07,01

Влияние термообработки сплава Д16 на его механические свойства при малых напряжениях

© Б.Г. Мыцык, Я.П. Кость, Н.М. Демьянишин

Физико-механический институт им. Г.В. Карпенко НАН Украины, Львов, Украина

E-mail: mytsyk@ipm.lviv.ua

(Поступила в Редакцию 7 апреля 2014 г.)

На образцах, соответствующих модели защемленной по контуру круглой пластинки, изготовленных из алюминиевого сплава Д16, исследованы упругий гистерезис и остаточные прогибы при действии малых (в начале области Гука) механических напряжений. Показано, что эти характеристики существенно зависят (изменяются в несколько раз) от состояния образцов, обусловленного различными режимами термообработки. Использованный в работе неразрушающий метод отличается высокой точностью и может быть полезным для оценки прочности, предела текучести и циклической долговечности металлов.

1. Введение

В работах [1,2] показано, что исследование зависимостей $\sigma - \omega$ (σ — механическое напряжение, ω – прогиб тонкой жесткой круглой пластины, защемленной по кунтуру) с высокой точностью (~ 0.01%) позволяет обнаружить упругий гистерезис и остаточные прогибы в металлах при малых напряжениях, которые на порядок меньше предела текучести σ_v . Амплитуда упругого гистерезиса, а также микроупрочнение металлов при малоцикловом (~ 10 циклов) нагружении величиной $\sigma \sim 0.1\sigma_y$ очень чувствительны к изменению качества металла, в т.ч. к изменению микроструктуры образцов при действии эксплуатационных факторов. Кроме того, амплитуды упругого гистерезиса для различных материалов (сталь 40Х, алюминиевый сплав Д16) коррелируют с традиционными механическими характеристиками σ_u (предел прочности) и σ_v [1,2], поэтому могут использоваться для оценки их эксплуатационного качества. Здесь отметим, что гистерезис в области пластичности $(\sigma > \sigma_v)$ хорошо изучен (см., например, [3–5]) и лежит в основе разрушающих методов изучения циклической долговечности металлов.

В [2] представлены первые результаты исследования упругого гистерезиса и микроизменений остаточных прогибов в начале области Гука для сплава Д16 (международный аналог — сплав 2024). В настоящей работе изучена эволюция амплитуд упругого гистерезиса и величин остаточных прогибов в зависимости от способов термообработки этого сплава.

2. Образцы и методика эксперимента

Образцы для исследования изготовлены из сплава Д16 (пруток диаметром 70 mm), термически упрочненного в заводских условиях (закалка с температуры 773 К и старение). Сплав характеризуется высокими значениями $\sigma_u = 440$ MPa и $\sigma_v = 350$ MPa [3]. Для расчета

прогибов образцов и сравнения расчетных и экспериментальных данных использовано значение модуля Юнга $E = 0.71 \cdot 10^5$ MPa [3].

Исследования зависимостей напряжение-прогиб проведены на образцах, соответствующих модели жесткой тонкой защемленной по контуру круглой пластинки — это цилиндр I с внутренним диаметром D = 2R(R - радиус пластинки) и тонким дном толщиной h(рис. 1).

Условия "жесткая" и "тонкая" пластинка обеспечены малыми перемещениями $\omega \sim 0.15$ mm центра образца (прогибом) по сравнению с толщиной h = 1.0 mm пластинки и малой толщиной h по сравнению с диаметром пластинки D = 55.5 mm. А именно, учитывая указанные размеры пластинки, находим значения $a_1 = \omega/h = 0.15$ и $a_2 = h/D = 0.02$, которые соответствуют стандартным критериям жесткости (a_1) и малой толщины (a_2) [6–8]: $a_1 < 0.2 - 0.25$; $a_2 < 0.1$. Для таких образцов перемещение ω и максимальные механические напряжения σ описываются известными соотношениями [7–9]

$$\omega = 0.17 \, \frac{PR^4}{Eh^3},\tag{1}$$

$$\sigma = 0.79 \, \frac{PR^2}{h^2},\tag{2}$$

где *P* — пневматическое давление, действующее на образец (рис. 1).

Соотношение (2) получено, как векторное суммирование тангенциальных σ_t и радиальных σ_r напряжений на контуре пластины [9], а именно:

$$\sigma = \sqrt{\sigma_t^2 + \sigma_r^2} = \frac{3}{4} \frac{Pr^2}{h^2} \sqrt{1 + \nu^2},$$
 (3)

где v = 0.33 [10,11] — коэффициент Пуассона для сплава Д16. Для других материалов коэффициент 0.79 в (2) изменится, поскольку значение v для различных твердых тел лежит в диапазоне от 0.17 (плавленый кварц) до 0.46 (индий) [3,12,13].

Рис. 1. Схема измерения перемещения ω центра образца: *1* — образец, *2* — первичный преобразователь емкостного деформометра дистанционного действия, *3* — блок электроники.

Рис. 2. Схема неупругого (1) и упругого (2) гистерезиса: петля (1) гистерезиса соответствует 1 циклу нагружения, а петля (2) — *N*-циклу нагружения, когда начало и конец петли гистерезиса совпадают.

Подчеркнем, что главной причиной выбора модели жесткой тонкой защемленной по контуру круглой пластины является возможность определения перемещения ω центра образца с очень высокой точностью (погрешность измерения ω составляет 10 nm в диапазоне перемещений ~ 0.15 mm, что соответствует относительной погрешности 0.007%). Это позволяет обнаружить упругий гистерезис и остаточные прогибы в начале области Гука (при напряжениях $\sigma \sim 0.1\sigma_{v}$). Малая погрешность измерения ω обеспечена высоким классом точности (0.01) емкостного деформометра дистанционного действия [14] и отсутствием механического контакта между первичным преобразователем деформометра и образцом (рис. 1). Для контроля давления Р использован емкостный датчик давления тоже класса точности 0.01 [15]. Подробно методика точного измерения ω описана в [1].

Подчеркнем, что погрешность определения продольных деформаций ε с применением лучших испытательных машин составляет ~ 1%, в то время как механические напряжения в начале области Гука (например, $\sigma \sim 0.1\sigma_y$) вызывают деформации $\varepsilon = \sigma/E$ = 35 MPa/(0.71 · 10⁵ MPa) = 0.05%, которые являются

более чем на порядок меньше погрешностей их определения. Поэтому изучать упругий гистерезис с помощью стандартных испытательных машин невозможно.

Под упругим гистерезисом будем понимать несовпадения зависимостей $\omega - \sigma$ в процессе нагружения и разгружения образца при условии совпадения начала и конца петли гистерезиса (при $\sigma = 0$), см. рис. 2, петля 2. Подчеркнем, что для сплава Д16 даже при малых напряжениях $\sigma \sim 0.1\sigma_y$ небольшие остаточные прогибы ω_{res} существуют (рис. 2, петля 1). Однако уже после нескольких циклов N нагружения (3–5 циклов) следующий цикл нагружения не приводит к увеличению ω_{res} , соответственно $\omega_{res}(N) \rightarrow$ const, т.е. при дальнейших циклах нагружения образец ведет себя как упругое тело. Эффект $\omega_{res}(N) \rightarrow$ const назовем микроупрочнением образца, а максимальную величину ω_h (рис. 2, петля 2), измеренную после микроупрочнения, назовем амплитудой упругого гистерезиса.

В дальнейшем будем оперировать относительными остаточными прогибами $\beta_{\rm res}$

$$\beta_{\rm res} = \frac{\omega_{\rm res}}{\omega} \cdot 100\%. \tag{4}$$

Основной целью работы является исследование микроупрочнения и упругого гистерезиса алюминиевого сплава Д16 в зависимости от величины механического напряжения σ (при условии $\sigma \ll \sigma_y$) и термообработки образцов. Использованные в работе способы термообработки сплава Д16 сводятся к следующим операциям:

1) отжиг для разупрочнения: нагрев до температуры $T = 673 \pm 2$ K, выдержка 80 min при этой температуре, медленное охлаждение образца до 523 K со скоростью \leq 30 K/h, дальнейшее охлаждение с печью до комнатной температуры;

2) закалка и естественное старение: нагрев до $T = 773 \pm 2$ K, выдержка 15 min, быстрое охлаждение в воде при T = 293 K (время переноса с печи в воду < 10 s); дальнейшее естественное старение (при T = 293 K) в течение 5 суток;

3) пережог: нагрев до $T = 863 \pm 2$ K, выдержка 80 min, охлаждение с печью до комнатной температуры.

При термообработке сплава Д16 необходимо обеспечить высокую точность поддержания температуры $(\pm 2 \text{ K})$. Для этого высокотемпературная муфельная печь была оснащена вентилятором воздуха (скорость вращения 2760 revo), а также контролем распределения температуры в рабочем объеме печи, для чего использованы промышленные хромель-алюмелевые термопары.

Во избежение возможных погрешностей определения ω_h и $\beta_{\rm res}$, вызванных пьезокалорическим эффектом (незначительное изменение температуры образца при изменении σ), обеспечивалась очень малая скорость изменения σ : петля гистерезиса (рис. 2) измерялась за время ~ 30 min. Для справки: времена релаксации τ пьезокалорического изменения температуры в диэлектриках не превышают 1 min (см., например, [16,17]). Для металлов значения τ еще меньше, поскольку их тепло- и температуропроводность по сравнению с диэлектриками на 1-2 порядка больше [12,18].

3. Результаты и их обсуждение

На рис. 3 представлены зависимости амплитуд ω_h упругого гистерезиса от величины механического напряжения σ для образцов сплава Д16 после нескольких циклов термообработки по схеме отжиг-закалкаестественное старение (см. выше). Наименьшие значения амплитуд ω_h характерны для первичного образца, изготовленного из заготовки (прутка), подданной закалке и естественному старению в заводских условиях (рис. 3, кривая 1). После отжига и второй закалки (в лабораторных условиях), а также дальнейшего естественного старения величина ω_h существенно (более чем в два раза) увеличилась (кривая 2), а после третьего цикла термообработки (отжиг-закалка-старение) величина ω_h увеличилась до 450 nm (кривая 3) для $\sigma = 0.14 \sigma_{y} \approx 50$ MPa, что в ~ 6 раз превышает соответствующее значение ω_h для первичного образца.

Таким образом, повторный цикл термообработки сплава Д16, существенно увеличивая амплитуду упругого гистерезиса, ухудшает его эксплуатационное качество (увеличение гистерезиса свидетельствует об уменьшении циклической долговечность материала [3]). Этот вывод коррелирует с известным уменьшением предела прочности σ_u и предела текучести σ_y при повторной термообработке сплава Д16.

Интересным является результат, представленный кривой 4, полученный на образце после пережога (см. выше). Величина ω_h существенно уменьшилась относительно кривой 3 (третья закалка и старение). Из этого можно сделать вывод, что качество (циклическая

Рис. 3. Зависимости $\omega_h(\sigma)$ после термообработки образца: I — первичный образец после 1-й (заводской) закалки и старения, 2 — после 2-й закалки и старения, 3 — после 3-й закалки и старения, 4 — после пережога.

Сравнение сплава Д16 и стали 40X по параметрам σ_{100nm}^h , σ_u и σ_y

Материал	$\sigma^{h}_{ m 100nm}$	σ_u	σ_y
	MPa		
Сталь 40Х	76	850	750
(а) Д16	60	440	350
(b) Д16	31	310	280

Примечание. Состояние (a) соответствует закалке и старению сплава Д16 в заводских условиях, (b) — соответствует дополнительной закалке и старению в лабораторных условиях.

долговечность) образца улучшилось. Однако известно, что пережог ухудшает механические характеристики (например, σ_u и σ_y) сплава Д16. Поэтому объяснить уменьшение ω_h после пережога попытаемся на основе изменения зеренной структуры образца. А именно, если закалка сплава Д16 сопровождается измельчением зеренной структуры [19], то после пережога структура становится крупнозернистой [19–21]. Поскольку при этом концентрация межзеренных границ, которые, по-видимому, являются главным источником упругого гистерезиса, уменьшается, то амплитуда упругого гистерезиса тоже уменьшается.

Обратим внимание на то, что все зависимости $\omega_h(\sigma)$ на рис. З экстраполируются в область напряжений, близкую к $\sigma = \sigma_0 \approx 18$ MPa = $0.05\sigma_y$, при которых значение $\omega_h = 0$. Это касается также зависимостей $\omega_h(\sigma)$ для отожженных образцов. Отсутствие гистерезиса в области напряжений $\sigma < 18$ MPa подтверждено экспериментально.

В завершение анализа зависимостей $\omega_h(\sigma)$ подчеркнем, что разупрочняющий отжиг образцов увеличивает значение ω_h только на ~ 20%, что является неожиданным результатом, поскольку другие механические характеристики (σ_u , σ_y и твердость) изменяются (понижаются) в ~ 2–3 раза [22].

Отметим также, что зависимости $\omega_h(\sigma)$ для сплава Д16 и легированной стали 40X [1] качественно различны. Например, для стали 40X при увеличении механического напряжения (в области $\sigma \ll \sigma_y$) зависимости $\omega_h(\sigma) \to \infty$, а для Д16 эти зависимости почти линейны (их наклон несколько уменьшается при возрастании σ , см. рис. 3).

Кроме того, если ввести параметр $\sigma_{100 \text{ nm}}^h$ (механическое напряжение, при котором амплитуда упругого гистерезиса $\omega_h = 100 \text{ nm}$), то для сплава Д16 и легированной стали 40Х он заметно отличается: 60 и 76 МРа соответственно. Это отличие коррелирует со стандартными механическими характеристиками этих материалов (σ_u и σ_y), см. таблицу. Т.е. на основе амплитуды упругого гистерезиса ω_h при $\sigma \ll \sigma_y$ можно проводить оценку прочности и текучести (σ_u , σ_y) конструкционных материалов, в т.ч. материалов, деградированных при действии эксплуатационных факторов (температура, циклическая нагрузка, усталость и т.п.). Более того,

Рис. 4. Примеры зависимостей остаточных прогибов β_{res} от количества N циклов нагружения после закалки образца: A — первичный образец после 1-й (заводской) закалки и старения, B — после 2-й закалки и старения, C — после 3-й закалки и старения (2-й и 3-й закалке предшествовал отжиг); участки 1, 2 и 3 получены при величинах циклической нагрузки σ , равных 23.8 (0.07 σ_{v}), 47.6 и 71.4 МРа соответственно.

упругий гистерезис более чувствителен к состоянию материала, чем прочность и текучесть. Например, после повторной закалки и естественного старения (рис. 3, кривая 2) величина ω_h и соответственно параметр $\sigma_{100 \text{ nm}}^h$ изменяются в ~ 2 раза, в то время как σ_u и σ_y уменьшаются только на 20–30% (см. таблицу).

Чувствительными к термообработке сплава Д16 являются также остаточные прогибы β_{res} образца. На рис. 4 представлены изменения остаточного прогиба в зависимости от количества N циклов нагружения и от величины циклической нагрузки σ . Из графиков A и B следует, что даже при максимальных использованных σ (участки 3) зависимости $\beta_{res}(N)$ стремятся к насыщению уже после 3–4-х циклов нагружения.

При дальнейшем увеличении N остаточные прогибы не изменяются: $\beta_{res}(N) = const$, т.е. образец ведет себя как упругое тело. Именно с этого момента измерялась амплитуда ω_h упругого гистерезиса. Обратим внимание на то, что и амплитуды гистерезиса ω_h (рис. 3), и величины остаточных прогибов β_{res} (рис. 4) после второй закалки и старения увеличиваются примерно в 2 раза.

После следующего цикла термообработки (отжиг-закалка-старение) величина $\beta_{\rm res}$ опять увеличивается в ~ 2 раза, однако зависимость $\beta_{\rm res}(N)$ (рис. 4, кривая *C*) имеет качественное отличие: для участков 2 и 3 характерны наклоны на угол α , который возрастает при увеличении циклической нагрузки σ . Т. е. при каждом последующем цикле нагрузки значение $\beta_{\rm res}$ увеличивается. На основе указанных особенностей зависимостей $\beta_{\rm res}(N)$ можно сделать вывод, что после 3-го цикла закалки и старения не только увеличивается (в ~ 2 раза) амплитуда ω_h упругого гистерезиса, но и снижается в несколько раз предел текучести (величину σ , при которой зависимость $\beta_{\rm res}(N)$ имеет заметный наклон, можно считать аналогом предела текучести σ_y). Из рис. 4 (кривая *C*, участок 2) следует, что $\sigma_y = 47.6$ МРа, что в ~ 7.5 раз меньше, чем σ_y первичного образца.

Сравним теперь остаточные прогибы образца после закалки (плюс старение) и после отжига. Например, на рис. 5 (кривая A) видим, что β_{res} для образца после 2-го отжига в несколько раз (для участка 3 — в 4.5 раза) больше, чем для образца после 2-й закалки (рис. 4, кривая B), которая предшествовала этому отжигу (напомним, что амплитуда упругого гистерезиса ω_h после отжига возрастает только на ~ 20%). Из этого следует, что остаточный прогиб является более чувствительным к состоянию сплава Д16, чем упругий гистерезис. Это демонстрирует также кривая В на рис. 5. А именно, значение $\beta_{\rm res}$ для образца после пережога в ~ 5 раз превышают значения β_{res} для образца после 2-го отжига (рис. 5, кривые A, B, участки 1, 2), в то время как амплитуды гистерезиса ω_h для указанных состояний образца практически одинаковы.

В завершение проанализируем зависимости остаточных прогибов от величины механического напряжения (рис. 6), построенные на основе значений β_{res} в области насыщения зависимостей $\beta_{\text{res}}(N)$, см. примеры на рис. 4 и 5. Для образца после всех циклов закалки (плюс старение) зависимости $\beta_{\text{res}}(\sigma)$ почти линейны (кривые 1, 2, 4 на рис. 6). А для образца после отжига (кривая 3) и после пережога (кривая 5) наблюдаем тенденцию $\beta_{\text{res}}(\sigma) \rightarrow \infty$ при действии относительно малых механических напряжений $\sigma \approx 0.2\sigma_y$ (для отожженного образца) и $\sigma \approx 0.15\sigma_y$ (после пережога образца). Из этого следует вывод, что для сплава Д16 отожженного, а

Рис. 5. Зависимости остаточных прогибов β_{res} от количества *N* циклов нагружения после 2-го отжига (*A*) и после пережога (*B*); участки *1, 2* и *3* получены при величинах циклической нагрузки σ , равных 23.8, 47.6 и 71.4 МРа соответственно.

Рис. 6. Примеры зависимостей максимального значения остаточного прогиба β_{res} (в области насыщения, см. рис. 4 и 5) от величины циклической нагрузки σ : *1* — первичный образец (после 1-й заводской закалки и старения заготовки), *2* — после отжига и 2-й закалки и старения, *3* — после 2-го отжига, *4* — после 3-й закалки и старения, *5* — после пережога, *6* — после 4-й закалки и старения. Последовательность зависимостей *1*, *2*, ..., *6* соответствует последовательности применения указанных здесь режимов термообработки.

также после пережога, предел текучести, определенный на основе критерия $\beta_{\rm res}(\sigma) \to \infty$, понижается соответственно в ~ 5 и ~ 7 раз.

Обратим внимание на то, что зависимости $\beta_{\rm res}(\sigma)$ для образца после 3-й закалки (кривая 4), которой предшествовал отжиг, и после 4-й закалки (кривая 6), которой предшествовал пережог, являются практически тождественными. Это свидетельствует о том, что закалка сплава Д16 даже после пережога улучшает качество сплава (существенно уменьшает остаточные явления и соответственно повышает предел текучести). Здесь отметим, что исследовать зависимость $\omega_h(\sigma)$ (рис. 3) для образца после 4-й закалки не удалось, поскольку после пережога и последующей (четвертой) закалки образец становится пористым, обладает закалочными трещинами (см., например, [23]) и соответственно пропускает воздух, что не позволяет фиксировать давление *P* и, следовательно, измерять ω_h с надлежащей точностью.

И наконец, подчеркнем, что зависимости $\beta_{\rm res}(\sigma)$ после всех режимов термообработки (рис. 6) экстраполируются в область, близкую к началу координат (для зависимостей 3, 5 и 6 это подтверждено также экспериментальными данными при P = 0.2 atm, тогда $\sigma = 11.9$ MPa $\approx 0.035\sigma_y$), т.е. остаточные прогибы появляются даже при $\sigma \to 0$. Этим зависимости $\beta_{\rm res}(\sigma)$ качественно отличаются от зависимостей $\omega_h(\sigma)$, которые экстраполируются в окрестность, близкую к $\sigma = \sigma_0 \approx 18 \,{\rm MPa} = 0.05 \sigma_y$ (рис. 3). Из этого следует вывод, что упругий гистерезис и остаточные прогибы при малых σ формируются разными источниками. Логично предположить, что амплитуды гистерезиса ω_h пропорциональны концентрации дефектов, обусловливающих упругий гистерезис, а остаточные прогибы результат перемещения этих дефектов. Конкретнее об источниках упругого гистерезиса и остаточных явлений можно будет говорить после исследования изменений микроструктуры сплава Д16 при действии малых механических напряжений $\sigma \ll \sigma_v$.

4. Заключение

Методом, позволяющим с высокой точностью изучать зависимости перемещения центра тонкой защемленной по контуру круглой пластины от механического напряжения σ [1], изучены упругий гистерезис и остаточные прогибы образцов из алюминиевого сплава Д16 при действии малых напряжений $\sigma \sim 0.1\sigma_y$. Показано, что метод очень чувствителен к состоянию образцов после их термообработки. Например, после каждого цикла термообработки по схеме отжиг—закалка—естественное старение амплитуда упругого гистерезиса ω_h и остаточные прогибы β_{res} увеличиваются в ~ 2 раза. Для сравнения: изменение электропроводности сплава Д16 после закалки и старения по сравнению с отожженным состоянием составляет только 10–15% [24].

К основным результатам, полученным для сплава Д16 при действии малых напряжений, следует отнести

1) существенное понижение эксплуатационного качества сплава после каждого дополнительного цикла закалки и старения (в ~ 2 раза увеличиваются ω_h и β_{res}), а после 3-го цикла в ~ 7.5 раз понижается предел текучести;

2) параметр σ_{100nm}^h коррелирует со стандартными механическими характеристиками σ_u и σ_y материалов (таблица), поэтому он может быть использован для оценки прочности и текучести материала;

3) если упругий гистерезис сплава Д16 после всех использованных режимов термообработки начинается при механических напряжениях, близких к $\sigma = \sigma_0 \approx 18 \text{ MPa} = 0.05 \sigma_y$, то остаточные прогибы β_{res} существуют даже при $\sigma \to 0$ для всех состояний образца.

Таким образом, использованный метод исследования механических свойств материалов при действии малых напряжений позволяет получать новые данные о конструкционных материалах, а также проводить оценку их эксплуатационных характеристик: увеличение амплитуды ω_h упругого гистерезиса свидетельствует об уменьшении прочности и циклической долговечности материала, а увеличение остаточных прогибов $\beta_{\rm res}$ — о понижении его предела текучести.

Список литературы

- [1] Б.Г. Мыцык, Н.М. Демьянишин. ФХММ 45/3, 83 (2009).
- [2] Б.Г. Мыцык, Я.П. Кость, Н.М. Демьянишин / Тезисы докл. 4-й Междунар. конф. "HighMatTech-2013". Октябрь 2013. Киев, Украина. С. 367.
- [3] Г.С. Писаренко, А.П. Яковлев, В.В. Матвеев. Справочник по сопротивлению материалов / Под ред. Г.С. Писаренко. Наук. думка, Киев (1988). 736 с.
- [4] В.Т. Трощенко. Деформирование и разрушение металлов при многоцикловом нагружении. Наук. думка, Киев (1981). 344 с.
- [5] Л.С. Фоменко, В.Д. Нацик, С.В. Лубенец. Физика низких температур 27, 1430 (2001).
- [6] В.Г. Зубчанинов. Основы упругости и пластичности. Высш. шк., М. (1990). 368 с.
- [7] Г.С. Писаренко, В.А. Агарев, А.Л. Квитка, В.Г. Попков, Э.С. Уманский. Сопротивление материалов. Выща шк., Киев (1986). 775 с.
- [8] М.Н. Рудицын, П.Я. Артемов, М.И. Любошиц. Справочное пособие по сопротивлению материаллов / Под ред. М.Н. Рудицына. Вышейшая шк., Минск (1970). 630 с.
- [9] О.А. Агеев, В.М. Мамиконова, В.В. Петров, В.Н. Котов, О.Н. Негоденко. Микроэлектронные преобразователи неэлектрических величин. Изд-во ТРТУ, Таганрог (2000). 153 с.
- [10] Б.А. Калугин, И.Г. Михайлов. Акустический журнал 7, 195 (1961).
- [11] А.Л. Барденштейн, В.И. Быков, Д.И. Вайсбурд. Письма ЖЭТФ 61, 96 (1995).
- [12] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [13] Д.С. Сандитов, В.В. Мантатов, Б.Д. Сандитов. ЖТФ 79, 150 (2009).
- [14] Б.Г. Мыцык, Л.И. Муравский, Н.М. Демьянишин, Ю.М. Карплюк. В сб.: Проблемы ресурса и безопасности эксплуатации конструкций, сооружений и машин / Под ред. Б.Е. Патона. Изд-во Института электросварки НАН Украины, Киев (2009). С. 80.
- [15] B. Mytsyk, H. Haskevych. Pressure sensors of especially high accuracy class // Proc. of 13th International SENSOR Conference. May 2007. Nürnberg, Germany. V. 2. P. 277.
- [16] Н.М. Демьянишин, Б.Г. Мыцык. ФТТ 55, 2379 (2013).
- [17] Б.Г. Мыцык. Фотоупругость анизотропных сред. Лигапресс, Львов (2012). 400 с.
- [18] Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. Атомиздат, М. (1976). 1008 с.
- [19] Ю.М. Лахтин. Металловедение и термическая обработка металлов. Металлургия, М. (1983). 360 с.
- [20] И.Ф. Колобнев. Термическая обработка алюминиевых сплавов. Металлургия, М. (1966). 395 с.
- [21] Г.И. Прокопенко, С.М. Волошко, І.Е. Котенко, А.П. Бурмак. Научн. вести НТУУ "КПИ" 3, 42 (2009).
- [22] Б.А. Колачев, В.А. Ливанов, В.И. Елагин. Металловедение и термическая обработка цветных металлов и сплавов. Металлургия, М. (1981). 416 с.
- [23] Металловедение алюминия и его сплавов. Справочник / Под ред. И.Н. Фридляндера. Металлургия, М. (1983). 280 с.
- [24] И. Андрейко, Ю. Головатюк. Вестн. Тернопольского НТУ. Сер. механика и материаловедение 71, 237 (2013).