TlSe (аморфное), TlFeSe₂ (аморфное), FeSe₂ (кристаллическое). Аморфные пленки кристаллизуются в интервале температур 423-453 = K. Аморфные пленки TlSe и TlFeSe₂ кристаллизуются в тетрагональной и моноклинной решетках соответственно.

2. Установлены кинетические параметры кристаллизации TIFeSe₂: мерность роста кристалликов, значения энергий активаций зародышеобразования и дальнейшего их роста. Кинетика кристаллизации аморфных пленок TIFeSe₂ подчиняется закономерностям, установленным Аврами-Колмогоровым. При кристаллизации тонких аморфных слоев происходит трехмерный рост кристалликов.

Список литературы

- [1] M. Zabel, K.J. Range. Z. Naturforsch, **34** (1), 1 (1979).
- [2] Г.И. Маковецкий, Е.И. Касинский. Неорг. матер., **20** (10), 1752 (1984).

- [3] A. Kutoglu. Naturwissenschaften B, 61 (3), 125 (1974).
- [4] P.S. Nayor, I.K. Verma, B.D. Nag. Progr. Nucl. Phys. and Sol. St. Phys. Sympos. (Kapur, 1967) p. 64.
- [5] С.Н. Мустафаева, Э.М. Керимова, А.И. Джаббарлы. ФТТ, 42 (12), 2132 (2000).
- [6] Д.И. Исмаилов. Автореф. докт. дис. (Баку, Ин-т физики НАН Азербайджана, 2007).
- [7] Э.Б. Аскеров, Р.Н. Мехтиева, А.И. Мададзада, Д.И. Исмаилов, А.И. Бескровный. Сб. тез. XLVIII Школа ФГБУ "ПИЯФ" по физике конденсированного состояния. ФКС-2014: 10–15 марта 2014 г., Россия, СПб.
- [8] H. Hahn, W. Klingler. Zeitsch. Anorg. Chem., Bd. 260, H 1-3, 110 (1949).
- [9] Ф.И. Алиев, Л.И. Татаринова. Кристаллография, 11 (3), 389 (1966).
- [10] D. Weiz, P. Deppe, W. Schaefer et all. J. Phys. Chem. Sol., 50, 297 (1989).
- [11] J. Cai, I. Goliney, M.R. Philpott. J. Phys.: Condens. Matter, 18, 9151 (2006).

Редактор Т.А. Полянская

Electron diffraction study of the phase formation of TI-Fe-Se and kinetics of phase transformations of films TiFeSe₂

E.B. Asgerov^{*+}, A.I. Madadzada^{*}, D.I. Ismayilov[♦], R.N. Mehdiyeva⁺

* Joint Institute for Nuclear Research,
141980 Dubna, Russia
+ Institute of Radiation Problems of Azerbaijan National Academy of Scienses,
Az-370143 Baku, Azerbaijan
* Institute of Physics named after Academician H.M. Abdullayev of Azerbaijan National Academy of Scienses,
Az-1143 Baku, Azerbaijan

Abstract Phase formation conditions in Tl–Fe–Se and the crystallization kinetics of amorphous films TlFeSe₂ have been investigated by the electron diffraction structure analysis and kinematic electronography. It is shown that the crystallization of amorphous films TlFeSe₂ is described by the analytical expressions for the kinetic curves of phase transformation $V_t = V_0[1 - \exp(kt^m)]$. Dimension of growth during the crystallization of amorphous films TlFeSe₂ (is equal to three) and the activation energy for nucleation and for growth gave been determined.