07,01

Термоактивационная стадия откольного разрушения алюминия в субнаносекундном диапазоне времен нагружения

© А.М. Молодец

Институт проблем химической физики РАН, Черноголовка, Россия E-mail: molodets@icp.ac.ru

(Поступила в Редакцию 21 апреля 2014 г.)

Обобщены современные экспериментальные данные по температурно-временной зависимости откольной прочности алюминия. Эти данные соотнесены с измерениями долговечности алюминия и истолкованы в рамках кинетической концепции прочности твердых тел. Представлена температурно-временная зависимость прочности алюминия в диапазоне времен $10^5 - 10^{-11}$ s.

Работа выполнена при поддержке программы Президиума РАН "Вещество при высоких плотностях энергии".

1. Введение

Как хорошо известно, реальная прочность твердых тел на порядки меньше их теоретической прочности. Поиски ответов на вопросы, почему такое несоответствие имеет место и что нужно сделать, чтобы реальная прочность приблизилась к теоретической являются центральными задачами физики разрушения. В этом отношении особый интерес представляет изучение процесса откольного разрушения, развивающегося во время взаимодействия сильных волн напряжения в твердых телах. Дело в том, что при отколе максимальное растягивающее напряжение (откольная прочность) в разы превышает реальную прочность материалов, а времена нагружения составляют меньше долей микросекунды. В последнее время в ряде работ были экспериментально измерены рекордно высокие значения откольной прочности, в частности для алюминия [1] в субнаносекундном диапазоне времен нагружения. Кроме этого, давно ведущиеся экспериментальные исследования температурной зависимости откольной прочности металлов в микросекундном диапазоне (см., например, [2-4]) сейчас продвигаются в субмикросекундную область (см. [5]). В [6] получена экспериментальная температурная зависимость откольной прочности алюминия в микросекундном диапазоне. Таким образом, в современной научной литературе имеются экспериментальные данные не только по временной, но и по температурной зависимости прочности, приближающейся к теоретической. В этой связи цель данной работы заключалась в интерпретации современных экспериментальных данных по температурно-временной зависимости откольной прочности алюминия в субнаносекундном диапазоне на основе кинетической концепции прочности твердых тел [7] в рамках термоактивационной модели откола [8].

2. Температурно-временная зависимость откольной прочности

В [8] показано, что температурно-временная зависимость откольной прочности железа может быть количественно и качественно истолкована с позиции кинетической концепции прочности. При этом соотношение между временем τ термоактивационной стадии откола (время стадии зарождения несплошностей при отколе), температурой T и откольной прочностью σ выражается аналогом соотношения Журкова

$$\sigma(\tau, T) = \frac{\sigma_{\text{Th}}}{q} \left(1 - T \frac{R}{U_0} \ln \frac{\tau}{\tau_0} \right), \qquad (1)$$

где $\sigma_{\rm Th}$ — теоретическая прочность, R — универсальная газовая постоянная, τ_0 — время, близкое к обратной дебаевской частоте, $U_0 = {\rm const}$ — начальный барьер элементарного акта разрушения, $q = q(\tau)$ — зависящий от τ коэффициент перенапряжения, определяемый эмпирическим соотношением

$$q = 1 + \kappa_0 \left\{ 1 - \exp\left[-\frac{1}{\alpha} \left(\frac{\tau}{\theta_0} \right)^{\alpha} \right] \right\}.$$
 (2)

График $q = q(\tau)$ (2) представляет собой несимметричную размытую ступеньку с характерным временем $\theta \sim \alpha^{1/\alpha} \theta_0$. В (2) α , θ_0 и κ_0 — подгоночные коэффициенты. Случай $\tau \ll \theta$ соответствует q = 1, то есть отсутствию перенапряжений и мгновенному разрушению при максимально возможной прочности, приближающейся к σ_{Th} . Противоположный случай $\tau \gg \theta$ соответствует $q = \text{const} = \kappa_0 + 1$, то есть температурно-временной зависимости прочности при больших временах квазистатического нагружения, когда локальные напряжения $\sigma_L = q\sigma$ успевают достичь максимальной величины. Для учета этой ситуации величина третьего подгоночного коэффициента κ_0 в (2) заранее определяется так, чтобы при $\tau \gg \theta$ функция (2) адекватно характеризовала долговечность материала при квазистатическом

 $(\tau > 10^{-3} \, {
m s})$ разрушении, что выполняется при

$$\kappa_0 = \frac{\gamma \sigma_{\rm Th}}{U_0} - 1, \qquad (3)$$

где γ и U_0 те же, что и в соотношении Журкова.

Таким образом, соотношение (2) содержит параметры γ , U_0 , характеризующие прочность при больших временах и два подгоночных параметра α , и θ_0 , призванных характеризовать разрушение при малых временах разрушения.

После того, как коэффициенты α , и θ_0 определены, соотношение (1) вместе с параметрами соотношения Журкова τ_0 , U_0 , γ позволяет в явном виде представить зависимости откольной прочности от времени τ при постоянной температуре $T_i = \text{const}$, т. е. изотермы $\sigma_T = \sigma(\tau, T_i)$ в виде

$$\sigma_T = \frac{\sigma_{\rm Th}}{q(\tau)} \left(1 - T_i \frac{R}{U_0} \ln(\tau/\tau_0) \right). \tag{4}$$

Очевидно, что полное соотношение (1) задает также температурные зависимости откольной прочности $\sigma_{\tau} = \sigma(\tau_i, T)$ при постоянном времени τ_i = const. При этом прогнозируется, что в координатах { $\sigma_{\tau} - T$ } температурные зависимости откольной прочности $\sigma_{\tau} = \sigma(\tau_i, T)$ представляют собой прямые линии

$$\sigma_{\tau} = \sigma_0 + \eta T \tag{5}$$

где коэффициенты σ_0 и η не зависят явно от температуры и являются функциями только времени τ_i

$$\sigma_0 = \frac{\sigma_{\rm Th}}{q(\tau_i)},\tag{6}$$

$$\eta = -\left(\frac{\sigma_{\rm Th}}{q(\tau_i)}\frac{R}{U_0}\right)\ln(\tau_i/\tau_0). \tag{7}$$

Соотношения (4) и (5) можно сопоставить с откольными экспериментами и тем самым оценить адекватность описания термоактивационной стадии откольного разрушения того или иного материала. В следующем разделе соотношения (4) и (5) сопоставлены с экспериментами для алюминия в диапазоне времен нагружения $10^{-11}-10^5$ s.

3. Нахождение параметров модели по экспериментальным данным

Согласно [8], параметры α и θ_0 могут быть оценены, если известна экспериментальная зависимость растягивающих напряжений от времени при отколе. Способ реконструкции зависимости растягивающих напряжений σ от времени t при отколе $\sigma(t)$ (профиля $\sigma(t)$) в сечении откола (плоскости в образце, отстоящей от его свободной поверхности на величину δ) был предложен в [9]. Согласно приближению [9], профиль $\sigma(t)$ можно построить, если известны профиль W(t) скорости свободной поверхности разрушающегося образца и время Δt реверберации откольного импульса в откольной

Рис. 1. Реконструкция зависимости растягивающих напряжений σ от времени t при отколе — профиля $\sigma(t)$ в сечении откола согласно [9] и подразделение процесса откольного разрушения на две стадии согласно [8] (пояснения приведены в тексте).

пластине толщиной δ . В этом случае значение действовавших в сечении откола растягивающих напряжений рассчитывается по формуле

$$\sigma(t) = 0.5\rho C\Delta W(t), \tag{8}$$

где ρ и C — плотность материала образца и скорость звука в нем, а $\Delta W(t)$ — положительная часть разности ординат профиля W(t) (см. профиль I на рис. 1, a) и этого же профиля, но смещенного относительно первого на отрезок $\Delta t = 2\delta/C$ (см. пунктирный профиль 2 на рис. 1, a).

В качестве иллюстрации соотношения (8) на рис. 1 приведен пример расчета с использованием одного из профилей W(t), скопированного с рис. 2 из [1]. На этом рисунке момент времени t_0 соответствует моменту появления растягивающих напряжений в плоскости откола. На рис. 1, *а* затемненной областью показан профиль $\Delta W(t)$. На рис. 1, *b* затемненной областью показан профиль $\sigma(t) = 0.5\rho C \Delta W(t)$.

Согласно [8], стадия зарождения несплошностей при отколе (Stage I, см. рис. 1) протекает с момента появления растягивающего напряжения t_0 и длится в течение времени τ до момента достижения растягивающими напряжениями максимального значения $\sigma(\tau)$ (см. рис. 1, *b*). Величина $\sigma(\tau)$ является откольной прочностью в общепринятом смысле и вычисляется в первом приближении как $\sigma(\tau) = 0.5\rho C\Delta W(\tau)$.

Заштрихованная область на рис. 1 соответствует второй стадии откола — стадии роста и объединения несплошностей (Stage II, см. рис. 1), которая развивается после достижения $\sigma(\tau)$ и сопровождается релаксацией растягивающих напряжений до нуля в момент отделения откольной пластины.

Рис. 2. Температурно-временная зависимость прочности алюминия в диапазоне времен нагружения $10^6 - 10^{-11}$ s. *1, 2, 3* откольная прочность алюминия при начальной температуре $T_0 \sim 300$ K: *1* — данные [1], *2* — данные [10], *3* — данные [6], *4* — расчетный "веер" температурно-временной зависимости прочности алюминия (1) с коэффициентами из табл. 1 (цифры указывают температуру, постоянную для каждой кривой). *5* — оценка теоретической прочности алюминия по формуле (19). Точки — долговечность алюминия (данные [7,11]).

Зависимость откольной прочности $\sigma(\tau)$ от времени τ при различных температурах $T(\tau)$ разрушающегося материала представляет собой температурно-временную зависимость откольной прочности $\sigma(\tau, T)$. На рис. 2 представлены данные по временной зависимости откольной прочности алюминия $\sigma(\tau, T_0)$ при начальной температуре $T_0 \sim 300$ К из [1,6,10]. При этом в качестве величины откольной прочности взяты значения из цитируемых работ, а время τ рассчитано по экспериментальным профилям из этих работ так, как это проиллюстрировано на рис. 1, *a*.

Таблица 1. Параметры функционального соотношения для температурно-временной зависимости прочности алюминия

α	$\lg(\theta_0, s)$	κ ₀	$lg(\tau_0, s)$	U ₀ kJ/mol	$\frac{\gamma}{\text{cm}^3/\text{mol}}$	$\sigma_{ m Th},$ GPa
0.48	-4.2	173.3	-14.0	226.044	2637.18	14.94

На рис. 2 представлены также квазистатические данные [11] по долговечности монокристаллического алюминия, представленные в [7], а также значение теоретической прочности алюминия $\sigma_{\rm Th} = 14.94$ GPa (см. раздел 5). Вариацией подгоночных коэффициентов α и θ_0 была найдена оптимальная температурно-временная зависимость прочности алюминия (1) в диапазоне времен $10^5 - 10^{-11}$ s, охватывающем откольные [1,6,10] и квазистатические [7,11] экспериментальные данные. Полученные значения α , θ_0 , k_0 , а также используемые для алюминия величины $\lg \tau_0$, U_0 , γ из [7] приведены в табл. 1.

4. Обсуждение результатов

Как следует из структуры формулы (1), "веер" графиков $\sigma(\tau, T_0)$ при различных T_0 центрирован относительно точки (σ_{Th}, τ_0) и имеет точки перегиба в области между θ_0 и τ_0 . Благодаря этому соотношение (1) с найденными коэффициентами единообразно аппроксимирует экспериментальные данные по температурновременной зависимости прочности алюминия как при больших ($10^5 - 10^0$ s), так и при малых ($10^{-7} - 10^{-11}$ s) временах разрушения.

Действительно, на рис. 2 показана температурновременная зависимость прочности алюминия (1) в квазистатической области при $\sigma \sim 0.5$ GPa. Видно, что соотношение (1) в пределах погрешностей согласуется с откольными экспериментами [1,6,10] и температурновременной зависимостью прочности монокристаллического алюминия [7] в диапазоне температур 300–600 К.

Как отмечалось выше, согласно (1) в полулогарифмических координатах температурная зависимость прочности представляет собой прямую линию с наклоном η , зависящим от τ в соответствии с (7). Для алюминия график $\eta = \eta(\lg \tau)$ представлен на рис. З. Видно, что этот график предсказывает существенные изменения температурной зависимости прочности алюминия в диапазоне времен $\tau \sim 10^{-4} - 10^{-12}$ s.

В области откольных экспериментов [1,6,10], показанной штриховкой на рис. 3, абсолютная величина наклона достигает максимума $|\eta_{max}|$ вблизи данных [1]. В области $\tau \sim 10^{-7}$ s величина наклона согласуется как в качественном, так и в количественном отношении с экспериментальной температурной зависимостью откольной прочности алюминия из [6]. Действительно, на рис. 4 прямой *1* показан график прямой (5) с наклоном η и величиной σ_0 , рассчитанными по (6) и (7), при значении

зависимости прочности (5) алюминия.

Рис. 4. Температурная зависимость откольной прочности алюминия. *1* — график (5); *2, 3, 4* — изменение температуры в сечении откола при начальных температурах 800, 900 и 932 К в условиях, близких к условиям нагружения [6]. Точки — эксперимент [6]. Стрелки слева направо — процесс ударного сжатия. Стрелки справа налево — процесс разгрузки и растяжения. *5* — кривая плавления алюминия из [12]. Ромб — температура плавления алюминия при атмосферном давлении. Квадрат — точка пересечения экстраполированной кривой плавления *5* с *1*.

 $\tau \sim 25$ ns, характерном для первой стадии откола в [6]. На рис. 4 прямая *1* ограничена точкой ее пересечения с экстраполированной кривой плавления 5 из [12] (пунктирное продолжение 5). Видно, что рассчитанный график согласуется с экспериментом [6].

Заметим, что обычно экспериментальные данные по температурной зависимости откольной прочности представляются в виде зависимости от начальной температуры образцов То (см. [2,3,5,6]) Вместе с этим очевидно, что температура внутренних слоев образца при ударном сжатии и последующем растяжении $T(\tau)$ изменяется и во время развития откольного разрушения не равна То. Для того, чтобы оценить различие этих температур, были получены уравнения состояния алюминия (см. раздел 5), а затем с использованием этих уравнений состояния и соотношений Рэнкина-Гюгонио были рассчитаны изменения температуры в цикле ударное сжатие-растяжение (фазовые траектории) применительно к экспериментам [6]. На рис. 4 представлены фазовые траектории для трех начальных температур: $T_0 = 800 \,\mathrm{K}$ (график 2), $T_0 = 900 \,\mathrm{K}$ (график 3) и $T_0 = 932 \,\mathrm{K}$ (график 4). Как видно, для экспериментов [6] разница между T_0 и $T(\tau)$ невелика.

Вместе с этим можно дополнить интерпретацию экспериментов [6] следующим образом. В диапазоне начальных температур $900 < T_0 < 932$ К фазовые траектории пересекает экстраполированную в область растяжения кривую плавления 5. Это означает, что в первоначально поликристаллическом алюминиевом образце наряду с откольным разрушением возможно развитие процесса плавления образца.

5. Уравнение состояния алюминия

Полуэмпирическое приближение (см. [8]) для фононной части свободной энергии твердого тела F = F(V, T), где V — удельный объем материала, T — его температура, базируется на модели эйнштейновских осцилляторов

$$F = E_x + 3R \left[\frac{\Theta}{2} + T \ln \left(1 - \exp \left(-\frac{\Theta}{T} \right) \right) \right].$$
(9)

$$\Theta = \Theta_0 \left(\frac{\upsilon_0 - V}{\upsilon_0 - V_0}\right)^2 \left(\frac{V_0}{V}\right)^{2/3}, \tag{10}$$

$$v_0 = V_0 \left(1 + \frac{2}{\gamma_0 - 2/3} \right),$$
 (11)

где R универсальная газовая постоянная, $\Theta = \Theta(V)$ характеристическая температура, зависящая только от объема, $\Theta_0 = \Theta(V_0), \quad \upsilon_0$ имеющий характеристического параметр, смысл объема, $\gamma_0 = \gamma_0(V_0, T_0)$ — параметр Грюнайзена, V_0 начальный объем, T_0 — начальная температура.

Единственный подгоночный параметр модели v_x входит в выражение для потенциальной энергии $E_x = E_x(V)$

$$E_x = -v_x(C_1H_x + C_2x) + C_3, \qquad (12)$$

$$H_x = 9\left(\frac{1}{10}x^{-\frac{2}{3}} + 2x^{\frac{1}{3}} + \frac{3}{2}x^{\frac{4}{3}} - \frac{1}{7}x^{\frac{7}{3}} + \frac{1}{70}x^{\frac{10}{3}}\right), \quad (13)^1$$

$$x = \frac{V}{v_x},\tag{14}$$

 C_1, C_2, C_3 — константы, выражающиеся через справочные данные о свойствах материала и параметр v_x .

Согласно термодинамическим тождествам, уравнения состояния определятся частными производными свободной энергии (9). Так, термическое уравнение состояния $P = P(V, T) = -\partial F/\partial V$, т. е. зависимость давления P от объема и температуры в этой модели, имеет вид

$$P = P_x + 3R \frac{\gamma_G}{V} \Theta\left(\frac{1}{2} + \frac{1}{\exp(\Theta/T) - 1}\right), \qquad (15)$$

где $P_x = P_x(V)$ — потенциальное давление

$$P_x = C_1 F(x) + C_2, (16)$$

$$F(x) = \frac{dH_x}{dx}$$

= $3\left(-\frac{1}{5}x^{-\frac{5}{3}} + 2x^{-\frac{2}{3}} + 6x^{\frac{1}{3}} - x^{\frac{4}{3}} + \frac{1}{7}x^{\frac{7}{3}}\right), \quad (17)$

 $\gamma_G = \gamma_G(V)$ — объемная зависимость коэффициента Грюнайзена

$$\gamma_G = -\frac{\partial \ln \Theta}{\partial \ln V} = \frac{2}{3} + \frac{2V}{\nu_0 - V}.$$
 (18)

¹ В [8] в выражении для H_x вместо правильного коэффициента $\frac{1}{70}$ при пятом слагаемом многочлена в скобках напечатано неправильно $\frac{1}{10}$.

<i>T</i> ₀ , K	V_0 , cm ³ /mol	Θ_0, K	v_0 , cm ³ /mol	v_x , cm ³ /mol	C ₁ , GPa	C ₂ , GPa	C_3 , kJ/g
298	10.00	325.0	23,129	24.68	-127.478	2640.258	-1220.71

Таблица 2. Коэффициенты полуэмпирического выражения (9) свободной энергии алюминия

Величина подгоночного параметра v_x для алюминия находилась из условия наилучшего совпадения комнатной изотермы $P = P(V, T_0)$, рассчитываемой по формуле (15), и экспериментальной изотермы высокого давления из [13]. Найденная величина v_x алюминия составила 24.68 сm³/mol. Полный комплект коэффициентов для (9) представлен в табл. 2.

Достоверность уравнения состояния в области сжатия устанавливалась путем сравнения ударной адиабаты, рассчитанной с использованием (9), с экспериментальной ударной адиабатой алюминия из [14]. Как видно на рис. 5, a расчетная 1 и экспериментальная (квадраты) ударные адиабаты практически совпадают. Таким образом, в области сжатия построенные уравнения состояния адекватны эксперименту.

Что же касается области растяжения, то в настоящее время экспериментальные данные здесь отсутствуют. В настоящей работе в области объемов, превышающих V_0 , использовались те же аналитические соотношения, что и в области сжатия. В частности на рис. 5, *а* кривой 2 показано потенциальное давление (16) вплоть до v_x . В соответствии с [8], абсолютное значение потенциального давления (16) при условии нулевой производной $dP_x/dx = 0$ в точке $V = v_x$ принято в качестве величины теоретической прочности σ_{Th} , которая составляет величину

$$\sigma_{\rm Th} = |C_1 F(1) + C_2| \approx |20.8286C_1 + C_2|.$$
(19)

Величина σ_{Th} для алюминия, рассчитанная по (19) с константами из табл. 2, составляет 14.94 GPa. Это значение σ_{Th} внесено в табл. 1 и использовано в выражении (1) для характеристики разрушения алюминия.

Отметим, что величина $\sigma_{\rm Th}$ для алюминия, рассчитанная по (19), согласуется с точностью 20% с величиной теоретической прочности алюминия 11.7 GPa, полученной в первопринципных расчетах [15]. Это согласие оправдывает использование полученных соотношений для качественного анализа поведения алюминия в области больших растяжений. В частности, выражение для объемной зависимости характеристической температуры (10) позволяет обсудить поведение параметра де Бура при растяжении. Как известно, параметр де Бура A = x/r представляет собой отношение амплитуды нулевых колебаний х к межатомному расстоянию r. При этом величина х выражается через характеристическую температуру θ , постоянную Планка \hbar , постоянную Больцмана k, постоянную Авогадро N и атомный вес *M* как $x = \left(\frac{N\hbar^2}{Mk\theta}\right)^{1/2}$. Иными словами, если известна объемная зависимость характеристической температуры

 $\theta = \theta(V)$, то с учетом $r = \left(\frac{V}{N}\right)^{\frac{1}{3}}$ оказывается возможным получить объемную зависимость параметра де Бура A = A(V) = x(V)/r(V).

Заметим далее, что объемная зависимость характеристической температуры (10) для алюминия, показанная на рис. 5, *b* кривой *I*, с точностью 15% согласуется в диапазоне объемов до $\sim 14 \,\mathrm{cm^3/mol}$ с расчетной

Рис. 5. Теплофизические свойства алюминия в области сжатия и растяжения. *а*) *1* — расчетная ударная адиабата алюминия, квадраты — экспериментальная ударная адиабата алюминия из [14], *2* — потенциальное давление (16). *b*) *1* — характеристическая температура (10), *2* — объемная зависимость $\theta(V) = 0.75\theta_D$, где $\theta_D = \theta_D(V)$ — расчет объемной зависимости температуры Дебая из [15], *3* — объемная зависимость параметра де Бура (20) для алюминия.

зависимостью характеристической температуры из [15], показанной на рис. 5, *b* графиком 2. Предполагая, что соотношение (10) справедливо с такой же точностью вплоть до объемов $V \sim v_0$ выразим объемную зависимость параметра де Бура как

$$A \approx \left(\frac{N\hbar^2}{Mk\Theta_0}\right)^{1/2} \left(\frac{N}{V_0}\right)^{1/3} \left(\frac{\nu_0 - V_0}{\nu_0 - V}\right).$$
(20)

График (20) с константами Θ_0 , V_0 , v_0 для алюминия из табл. 2 показан на рис. 5, b кривой 3. На основании этого графика можно ожидать, что в откольных экспериментах произойдет плавление алюминия в волне растяжения при значении объема $V = v_A$, где выполняется критерий A = 1, даже в тех случаях, когда начальная температура и ударный разогрев образца оказываются существенно ниже температуры, определяемой обычной кривой плавления. Отметим также, что при дальнейшем увеличении растяжения параметр де Бура быстро возрастает по мере приближения объема к значению v_0 , что означает гиперболическое возрастание амплитуды нулевых колебаний по сравнению с межатомным расстоянием. Эту область объемов $v_A < V < v_0$ можно соотнести с областью разрушения расплава алюминия при сверхкоротких временах воздействия.

В заключение отметим, что расчетный объем алюминия, соответствующий теоретической прочности в [15], составляет величину 14.86 сm³/mol, что на 40% меньше величины v_x из табл. 2. Поэтому, если качественные выводы о поведении алюминия в области больших растяжений, сформулированные выше, представляются правдоподобными, то количественные оценки, очевидно, нуждаются в уточнениях.

6. Заключение

Сопоставлены экспериментальные данные по квазистатическому и откольному разрушению алюминия. Экспериментальные данные по отколу истолкованы с позиций кинетической концепции прочности твердых тел. Предложено соотношение для достоверного описания температурно-временной зависимости прочности алюминия в диапазоне времен $10^5 - 10^{-11}$ s и температур 300–600 K. Получены уравнения состояния алюминия, на основе которых проведены расчеты изменения температуры при ударно-волновом сжатии и последующем расширении алюминия в волне растяжения. Проведен качественный анализ поведения алюминия в области больших растяжений.

Список литературы

- [1] С.И. Ашитков, П.С. Комаров, А.В. Овчинников, Е.В. Струлева, М.Б. Агранат. Квантовая электрон. **43**, 242 (2013).
- [2] В.К. Голубев, С.А. Новиков, Ю.С. Соболев, Т.С. Юкина. Проблемы прочности 6, 28 (1985).

- [3] А.М. Молодец, В.И. Лебедев, А.Н. Дремин. ФГВ 25, 101 (1989).
- [4] А.М. Молодец, А.Ю. Фомичев. Хим. физика 16, 124 (1997).
- [5] T. de Rességuier, E. Lescoute, D. Loison. Phys. Rev. B 86, 214102 (2012).
- [6] E.B. Zaretsky, G.I. Kanel. J. Appl. Phys. 112, 073 504 (2012).
- [7] В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский. Кинетическая природа прочности твердых тел. Наука, М. (1974). 560 с.
- [8] А.М. Молодец. ФТТ 55, 2090 (2013).
- [9] Н.А. Златин, С.М. Мочалов, Г.С. Пугачев, А.М. Брагов. ФТТ 16, 1752 (1974).
- [10] D.A. Dalton, D.L. Worthington, P.A. Sherek, N.A. Pedrazas, H.J. Quevedo, A.C. Bernstein, P. Rambo, J. Schwarz, A. Edens, M. Geissel, I.C. Smith, E.M. Taleff, T. Ditmire. J. Appl. Phys. **110**, 103 509 (2011).
- [11] Т.П. Санфирова. Автореф. канд. дисс. ЛПИ, Л. (1961).
- [12] A. Jayaraman, W. Klement, R.C. Newton, G.C. Kenendy. J. Phys. Chem. Solids 24, 7 (1963).
- [13] R.G. Greene, H. Luo, A.L. Ruoff. Phys. Rev. Lett. 73, 2075 (1994).
- [14] LASL Shock Hugoniot Data / Ed. S.P. Marsh. University of California Press, Berkeley (1980).
- [15] Г.В. Синько, Н.А. Смирнов. Письма в ЖЭТФ 75, 4, 217 (2002).