¹⁹ Теплоемкость оксидов системы Bi₂O₃-SiO₂

© Л.Т. Денисова, Л.А. Иртюго, В.М. Денисов

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 15 апреля 2014 г.)

Исследована высокотемпературная теплоемкость $Bi_4Si_3O_{12}$, Bi_2SiO_5 и $Bi_{12}SiO_{20}$. Установлено, что между удельной теплоемкостью C_p^0 (298 K) и составом оксидов системы $Bi_2O_3 - SiO_2$ имеется корреляция.

1. Введение

Соединения бинарной системы Bi2O3-SiO2 в течение длительного времени привлекают внимание исследователей [1,2]. Связано это с тем, что монокристаллы Ві₁₂SiO₂₀ являются эффективными фотопроводниками с низкой темновой проводимостью. Сильная спектральная зависимость фотопроводимости и их электрооптических свойств позволяет использовать их в оптических устройствах [3]. Если оптические и другие свойства Bi₁₂SiO₂₀ хорошо изучены [4], то термодинамических данных для системы Bi₂O₃-SiO₂ крайне мало. Ранее нами [5] исследована теплоемкость соединения Bi₂SiO₅, которое имеется только на метастабильной фазовой диаграмме Bi₂O₃-SiO₂ [6,7], а также эвтектики $Bi_2O_3 + 25 \text{ mol.}\%$ SiO₂. Считалось, что образуемые в системе Bi_2O_3 -SiO₂ соединения $Bi_4Si_3O_{12}$ и $Bi_{12}SiO_{20}$ плавятся конгруэнтно. Поскольку выращивание монокристаллов Bi₄Si₃O₁₂ из расплава встречает серьезные трудности, в работе [8] проведены исследования фазовых равновесий в системе Bi₂O₃-SiO₂, которые указывают на инконгруэнтное плавление эвлитина, образующегося при *T* = 1293 K.

Целью настоящей работы являются исследования высокотемпературной теплоемкости оксидов системы Bi₂O₃-SiO₂ и установление влияния их состава на удельную теплоемкость.

2. Эксперимент

Поскольку соединение $Bi_4Si_3O_{12}$ плавится инконгруэнтно, то исходные образцы для измерений C_p получались твердофазным синтезом из исходных оксидов Bi_2O_3 и SiO_2 (осч). Предварительно проводился отжиг исходных оксидов при T = 1003 K для Bi_2O_3 и при T = 1173 K для SiO_2 до постоянства массы. Прокаленные, охлажденные до комнатной температуры исходные оксиды стехиометрического состава перемешивались в агатовой ступке. Из полученной смеси прессовались таблетки, которые подвергались отжигу на воздухе в течение 6 h при температуре 1073 K и после перетирания в течение 12 h при T = 1173 K с одним промежуточным перетиранием. Контроль полученных образцов проводился на дифрактометре X'Pert Pro (Panalytical, Нидерланды) с использованием излучения CuK_{α} . На дифрактограммах присутствовали только рефлексы, отвечающие соединению $Bi_4Si_3O_{12}$ (рис. 1). Полученные нами значения параметров элементарной ячейки для этого соединения совпадают с данными, приведенными в [9].

Образцы силленита висмута Bi₁₂SiO₂₀ изготовлены из нелегированных монокристаллов, выращенных методом Чохральского.

Теплоемкость C_p измерялась в платиновых тиглях методом дифференциальной сканирующей калориметрии на приборе STA 449 С Jupiter (NETZSCH). Методика измерений описана нами ранее в [10]. Обработка экспериментальных результатов проводилась с помощью пакета анализа NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12.

3. Результаты и их обсуждение

На рис. 2 показано влияние температуры на удельную теплоемкость оксидов системы $Bi_2O_3-SiO_2$. Из этих данных следует, что значения для $Bi_4Si_3O_{12}$ и Bi_2SiO_5

Рис. 1. Дифрактограмма $Bi_4Si_3O_{12}$ при комнатной температуре.

Рис. 2. Влияние температуры на удельную теплоемкость оксидов системы Bi_2O_3 -SiO₂. $1 - Bi_4Si_3O_{12}$, $2 - Bi_2SiO_5$, 3 - эвтектика (25 mol.% SiO₂), $4 - Bi_{12}SiO_{20}$.

имеют довольно близкие значения. Не исключено, что это связано со следующим. Несмотря на то что соединение Bi_2SiO_5 отмечено только на метастабильной фазовой диаграмме Bi_2O_3 —SiO₂ [6–8], оно может быть охлаждено до комнатной температуры без фазового перехода. В то же время при повторном отжиге метастабильное соединение переходит в стабильное $Bi_4Si_3O_{12}$ около 1158 К [7]. Исследование оксидных висмутсодержащих кристаллических фаз при ударно-волновом нагружении [11] показало, что метастабильное соединение Bi_2GeO_5 распадается в последовательности

$$Bi_2GeO_5 \rightarrow GeO_2 + \delta - Bi_2O_3,$$
 (1)

$$\text{GeO}_2 + \delta - \text{Bi}_2\text{O}_3 \rightarrow \text{Bi}_4\text{Ge}_3\text{O}_{12} + \text{Bi}_{12}\text{GeO}_{20}.$$
 (2)

Согласно [6], аналогичная схема распада наблюдается в образцах метастабильного соединения Bi_2SiO_5 . Кроме того, принимая во внимание инконгруэнтный характер плавления $Bi_4Si_3O_{12}$, выращивание этих монокристаллов в [6] проводили из раствора-расплава ($Bi_2O_3 + SiO_2$). Установлено, что во всех случаях в монокристаллах $Bi_4Si_3O_{12}$ в качестве примеси присутствовала метастабильная фаза Bi_2SiO_5 .

Можно отметить, что значения теплоемкости $Bi_{12}SiO_{20}$ (рис. 2) хорошо согласуются с данными, полученными нами ранее [12].

Для $Bi_4Si_3O_{12}$ полученные значения хорошо описываются уравнением Майера-Келли [13]

$$C_p = a + bT + cT^{-2}, (3)$$

которое в единицах J/(mol · K) имеет следующий вид:

$$C_p = 427.29 + 11.34 \cdot 10^{-2}T - 32.21 \cdot 10^5 T^{-2}.$$
 (4)

Наличие температурной зависимости *C_p* позволяет по известным термодинамическим уравнениям определить

изменения энтальпии $H^0(T) - H^o(374\,\mathrm{K})$ и энтропии $S^0(T) - S^0(374\,\mathrm{K})$. Полученные результаты приведены в таблице.

Из таблицы следует, что при температурах выше $\sim 510 \text{ K}$ значения теплоемкости C_p превышают классический предел Дюлонга-Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице $\text{Bi}_4\text{Si}_3\text{O}_{12}$ (s = 19). При этом нужно учитывать, что при сравнении экспериментальных величин теплоемкости со значением 3Rs необходимо использовать теплоемкость при постоянном объеме C_V , а не при постоянном давлении C_p . Оценку C_V по экспериментальным величинам можно выполнить с помощью соотношения [14]

$$C_p = C_V (1 + \gamma \beta T), \tag{5}$$

где γ — постоянная Грюнайзена, β — коэффициент объемного термического расширения. Все входящие в уравнение (5) члены являются температурно-зависимыми характеристиками вещества. Поскольку эти величины даны либо для комнатных температур, либо для небольшого интервала температур [9], то по данному уравнению можно сделать только оценочный расчет. Установлено, что молярная теплоемкость при постоянных давлении и объеме не имеет значительных различий, однако дилатационная поправка несколько уменьшает рост теплоемкости с температурой.

Из рис. 2 следует, что с увеличением содержания в оксидных соединениях системы Bi_2O_3 —SiO₂ оксида висмута их теплоемкость в целом уменьшается. Ранее нами было показано, что между удельной теплоемкостью оксидов и их составом имеется корреляция [5]. С учетом результатов, полученных в настоящей работе, а также данных [5] подобная зависимость показана на рис. 3.

Термодинамические свойства Bi₄Si₃O₁₂

<i>Т</i> , К	$C_p, J(\text{mol} \cdot \mathbf{K})$	$H^{0}(T) - H^{0}(374 \mathrm{K}),$ kJ/mol	$S^{0}(T) - S^{0}(374 \mathrm{K}),$ J(mol · K)
374	446.8	_	_
400	452.7	11.69	30.22
450	462.6	34.58	84.12
500	471.3	57.92	133.3
550	479.2	81.69	178.6
600	486.5	105.8	220.6
650	493.5	130.3	259.8
700	500.2	155.2	296.6
750	506.7	180.3	331.4
800	513.1	205.8	364.3
850	519.3	231.6	395.6
900	525.5	257.8	425.4
950	531.5	284.2	454.0
1000	537.6	310.9	481.4
1050	543.5	338.0	507.8
1100	549.5	365.3	533.2
1150	555.4	392.9	557.8
1200	561.2	420.8	581.5

Рис. 3. Влияние состава системы Bi_2O_3 -SiO₂ на стандартную теплоемкость. *1* — данные [15], *2* — наши данные, *3* — [4].

Видно, что из общей зависимости выпадают данные для метастабильного соединения Bi_2SiO_5 . Не исключено, что это связано со свойствами данного соединения, которые отмечались выше. Видно, что и в случае системы Bi_2O_3 -SiO₂ имеется определенная корреляция между составом оксидов и их удельной теплоемкостью. Кроме того, имеется корреляция наших результатов с данными других авторов для этой системы. Наблюдаемое отрицательное отклонение значений C_p^0 от аддитивности (правило Неймана-Коппа) отражает изменения в частотах колебаний атомов в сложных оксидах по сравнению с простыми оксидами [14]. Наличие подобных зависимостей C_p^0 от состава позволяет уточнить малонадежные данные и получить отсутствующие данные.

4. Заключение

Исследованы температурные зависимости теплоемкости C_p оксидных соединений системы $Bi_2O_3-SiO_2$. Отмечено, что имеется корреляция между составом этих оксидов и их удельной теплоемкостью.

Список литературы

- [1] В.М. Денисов, Н.В. Белоусова, Г.К. Моисеев, С.Г. Бахвалов, С.А. Истомин, Э.А. Пастухов. Висмутсодержащие материалы: строение и физико-химические свойства. УрО РАН, Екатеринбург (2000). 526 с.
- [2] Ю.М. Юхин, Ю.И. Михайлов. Химия висмутовых соединений и материалов. СО РАН, Новосибирск (2001). 360 с.
- [3] V.M. Skorikov, T.U. Milenov, A.V. Egorysheva. Phys. Status Solidi B **244**, *9*, 3292 (2007).
- [4] Ю.Ф. Каргин, В.И. Бурков, А.А. Марьин, А.В. Егорышева. Кристаллы Bi₁₂M_xO_{20±δ} со структурой силленита. Синтез, строение, свойства. ИОНХ РАН, М. (2004). 316 с.
- [5] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова. ФТТ 53, 10, 2069 (2011).

- [6] В.П. Жереб. Метастабильные состояния в оксидных висмутсодержащих системах. МАКС Пресс, М. (2003). 163 с.
- [7] Y.T. Fei, S.J. Fan, R.Y. Sun, H.Y. Xu, M. Ishii. J. Mater. Sci. Lett. 19, 893 (2000).
- [8] Ю.Ф. Каргин, В.П. Жереб, В.М. Скориков. ЖНХ 36, 10, 2611 (1991).
- [9] Б.В. Шульгин, Т.И. Полупанова, А.В. Кружалов, В.М. Скориков. Ортогерманат висмута. Внешторгиздат, Екатеринбург (1992). 170 с.
- [10] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [11] Л.С. Тарасова, В.И. Кирко, В.П. Жереб, В.Ф. Каргин. ФГВ 31, 4, 84 (1995).
- [12] Л.Т. Денисова, Л.А. Иртюго, В.М. Денисов, В.С. Биронт. Журн. СФУ. Техника и технологии 2, 3, 214 (2010).
- [13] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 8, 3243 (1932).
- [14] Л.А. Резницкий. Калориметрия твердого тела (структурные, магнитные, электронные превращения). Изд-во МГУ, М. (1981). 184 с.
- [15] J. Leitner, D. Sedmidubský, P. Chuchvalec. Ceramics-Silukáty 46, 1, 29 (2002).