05,12

Конкуренция двух механизмов торможения доменных стенок в молекулярном ферримагнетике $[Mn\{(R/S)-pn\}]_2[Mn\{(R/S)-pn\}_2(H_2O)][Cr(CN)_6]_2$

© Р.Б. Моргунов, М.В. Кирман, А.Д. Таланцев

Институт проблем химической физики РАН, Черноголовка, Россия

E-mail: morgunov2005@yandex.ru

(Поступила в Редакцию 27 марта 2014 г.)

Исследована температурная зависимость динамики перемагничивания хирального молекулярного ферримагнетика $[Mn\{(R/S)-pn\}]_2[Mn\{(R/S)-pn\}_2(H_2O)][Cr(CN)_6]_2$ при низких частотах 1–1400 Hz, характерных для движения доменных стенок. Установлено, что на диаграмме Коула–Коула идентифицируются режимы релаксации (при температурах T > 10 K) и ползучести (при T < 10 K) доменных стенок, и извлечены основные параметры, определяющие эти режимы и переход между ними. Показано, что количественные закономерности перехода между режимами движения доменных стенок отвечают представлениям о конкуренции вкладов двух механизмов в торможение доменных стенок (периодического рельефа Пайерлса и случайных дефектов структуры).

Работа выполнена при финансовой поддержке гранта РФФИ № 14-02-31022 мол_а.

1. Введение

Металлорганические ферромагнетики, синтезированные в химических лабораториях и допускающие химический и спиновый дизайн (модификацию структуры кристаллов, их спиновой структуры и магнитных свойств), демонстрируют ряд новых фундаментальных явлений, связанных с нелинейными спиновыми возбуждениями [1-6]. В [2-5] обсуждались образования нового типа — спиновые солитоны. Несмотря на активность в исследовании молекулярных ферромагнетиков, о доменных стенках в материалах этого класса практически ничего не известно. Существуют лишь гипотезы о том, какими они могут быть [7]. Особая специфика доменных стенок в молекулярных магнетиках очевидна. В металлорганических ферримагнетиках период решетки оказывается сопоставимым с шириной доменных стенок, узость которых обусловлена слабым обменным взаимодействием [8]. Это приводит к тому, что их динамика оказывается зависимой не столько от дефектов структуры, сколько от фундаментального периодического рельефа Пайерлса. Кристаллическая структура молекулярного ферримагнетика $[Mn{(R/S)-pn}]_2[Mn{(R/S)-pn}_2(H_2O)][Cr(CN)_6]_2,$ выбранного нами для исследований, была детально определена в [1], а о высокочастотных нелинейных возбуждениях в нем сообщалось в [2-5]. В [6] были установлены основные режимы движения доменных стенок в $[Mn^{II}(H(R/S)-pn)(H_2O)][Mn^{III}(CN)_6] \cdot 2H_2O,$ дебаевское упругое колебание между препятствиями (relaxation), ползучесть (creep), скольжение (slide) и надбарьерное движение (switching). Было показано, что переходы между упомянутыми режимами возникают при увеличении амплитуды переменного

магнитного поля, инициирующего движение доменных стенок, либо длительности его приложения в одном направлении (т.е. при уменьшении частоты переменного магнитного поля). Нами установлено, что в соответствии с количественными оценками режимами, чувствительными к периодическому потенциалу Пайерлса, являются лишь релаксация и ползучесть [6]. Для установления роли дефектов и рельефа Пайерлса в динамике доменных стенок нужны количественные характеристики этих двух режимов, чувствительных к кристаллическому рельефу. Поэтому цель данной работы заключалась в извлечении параметров ползучести и релаксации доменных стенок низкочастотной динамики перемагничивания ИЗ магнитохирального молекулярного ферримагнетика $[Mn\{(R/S)-pn\}]_{2}[Mn\{(R/S)-pn\}_{2}(H_{2}O)][Cr(CN)_{6}]_{2}.$

2. Методика

Yellow Химический Needle синтез $[Mn{(R/S)-pn}]_2[Mn{(R/S)-pn}_2(H_2O)][Cr(CN)_6]$ подробно описан в [1]. Две цианидные группы каждого иона $[Cr(CN)_6]^{3-}$ соединены с двумя ионами Mn²⁺, образуя геликоидальные петли вдоль кристаллографической оси с, а четыре оставшиеся цианидные группы соединяют смежные петли. Один хиральный лиганд (S/R) - pn связан с ионом Mn^{2+} , а два других координированы двумя другими ионами Mn²⁺, которые участвуют в образовании петель. Кристаллы Yellow Needle являются хиральными 3D-ферримагнетиками Кюри $T_{\rm c} = 53 \, {\rm K},$ с температурой ось легкого намагничивания направлена вдоль оси с.

В нашей работе для измерения динамической магнитной восприимчивости χ использован СКВИД-магнитометр MPMS 5XL Quantum Design в режиме переменного магнитного поля с частотой v = 1-1400 Hz, амплитудой $h_{AC} = 2$ Ое при температуре T = 4.5-45 K. В процессе измерения переменное магнитное поле h_{AC} поддерживалось с точностью 0.01 Ое, а температура образца — с точностью 0.1 K.

3. Экспериментальные результаты

Частотные зависимости действительной χ' и мнимой χ'' частей магнитной восприимчивости $\chi = \chi' + i\chi''$ были получены в диапазоне частот $\nu = 1-1400$ Hz в интервале температур 4.5–45 K при амплитуде переменного магнитного поля $h_{AC} = 2$ Oe (рис. 1). До начала измерений образец был охлажден в нулевом магнитном поле. Наличие диссипативной части χ'' магнитного момента в магнитоупорядоченных материалах обусловлено потерями энергии на движение доменных стенок под действием переменного магнитного поля h_{AC} , а максимумы на зависимостях $\chi'(T)$ и $\chi''(T)$ характеризуют динамические свойства доменных стенок. Из рис. 1 видно, что при некоторой температуре ($T \approx 10-12$ K) происходит

Рис. 1. Зависимости действительной $\chi'(a)$ и мнимой $\chi''(b)$ составляющих магнитной восприимчивости образца от частоты переменного магнитного поля ν амплитудой 2 Ое при разных температурах в диапазоне 4.5–45 К.

резкое изменение вида частотной зависимости мнимой части магнитной восприимчивости $\chi''(v)$ (рис. 1, *b*).

Для анализа смены режимов намагничивания образцов в переменном магнитном поле на основе полученных частотных зависимостей $\chi'(v)$ и $\chi''(v)$ были построены диаграммы Коула-Коула, т.е. зависимости мнимой части магнитной восприимчивости от ее действительной части $\chi''(\chi')$ при изменении частоты (рис. 2). На рис. 2, а-с частота возрастает справа налево, как показано стрелкой на рис. 2, d. Построение диаграмм Коула-Коула при разных температурах является стандартной процедурой, применяемой для выявления смены режимов движения доменных стенок в условиях ограниченного диапазона измерительных частот. В [9] показано, что по мере изменения частоты переменного поля или его амплитуды можно ожидать последовательной смены режимов движения доменных стенок, перечисленных на рис. 2, d. Из этих режимов мы наблюдаем в нашей работе в чистом виде ползучесть при температурах ниже 4.5 К (рис. 2, а) и режим дебаевской релаксации при температурах выше 10 К (рис. 2, c). При промежуточных температурах эти два режима совмещаются (см. для примера рис. 2, b). Представляется важной последовательность смены режимов при повышении температуры. Релаксация наблюдается при более высоких температурах, чем ползучесть, в противоположность обычной температурной последовательности, наблюдаемой в большинстве материалов, где имеется единственный механизм торможения доменных стенок.

Из общих соображений и экспериментальных данных для тех материалов, в которых главным фактором торможения доменных стенок является случайный потенциал дефектов структуры [10], ясно, что по мере нагрева образца режим релаксации должен сменяться режимом ползучести. В условиях единственного механизма торможения дефектами последовательность смены режимов обусловлена тем, что при низких температурах термоактивационное преодоление барьеров заморожено, и наблюдается дебаевская релаксация (т. е. колебания доменной стенки между точками закрепления). При повышении температуры термоактивированные процессы преодоления препятствий доменными стенками становятся частыми, и в результате доменные стенки двигаются в режиме ползучести.

В нашем случае наблюдается обратная последовательность смены режимов движения доменных стенок. Режим ползучести обнаруживается при низких температурах, в то время как релаксация в основном проявляется при высоких температурах (рис. 2, a-c). Более того, из рис. 2, b и его сравнения со схемой на рис. 2, dследует, что режим ползучести при уменьшении частоты магнитного поля наступает раньше, чем вырождается режим релаксации. Эти факты свидетельствуют о том, что режим релаксации и режим ползучести относятся к разным системам торможения доменных стенок. "Замораживание" одного из типов препятствий оставляет возможность для ползучести доменных стенок через другие препятствия.

Рис. 2. Диаграммы Коула–Коула при частотах переменного магнитного поля 1–1400 Hz, амплитуде 2 Oe при температурах T = 4.5 (a), 5 (b) и 11 K (c). Сплошными линиями показаны аппроксимации экспериментальных точек: a — формулой (3) для режима ползучести, b — формулощи (1) и (3) для режима релаксации и ползучести, c — формулой (1) для режима релаксации. d — схематическая зависимость $\chi''(\chi')$ различных мод движения доменных стенок в ферромагнетике [9]: 1 — релаксация, 2 — ползучесть, 3 — скольжение, 4 — надбарьерное движение.

4. Обсуждение

Для получения количественной информации о режимах движения доменных стенок нами были проанализированы диаграммы Коула–Коула при различных температурах (рис. 2). При температурах 10–45 К диаграммы Коула–Коула представляли собой полуокружности, характерные для режима дебаевской релаксации. На рис. 2, c показана аппроксимация диаграммы Коула–Коула при T = 11 К формулой для дебаевской релаксации [11]

$$\chi''(\chi') = -\frac{\chi_t - \chi_s}{2 \operatorname{tg}[0.5(1-\alpha)\pi]} + \left\{ (\chi' - \chi_s)(\chi_t - \chi') + \frac{(\chi_t - \chi_s)^2}{4 \operatorname{tg}^2[0.5(1-\alpha)\pi]} \right\}^{1/2}, \quad (1)$$

где χ_t и χ_s — изотермическая ($\omega \to 0$) и адиабатическая ($\omega \to \infty$) магнитные восприимчивости соответственно, α — показатель полидисперсности, который характеризует ширину статистического распределения времен релаксации τ_r . Предельный случай $\alpha = 0$ соответствует релаксации дебаевского типа с монодисперсным значе-

нием τ_r . Другой предельный случай — $\alpha = 1$ — соответствует бесконечно широкому распределению времен релаксации τ_r . Температурная зависимость показателя полидисперсности α показана на рис. 3. Из нее следует, что при охлаждении спектр препятствий для движения доменных стенок сужается, стремясь к монодисперсному случаю, в то время как при повышении температуры в область T_c наблюдается тенденция к бесконечно широкому распределению времен релаксации. Этот результат вполне ожидаемый, поскольку при нагреве начинают преодолеваться все новые и новые типы препятствий.

При температуре ниже 10 К происходит смещение режима релаксации в область более высоких частот, и становится возможным увидеть другой режим движения — режим ползучести. Режим ползучести — термоактивированное открепление доменных стенок и их движение через потенциальный барьер [12]. Частотная зависимость магнитной восприимчивости в этом режиме описывается выражением [13]

$$\chi_{AC}(\omega) = \chi_{\infty} \left[1 + \frac{1}{(i\omega\tau_c)^{\beta}} \right], \tag{2}$$

где τ_c — время релаксации режима ползучести, β — дисперсия времен релаксации τ_c . На зависимости $\chi''(\chi')$

Рис. 3. Температурная зависимость показателя полидисперсности α , который характеризует ширину статистического распределения времен релаксации τ_r доменных стенок. Значения α получены из аппроксимации диаграмм Коула—Коула по формуле (1).

Рис. 4. Зависимость частоты максимума мнимой части магнитной восприимчивости ω от обратной температуры 1/T. Сплошной линией показана аппроксимация выражением (4) в диапазоне температур T = 4.5-45 К.

этому режиму соответствует монотонно возрастающий участок, описываемый уравнением вида

$$\chi'' = (\chi' - \chi_{\infty}) \operatorname{tg}(0.5\pi\beta). \tag{3}$$

На рис. 2, *а* показаны диаграмма Коула–Коула при T = 4.5 К и ее аппроксимация формулой (3) для режима ползучести. В промежуточной области, между 5 и 10 К, где наблюдаются сразу два режима движения (релаксации и ползучести), аппроксимация производилась с помощью линейной комбинации функций (1) и (3) (рис. 2, *b*).

В координатах $\chi''(\chi')$ дебаевской релаксации соответствует полуокружность, которая пересекает ось абсцисс в точках χ_t и χ_s . Точки на вершине полуокружности $\chi''(\chi')$ соответствуют условию $\omega = 2\pi \nu = \frac{1}{\tau_r}$

(ν — частота переменного магнитного поля, τ_r — время релаксации доменной стенки) и позволяют определить время релаксации доменной стенки при различных температурах.

На рис. 4 показаны зависимость частоты $\omega = 2\pi v$ = $\frac{1}{\tau_r}$ от обратной температуры и ее аппроксимация формулой Аррениуса в области высоких температур 10–45 К и в области низких температур 4.5–10 К

$$\ln\omega = \ln\omega_0 + \frac{E_A}{kT},\tag{4}$$

где ω_0 — частота, E_A — энергия активации, k — коэффициент Больцмана.

Из высокотемпературной аппроксимации были извлечены параметр $\omega_0 = 50 \,\text{Hz}$ и энергия активации открепления доменной стенки от препятствия $E_A = 1.52 \cdot 10^{-4}$ eV. Температура, при которой полученная энергия активации превысит величину kT, составляет ~ 2 К (ниже температур, при которых производились измерения). Это свидетельствует о том, что термоактивационный анализ режима движения доменных стенок неприменим в наших условиях. Это согласуется с высказанным выше утверждением о том, что движение доменных стенок в наших образцах контролируется не одним механизмом торможения. Более того, аномально низкое значение приведенной оценки энергии активации говорит о том, что механизмы преодоления препятствий отличаются от стандартных, связанных с термоактивационным преодолением локальных препятствий. На наш взгляд, это может означать, что существенную долю в торможении доменных стенок имеет периодический рельеф Пайерлса [14]. Изменение наклона зависимости $\ln \omega(1/T)$ при низких температурах соответствует вполне реалистичным активационным параметрам $\omega_0 = 1.14 \text{ MHz}$ и $E_A = 1.10^{-2} \text{ eV} (107 \text{ K})$, которые подтверждают существование второго типа препятствий, которые по сравнению с высокотемпературным режимом в большей степени отвечают традиционным механизмам их преодоления доменными стенками. Эти результаты позволяют предполагать, что при высоких температурах доминирует дебаевская релаксация доменных стенок, закрепленных в поле случайного потенциала дефектов структуры, в то время как при низких температурах наблюдается режим ползучести в периодическом потенциале рельефа Пайерлса, не описываемый корректно термоактивационным анализом.

5. Заключение

Динамика движения доменных стенок в молекулярном ферримагнетике $[Mn\{(R/S)-pn\}]_2[Mn\{(R/S)-pn\}_2(H_2O)][Cr(CN)_6]_2$ определяется двумя конкурирующими типами препятствий, которые в совокупности не подчиняются аррениусовской температурной зависимости и проявляют последовательность смены режимов (релаксации и ползучести), обратную традиционному типу движения доменных стенок в случайном потенциале дефектов структуры. Это свидетельствует о возможности существенного вклада периодического рельефа Пайерлса в торможение доменных стенок наряду со структурными дефектами.

Список литературы

- K. Inoue, H. Imai, P.S. Ghalsasi, K. Kikuchi, M. Ohba, H. Okawa, J.V. Yakhmi. Angew. Chem. Int. Ed. 113, 4372 (2001).
- [2] J. Kishine, K. Inoue, Y. Yoshida. Prog. Theor. Phys. Suppl. 159, 82 (2005).
- [3] Р.Б. Моргунов, В.Л. Бердинский, М.В. Кирман, К. Иное, Ж. Кишине, И. Йошида, И. Танимото. Письма в ЖЭТФ 84, 524 (2006).
- [4] R.B. Morgunov, M.V. Kirman, K. Inoue, Y. Tanimoto, J. Kishine, A.S. Ovchinnikov, O. Kazakova. Phys. Rev. B 77, 184 419 (2008).
- [5] J. Kishine, A.S. Ovchinnikov. Phys. Rev. B 79, 220405 (2009).
- [6] F. Mushenok, O. Koplak, R. Morgunov. Eur. Phys. J. B 84, 219 (2011).
- [7] F. Li, T. Nattermann, V.L. Pokrovsky. Phys. Rev. Lett. 108, 107 203 (2012).
- [8] Р.Б. Моргунов, М.В. Кирман, В.Л. Бердинский, К. Inoue, J. Kishine. ЖЭТФ 134, 95 (2008).
- [9] W. Kleemann. Ann. Rev. Mater. Res. 37, 415 (2007).
- [10] I.F. Lyuksyutov, T. Nattermann, V. Pokrovsky. Phys. Rev. B 59, 4260 (1999).
- [11] O. Petracic, S. Sahoo, Ch. Binek, W. Kleemann, J.B. Sousa, S. Cardoso, P.P. Freitas. Phase Trans. 76, 367 (2003).
- [12] T. Nattermann, V. Pokrovsky, V.M. Vinokur. Phys. Rev. Lett. 87, 197005 (2001).
- [13] X. Chen, O. Sichelschmidt, W. Kleemann, O. Petracic, Ch. Binek, J.B. Sousa, S. Cardoso, P.P. Freitas. Phys. Rev. Lett. 89, 137 203 (2002).
- [14] K.S. Novoselov, A.K. Geim, S.V. Dubonos, E.W. Hill, I.V. Grigorieva. Nature 426, 812 (2003).