Механизм протекания тока в омическом контакте $Au-Ti-AI-Ti-n^+$ -GaN в интервале температур 4.2–300 К

© А.В. Саченко⁺, А.Е. Беляев⁺, Н.С. Болтовец^{*}, Р.В. Конакова^{+¶}, Л.М. Капитанчук[‡], В.Н. Шеремет⁺, Ю.Н. Свешников[#], А.С. Пилипчук[•]

⁺ Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03028 Киев, Украина

* Государственное предприятие НИИ "Орион",

03057 Киев, Украина

[‡] Институт электросварки им. Е.О. Патона Национальной академии наук Украины,

03068 Киев, Украина

[#] ЗАО "Элма-Малахит",

124460 Зеленоград, Москва, Россия

• Институт физики Национальной академи наук Украины, 03028 Киев, Украина

ooolo raiob, rapania

(Получена 21 октября 2013 г. Принята к печати 28 ноября 2013 г.)

Экспериментально исследована и теоретически объяснена температурная зависимость удельного контактного сопротивления $\rho_c(T)$ омических контактов Au–Ti–Al–Ti– n^+ -GaN в диапазоне температур T = 4.2-300 К. Показано, что в низкотемпературной области измерений (4.2-50 K) наблюдается участок насыщения $\rho_c(T)$. С повышением температуры величина ρ_c уменьшается по экспоненциальному закону. Экспериментальная и расчетная зависимости $\rho_c(T)$ согласуются между собой. Полученные результаты позволяют сделать вывод о полевой природе токопереноса на участке насыщения $\rho_c(T)$ и термополевой — на экспоненциальном.

1. Введение

С момента начала разработок широкого класса полупроводниковых приборов, интегральных схем и их освоения в промышленном производстве изучению омических контактов уделялось не меньше внимания, чем получению и совершенствованию полупроводниковых материалов и структур [1-7]. Вплоть до настоящего времени, особенно в связи с использованием широкозонных полупроводников, например, нитридов элементов III группы и их твердых растворов, отмеченное внимание не ослабевает. Это обусловлено многообразием явлений в контактах и на границах раздела фаз, сложностью их расчетов и однозначной интерпретации. Оказалось, что температурные зависимости удельного контактного сопротивления омических контактов, $\rho_c(T)$, даже для такого основательно исследованного материала, как кремний, изучены не досконально, меньше информации или она совсем отсутствует о зависимости $\rho_c(T)$ для омических контактов к GaN, AlN, InN. Практически отсутствуют данные об особенностях температурной зависимости $\rho_c(T)$ в области температур $T < 80 \, {\rm K}$. В то же время существует явная необходимость в такой информации для широкого круга специалистов, занимающихся как фундаментальными исследованиями нитридов элементов III группы и приборов на их основе в области низких температур (квантовый эффект Холла и эффект Шубникова-де-Гааза [8], физика электронного транспорта в полевых транзисторах терагерцового диапазона [9], магнитополевые эффекты в НЕМТ [10]), так и специалистов, использующих соответствующих приборы в различных задачах прикладной криоэлектроники [11]. Для восполнения указанного недостатка в данной работе экспериментально исследована температурная зависимость $\rho_c(T)$ омических контактов Au–Ti–Al–Ti– n^+ -GaN в широком интервале температур, от 4.2 до 300 К. В простой модели выполнен расчет температурных зависимостей $\rho_c(T)$ для указанного контакта. Между экспериментальными и расчетными зависимостями получено достаточно хорошее согласие.

2. Образцы и методы исследования

Монокристаллические эпитаксиальные пленки n^+ -n- n^+ -GaN на подложках Al₂O₃ были выращены в ЗАО "Элма-Малахит" (г. Зеленоград, Россия) методом МОС-гидридной эпитаксии (metalorganic chemical vapor deposition, MOCVD). Параметры верхнего n^+ -слоя — концентрация $n^+ \approx 3 \cdot 10^{18} \,\mathrm{cm}^{-3}$, толщина $d_{n^+} \approx 0.9$ мкм, *n*-слоя — концентрация $n \approx 8 \cdot 10^{16}$ см⁻³, толщина $d_n \approx 1.5$ мкм, буферного слоя — концентрация $n^+ \approx 3 \cdot 10^{18} \, {
m cm}^{-3}$, толщина $d_{n^+} \approx 3$ мкм. Толщина подложки Al₂O₃ была ~ 400 мкм, плотность дислокаций $\gtrsim 10^8~{
m cm}^{-2}.$

Омические контакты создавались вакуумным напылением металлов Ti(30 нм) - Al(100 нм) - Ti(40 нм) - Au(100 нм) в одном технологическом цикле с быстрой термической обработкой (БТО) при температуре $T_a = 900^{\circ}$ С в течение 30 с.

До и после БТО на тестовых структурах, сформированных с помощью фотолитографии, измерялись вольтамперные характеристики (ВАХ) и удельное контактное сопротивление ρ_c омических контактов. Зависимость

[¶] E-mail: konakova@isp.kiev.ua

 $\rho_c(T)$ омических контактов измерялась методом TLM (transmission line method) [12] на корпусированных образцах в диапазоне температур 4.2-300 К.

Стабилизация температуры обеспечивалась системой УТРЕКС К25в. Контроль температуры осуществлялся с помощью двух терморезистивных датчиков. Стабилизация для диапазона T < 30 К обеспечивалась на уровне не хуже 0.05 К, для диапазона 30-100 К — не хуже 0.1 К, для диапазона > 100 К — на уровне 0.5 К.

Морфологические особенности поверхности контактной металлизации до и после быстрой термической обработки

Исходный образец Au-Ti-Al-Ti-n⁺-GaN имеет достаточно однородную структуру верхнего слоя металлизации (пленка Au). После удаления ионным травлением всех слоев контактной металлизации наблюдается развитая ячеистая структура поверхности *n*-GaN. Профили

Рис. 1. Профили распределения компонентов контактной структуры Au-Ti-Al-Ti- n^+ -GaN до (*a*) и после БТО при $T_a = 900^{\circ}$ C (*b*). Al_{ok} — алюминий окисленный.

Рис. 2. Морфология поверхности границы раздела контактообразующий слой—GaN в контактной структуре $Au-Ti-Al-Ti-n^+$ -GaN после БТО при $T_a = 900^{\circ}$ C.

распределения компонентов исходной контактной металлизации характеризуются слоевой структурой (рис. 1, *a*).

После БТО при $T_a = 900^{\circ}$ С в течение 30 с вся толща контактной металлизации по данным ожеспектрометрии (рис. 1, b) представляет собой сильно неоднородную область перемешивания компонентов металлизации и полупроводника. Особый интерес в этом случае представляет морфология поверхности границы раздела контактообразующий слой-GaN (рис. 2). Из приведенных на рис. 1, b и в таблице данных видно, сколь неоднородна поверхность полупроводника как по составу, так и по структуре. Наряду с участками 1,4 (рис. 2), т.е. поверхностями, состоящими преимущественно из GaN, имеются области 2, 3, состоящие из конгломератов твердого раствора Al-Ti-Au, обогащенного Ga и содержащего до 15-23% азота, а также участки со столбчатой структурой переменного состава по высоте столбика (см. участки 6, 7, 8). Содержание металлической компоненты в таком столбике (Au, Al, Ti) на его острие возрастает на 1.5-2 порядка по сравнению с основанием. Судя по литературным данным

Элементный состав поверхности границы раздела контактообразующий слой $-n^+$ -GaN после БТО при $T_a = 900^\circ$ C

Образец	Концентрация, ат%				
	Ν	Al	Ti	Ga	Au
1	48.51	0.04	0.00	51.38	0.07
2	23.44	8.36	13.07	47.84	7.29
3	15.51	14.85	16.42	40.44	12.78
4	48.92	0.00	0.38	50.63	0.06
5	45.26	1.83	4.77	46.81	1.33
6	48.45	0.28	0.08	50.99	0.19
7	47.15	0.92	3.46	47.61	0.86
8	14.59	37.33	4.51	16.05	27.52

и технологическим разработкам, контакты к *n*-GaN на основе контактообразующей композиции Ti/Al с описанной выше морфологией поверхности границы раздела металл—GaN являются типичными [2–4,13,14] и существенно влияют на проведение дальнейших технологических процессов (например, фотолитографии, сборки активных элементов в корпус).

Электрические характеристики омических контактов Au—Ti—Al—Ti—n⁺-GaN

Вольт-амперные характеристики исходных контактных структур были линейными. Удельное контактное сопротивление таких структур было $\leq 0.7 \, \text{Om} \cdot \text{cm}^2$. После БТО во всем измеряемом диапазоне температур ВАХ были линейными, а ρ_c при комнатной температуре составляло $\sim (2-3) \cdot 10^{-4} \, \mathrm{Om} \cdot \mathrm{cm}^2$. На рис. 3 приведена зависимость $\rho_c(T)$ для исследуемых омических контактов. Как видно из рис. 3, при $T \le 50 \,\mathrm{K}$ зависимость $\rho_c(T)$ практически насыщается (ρ_c не зависит от температуры), что характерно для полевого механизма токопрохождения. Этот механизм обеспечивается сильным вырождением полупроводника в приконтактной области, а также чисто туннельным прохождением электронов через барьер. При $T > 50 \,\mathrm{K} \,\rho_c(T)$ убывает с ростом температуры. Перестроив зависимость $\rho_c(T)$ в координатах $\rho_c = f(10^3/T)$, легко убедиться в том, что при $T > 70 \,\mathrm{K}$ зависимость $\rho_c(T)$ является экспоненциальной. В этом случае токопрохождение определяется термополевым механизмом.

5. Обсуждение результатов эксперимента

Проанализируем полученные экспериментальные зависимости $\rho_c(T)$. Туннельный ток в окрестности T = 0 К

описывается выражением, полученным в работе Падовани и Стреттона [15]. Отметим, что при T = 0 плотность туннельного тока J_{FE} можно записать в следующем виде:

$$J_{FE} = qN_d V_{T0} \left[\exp\left(-\frac{\varphi_b - E_{f \text{ lim}} - qV}{E_{00}}\right) - \exp\left(-\frac{\varphi_b - E_{f \text{ lim}}}{E_{00}}\right) \right],$$
(1)

гле элементарный заряд. N_d q концентрация электронов, равная концентрации $V_{T0} = q^2/h\varepsilon_0\varepsilon_s\kappa^2$ скорость мелких доноров, электронов через контакт, прохождения $\kappa = \lg[4(\varphi_b - E_{f \lim})/E_{f \lim}]$ — коэффициент порядка 1, $E_{f \text{ lim}} = (3\pi^2)^{2/3} \hbar^2 N_d^{2/3} / 2m_n^*$ — предельная энергия Ферми для сильно вырожденного полупроводника [16], $E_{00} = 0.054 [(m_0/m^*)(N_d/10^{20})(11.7/\varepsilon_s)]^{0.5}$ — характеристическая энергия туннелирования (в эВ), m_n^* эффективная масса электрона, $\hbar(h)$ — постоянная Планка, φ_b — потенциальная энергия электрона, т.е. высота барьера (в эВ), V — приложенное напряжение, *ε*_s — диэлектрическая проницаемость полупроводника, *ε*₀ — диэлектрическая проницаемость вакуума.

Обобщим выражение для тока, протекающего через контакт с вырожденным полупроводником, на случай $T \neq 0$. Сделаем это, заменив выражение для E_{00} на $E_0 = E_{00} \operatorname{cth}(E_{00}/kT)$ (k — постоянная Больцмана), что, согласно [17], позволяет описать участок термополевой эмиссии. Учтем также зависимость скорости прохождения электронов через контакт (V_T) и энергии Ферми (E_f) от температуры, используя общее выражение для тока полевой эмиссии, приведенное в [15]. В результате для плотности тока получим

$$J_F^*(T) = qN_d V_T(T) \left[\exp\left(-\frac{\varphi_b - E_f(T) - qV}{E_0(T)}\right) - \exp\left(-\frac{\varphi_b - E_f(T)}{E_0(T)}\right) \right],$$
(2)

где $V_T(T) = 2\pi A(m_n^*/m_0)TE_{00}/[\kappa k \sin(\kappa \pi kT/2E_{00})qN_d],$ A — постоянная Ричардсона.

При T = 0 выражение (2) переходит в (1), однако при $T \neq 0$ оно отличается от выражения для туннельного тока, приведенного в [15]. Отличие заключается в том, что в работе Падовани–Стреттона [15] вместо $E_0(T)$ фигурирует E_{00} . В случае, когда полупроводник сильно вырожден как при низких, так и при высоких температурах, имеет место достаточно хорошее равенство $E_0(T) \approx E_{00}$. Однако для не сильно вырожденных полупроводников в области достаточно высоких температур $E_0(T) < E_{00}$, и это приводит к тому, что экспоненциальные члены, в согласии с [17], совпадают с таковыми для случая термополевого тока.

Выражение для контактного удельного сопротивления $\rho_c(T)$ получается дифференцированием плотности тока (2) по приложенному смещению и после дифференцирования принимает вид

$$\rho_c(T) = \frac{E_0(T)}{q^2 N_d V_T(T)} \left[\exp\left(\frac{\varphi_b - E_f(T)}{E_0(T)}\right) \right].$$
(3)

Физика и техника полупроводников, 2014, том 48, вып. 10

Температурная зависимость $E_f(T)$ находится из уравнения электрической нейтральности полупроводника вида

$$N_d = n = \frac{2}{\sqrt{\pi}} N_c \left(\frac{T}{300}\right)^{3/2} \int_0^\infty \frac{x^{0.5}}{1 + \exp(x - \varepsilon_f)} \, dx, \quad (4)$$

где N_c — эффективная плотность состояний в зоне проводимости при T = 300 K, $\varepsilon_f(T) = E_f(T)/kT$,

Теоретическая кривая на рис. З построена с использованием формулы (3). Как видно из рисунка, согласие между экспериментальной и теоретической зависимостями достаточно хорошее. В области температур от 4.2 до 40 К величина ρ_c постоянна, а при $T \leq 65$ К $E_0 \approx E_{00}$. При T > 65 К начинается более сильный спад теоретической кривой для $\rho_c(T)$, и этот участок соответствует термополевой эмиссии. Особенностью теоретической кривой является то, что для ее реализации нужен всего один параметр (φ_b), равный 0.36 эВ.

6. Заключение

Несмотря на сравнительно высокую неоднородность границы раздела контактообразующий слой $-n^+$ -GaN, омичность контактов Au-Ti-Al-Ti $-n^+$ -GaN сохраняется во всем диапазоне температур измерения 4.2-300 К. Полученные экспериментальные результаты и их теоретическая обработка свидетельствуют о полевой природе токопрохождения на участке насыщения $\rho_c(T)$ в области температур 4.2-50 К для омических контактов к GaN с вырожденным n^+ -слоем в приконтактной области полупроводника и термополевой в области температур от 50 до 300 К.

Список литературы

- [1] *Ohmic Contacts to Semiconductor*, ed. by B. Schwartz (Electrochem Soc. Inc., 1969).
- [2] Т.В. Бланк, Ю.А. Гольдберг. ФТП, 41 (11), 1281 (2007).
- [3] R. Quay. *Gallium Nitride Electronics* (Springer-Verlag, Berlin, Heidelberg, 2008).
- [4] А.Г. Васильев, Ю.В. Колковский, Ю.А. Концевой. СВЧ транзисторы на широкозонных полупроводниках (М., Техносфера, 2011).
- [5] М.Г. Мильвидский, В.Б. Освенский. Структурные дефекты в эпитаксиальных слоях полупроводниковых приборов (М., Металлургия, 1985).
- [6] А.Н. Ковалев. Транзисторы на основе полупроводниковых гетероструктур (М., Изд. дом МИСиС, 2011).
- [7] К.Л. Ернишерлова, А.В. Лютцау, Л.Ф. Сейдман, Э.М. Темпер, А.М. Коновалов, В.В. Пищагин. В сб.: Нитриды галлия, индия и алюминия — структуры и приборы. Тез. докл. 9-й Всеросс. конф. (М.-СПб., 2013) с 273.
- [8] W. Knap, S. Contreras, H. Alause, S. Skierbiszewski, J. Camassel, M. Dyakonov, J.L. Robert, J. Yang, Q. Chen, M. Asif Khan, M.L. Sadowski, S. Huant, F.H. Yang, M. Goiran, J. Leotin, M.S. Shur. Appl. Phys. Lett., **70** (16), 2123 (1997).

- [9] O.A. Klimenko, W. Knap, B. Iniguez, D. Coquillat, Y.A. Mityagin, F. Teppe, N. Dyakonova, H. Videlier, D. But, F. Lime, J. Marczewski, K. Kucharski. J. Appl. Phys., 112 (1), 014 506 (2012).
- [10] R. Tauk, J. Lusakowski, W. Knap, A. Tiberj, Z. Bougrioua, M. Azize, P. Lorenzini, M. Sakowicz, K. Karpierz, C. Fenouillet-Beranger, M. Casse, C. Gallon, F. Boeuf, T. Skotnicki. J. Appl. Phys., **102** (10), 103 701 (2007).
- [11] В.Н. Алфеев, П.А. Бахтин, А.А. Васенков, И.Д. Войтович, В.И. Махов. Интегральные схемы и микроэлектронные устройства на сверхпроводниках (М., Радио и связь, 1985).
- [12] D.K. Schroder. Semiconductor Material and Device Characterisation (Wiley, New Jersey, 2006).
- [13] S. Noor Mohammad. J. Appl. Phys., 95 (12), 7970 (2004).
- [14] S. Fernández, R. Peña, M.T. Rodrigo, J. Plaza, M. Verdú, F.J. Sánchez, M.T. Montojo. Appl. Phys. Lett., **90** (8), 083 504 (2007).
- [15] F.A. Padovani, R. Stratton. Sol. St. Electron., 9 (7), 695 (1966).
- [16] А.И. Ансельм. Введение в теорию полупроводников (СПб., Лань, 2008).
- [17] Contacts to Semiconductors. Fundamentals and Technology, ed. by L.J. Brillson (Noyes Publications, Park Ridge, New Jersey, USA, 1993) p. 29.

Редактор Л.В. Шаронова

Mechanism of current in the 4.2–400 K temperature range for

Au-Ti-Al-Ti-n+-GaN ohmic contact

A.V. Sachenko⁺, A.E. Belyaev⁺, N.S. Boltovets^{*}, R.V. Konakova^{+¶}, L.M. Kapitanchuk[‡], V.N. Sheremet⁺, Yu.N. Sveshnikov[#], A.S. Pilipchuk[•] ⁺V. Lashkaryov Institute of Semiconductor Physics,

V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
* State Enterprise Research Institute "Orion", 03057 Kyiv, Ukraine

[‡] Paton Electric Welding Institute,

National Academy of Sciences of Ukraine,

03068 Kyiv, Ukraine

Close Corporation "Elma-Malachite",

- 124460 Zelenograd, Moscow, Russia
- Institute of Physics, National Academy

of Sicences of Ukraine,

03028 Kyiv, Ukraine

Abstract We studied experimentally and explained theoretically the temperature dependence of contact resistivity, $\rho_c(T)$, in the 4.2–300 K temperature range for Au–Ti–Al–Ti– n^+ -GaN ohmic contacts. It is shown that the $\rho_c(T)$ curve flattens out in the low-temperature part (4.2–50 K) of the temperature range. As temperature grows, the contact resistivity ρ_c decreases exponentially. The calculated and experimental dependences $\rho_c(T)$ agree each with other. The results obtained enable one to draw a conclusion on field nature of current flow mechanism at the saturation part of $\rho_c(T)$ curve and thermal field mechanism at the exponential part.