03,09

Нестационарная фотоэдс в кристаллах SiC, облученных реакторными нейтронами

© М.А. Брюшинин, В.В. Куликов, Е.В. Мокрушина, Е.Н. Мохов, А.А. Петров, И.А. Соколов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: mb@mail.ioffe.ru

(Поступила в Редакцию 7 апреля 2014 г.)

Экспериментально исследован эффект нестационарной фотоэдс в кристаллах 6*H*-SiC, подвергнутых облучению реакторными нейтронами. Изучены зависимости амплитуды сигнала от частоты фазовой модуляции, пространственной частоты, интенсивности света и амплитуды внешнего переменного поля. Для объяснения необычной частотной зависимости сигнала использована двухуровневая модель полупроводника, учитывающая присутствие мелких ловушек. Фотоэлектрические параметры кристаллов определены для длины волны света $\lambda = 532$ nm.

1. Введение

В течение довольно продолжительного времени формирование динамических решеток объемного заряда рассматривалось как составляющая процесса голографической записи в фоторефрактивных средах [1,2]. С открытием нестационарной фотоэдс, возбуждаемой на динамических зарядовых решетках [3], появились два новых направления, использующих данный эффект и имеющих самостоятельную ценность: исследование фотоэлектрических свойств полупроводников [4-13] и детектирование оптических фазомодулированных сигналов [14-21]. Эффект нестационарной фотоэдс заключается в возникновении переменного электрического тока в образце, освещаемом колеблющейся интерференционной картиной. Поскольку ток появляется вследствие периодических пространственных сдвигов решеток фотопроводимости и поля пространственного заряда, методика, основанная на этом эффекте, позволяет определить ряд фотоэлектрических параметров (тип и величину проводимости, время жизни, диффузионную длину и подвижность носителей заряда). Методика может применяться для изучения центросимметричных и нецентросимметричных сред.

Карбид кремния принято рассматривать как один из перспективных материалов опто- и силовой электроники [22–26]. Высокая термическая, химическая и радиационная стойкость SiC позволяет использовать его при изготовлении детекторов ионизирующего излучения [27–30]. Исследование волн пространственной перезарядки ловушек, возбуждаемых в постоянном электрическом поле, уже проводилось в недопированных и необлученных кристаллах карбида кремния [31,32]. В настоящей работе мы исследуем предварительно облученные реакторными нейтронами кристаллы SiC, используя нерезонансные методики возбуждения нестационарной фотоэдс.

2. Экспериментальные методы

Эксперименты по изучению нестационарной фотоэдс в кристаллах SiC выполнены на установке, использовавшейся ранее для исследования других широкозонных полупроводников и наноструктурированных материалов [6-11,33,34]. Свет второй гармоники Nd: YAG-лазера $(\lambda = 532 \,\mathrm{nm}, P_{\mathrm{out}} \simeq 20 \,\mathrm{mW})$ разделялся на два луча, которые затем формировали на поверхности образца интерференционную картину со средней интенсивностью І₀, пространственной частотой К и контрастом т (m = 0.45 и 0.98 в экспериментах с внешним полем и безнего соответственно). С помощью электрооптического модулятора сигнальный луч модулировался по фазе с амплитудой $\delta = 0.61$ и частотой ω . Плоскость поляризации света была перпендикулярна плоскости падения. Фототок, возникающий в образце, приводил к появлению напряжения на нагрузочном сопротивлении. Этот сигнал усиливался и затем измерялся спектр-анализаторами СК4-56, СК4-58. В экспериментах с внешним электрическим полем к кристаллу прикладывалось синусоидальное напряжение с частотой 100 kHz.

Для дополнительного исследования релаксации фотопроводимости мы применили стандартную методику, описанную, например, в [35] и заключающуюся в измерении частотной характеристики отклика фотопроводимости на амплитудно-модулированный свет. Синусоидальная модуляция интенсивности света создавалась электрооптическим модулятором и имела глубину $m_{AM} = 0.35$. К кристаллам прикладывалось постоянное напряжение 400 V, достаточное для обеспечения пробоя блокирующего электрода. Спектры поглощения света измерены на спектр-фотометре СФ-8.

Кристаллы SiC политипа 6*H* были выращены сублимационным сандвич-методом [36]. Рост осуществлялся в атмосфере аргона при температуре 2400°С. Образцы были легированы донорной примесью (азотом) и акцепторными примесями алюминия и бора, содержание которых было около 10^{17} cm^{-3} . Полученные образцы имели *n*-тип проводимости с концентрацией электронов $(5-10) \cdot 10^{17} \text{ cm}^{-3}$. После выращивания кристаллы шлифовались и полировались до толщины ~ 0.5 mm. Затем кристаллы травились в расплаве щелочи (КОН) при температуре 480°C в течение 20 min для удаления нарушенного при механической обработке поверхностного слоя и определения плотности торчковых дислокаций. Плотность таких дислокаций составляла порядка 10^3 cm^{-2} .

Далее кристаллы облучались реакторными нейтронами при температуре около $100-150^{\circ}$ С. Перед облучением от кристалла отрезалась часть, которая не облучалась и служила эталоном для последующих измерений. Энергия пучка реакторных нейтронов варьировалась в широких пределах, причем поток тепловых нейтронов составлял $5.5 \cdot 10^{13}$ cm⁻² · s⁻¹, а поток быстрых нейтронов — $3.8 \cdot 10^{12}$ cm⁻² · s⁻¹. В настоящей работе для кристаллов с дозами облучения 10^{17} и 10^{18} cm⁻² используются соответствующие обозначения SiC-17 и SiC-18 (для исходного необлученного кристалла — SiC-0).

Образец SiC-17 имел размеры $6.0 \times 1.0 \times 0.47$ mm, а образец SiC-18 — $6.0 \times 1.0 \times 0.38$ mm. Передние и задние поверхности (6.0×1.0 mm), являющиеся срезом кристалла (0001), имели оптическое качество. На боковые поверхности (6.0×0.47 и 6.0×0.38 mm) были нанесены электроды с помощью серебряной пасты.

3. Спектр поглощения света и фотопроводимость

Прежде чем перейти к рассмотрению эффекта нестационарной фотоэдс, имеет смысл изучить оптические и фотоэлектрические свойства кристаллов с помощью стандартных методик. Спектры поглощения света исследовавшихся кристаллов SiC представлены на рис. 1. Ис-

Рис. 1. Спектральные зависимости коэффициента поглощения света. I - SiC-0, 2 - SiC-17, 3 - SiC-18. Отдельными точками показаны значения, определенные по пропусканию лазерного излучения ($\lambda = 532 \text{ nm}$).

Рис. 2. Частотные зависимости отклика фотопроводимости на амплитудно-модулированный свет ($\lambda = 532$ nm). Аппроксимация с использованием выражений для одно- и двухуровневой моделей полупроводника показана тонкими пунктирными и сплошными линиями соответственно.

ходные (необлученные) пластины карбида кремния имеют бледно-зеленый оттенок, связанный с максимумом коэффициента поглощения в области $\lambda = 600-680$ nm. Появление этого максимума, по всей видимости, обусловлено присутствием азота в кристаллах SiC [37,38]. После облучения нейтронами пластины становятся темными без какого-либо цветового оттенка. Этот факт объясняется появлением плеча на спектральной зависимости $\alpha(\lambda)$ в области видимого света. Следует отметить неравномерность изменений, вносимых нейтронным облучением: в области $\lambda = 400-1000$ nm коэффициент поглощения облученных образцов увеличивается в сравнении с необлученным образцом, а в области $\lambda = 1600-2000$ nm уменьшается.

Необлученный образец SiC-0 обладает довольно высокой темновой проводимостью $\sigma_d \simeq 3 \cdot 10^{-3} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$, тогда как фотопроводимость не превышает $\sigma_0 < 10^{-6} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$ при $\lambda = 532 \,\mathrm{nm}$ и $I_0 = 200 \,\mathrm{mW/cm^2}$ (оценки получены путем обычных измерений на постоянном токе). Соотношение $\sigma_0/\sigma_d < 10^{-3}$ указывает на непригодность необлученных кристаллов для экспериментов с динамическими решетками объемного заряда (в таких кристаллах амплитуда решеток мала, а вклад контактных сигналов, напротив, велик). В облученных образцах SiC-17 и SiC-18 выполняется обратное соотношение $\sigma_0 \gg \sigma_d$, и именно эти кристаллы представляют больший интерес для нас. На рис. 2 показаны частотные зависимости отклика фотопроводимости. Из представленных зависимостей следует, что увеличение дозы облучения нейтронами приводит к уменьшению фотопроводимости и времени ее релаксации. Частотная зависимость, измеренная в образце SiC-18, достаточно точно аппроксимируется выражением, известным для простейшей модели полупроводника с одним типом

1881

Параметры кристалла SiC-17, использовавшиеся при расчете частотных зависимостей на рис. 2

Параметр	I_0 , mW/cm ²	
	7.1	570
G_0,Ω^{-1}	$3.1\cdot10^{-10}$	$1.1\cdot 10^{-8}$
$ au_D$, s	$3.6 \cdot 10^{-4}$	$1.2\cdot 10^{-4}$
$ au_T$, s	$1.4 \cdot 10^{-4}$	$6.9 \cdot 10^{-5}$
$B, {\rm s}^{-1}$	$8.1 \cdot 10^2$	$1.4 \cdot 10^{3}$
$\sigma_0,\Omega^{-1}\cdot\mathrm{cm}^{-1}$	$2 \cdot 10^{-8}$	$7\cdot 10^{-7}$

частично компенсированных донорных центров [35]:

$$G_{\sim}(\omega) = \frac{m_{AM}G_0}{1 + i\omega\tau},\tag{1}$$

где G_0 — средняя фотопроводимость образца, τ — время релаксации фотопроводимости, которое в простейшем случае равно времени жизни носителей заряда. Параметры G_0 и τ для кристалла SiC-18 оказались следующими: $G_0 = 3.7 \cdot 10^{-12} \,\Omega^{-1}$ и $\tau = 0.22 \,\mu$ s. Из полученного значения G_0 с учетом геометрических размеров образца, области засветки и коэффициента поглощения света была оценена удельная фотопроводимость материала: $\sigma_0 \simeq 6 \cdot 10^{-10} \,\Omega^{-1} \cdot \text{cm}^{-1}$.

Нами также была предпринята попытка рассчитать частотные зависимости для SiC-17, используя выражение (1), однако экспериментальные и теоретические кривые заметно разошлись в области высоких частот (рис. 2, пунктирные линии). Это расхождение можно заметно уменьшить, если использовать двухуровневую модель полупроводника, в котором возбуждение электронов в зону проводимости может происходить как с глубоких доноров, так и с мелких ловушек [35]. При выполнении условий линейности генерации и рекомбинации для глубоких центров и слабого заполнения мелких ловушек мы можем использовать то же самое выражение (1), но с временем τ , зависящим от частоты [39]:

$$\tau(\omega) = \tau_D \left(1 + \frac{\tau_T^{-1} B^{-1}}{1 + i\omega B^{-1}} \right), \tag{2}$$

где τ_D , τ_T — времена жизни электрона по отношению к глубоким донорам и мелким ловушкам соответственно, $B = \beta + S_T I_0$ — полная скорость возбуждения электронов с мелких ловушек, β — скорость теплового возбуждения с мелких ловушек, S_T — сечение ионизации мелких ловушек. Аппроксимация с использованием выражений (1) и (2) позволила оценить ряд параметров кристалла SiC-17 (см. таблицу). Из значений G_0 также была рассчитана удельная фотопроводимость σ_0 (см. таблицу). Сравнение величин σ_0 для различных интенсивностей света указывает на небольшую нелинейность фотопроводимости: $\sigma_0 \propto I_0^{0.82}$.

4. Нестационарная фотоэдс

4.1. $E_0 = 0$. Амплитуда сигнала, детектируемого в наших экспериментах, находилась в пределах $10^{-12}-10^{-8}$ А, что примерно соответствует величине сигнала в модельных объектах — кристаллах со структурой силленита Bi₁₂Si(Ti,Ge)O₂₀ [4,6,33,34]. Такой амплитуды достаточно для уверенного детектирования сигнала с отношением сигнал/шум 0–80 dB. Фаза сигнала указывает на электронный тип проводимости образцов SiC-17 и SiC-18.

Нами были измерены частотные передаточные характеристики сигнала нестационарной фотоэдс в облученных образцах SiC-17 и SiC-18 (рис. 3). Сигнал в SiC-18 демонстрирует типичное поведение: наблюдаются рост амплитуды при низких частотах фазовой модуляции $\omega < \omega_1$ и частотно-независимый участок при более высоких частотах $\omega > \omega_1$. Эти области разделены так называемой частотой среза, лежащей в диапазоне $\omega_1/2\pi = 21-330$ Hz. Данные зависимости можно описывать выражением, полученным ранее для простейшей модели полупроводника с одним типом частично компенсированных донорных центров [4]:

$$j^{\omega} = \frac{m^2 \Delta \sigma_0 E_D}{2(1+K^2 L_D^2)} \frac{-i\omega/\omega_1}{1+i\omega/\omega_1},\tag{3}$$

$$\omega_1 = [\tau_M (1 + K^2 L_D^2)]^{-1}, \tag{4}$$

где $E_D = (k_B T/e)K$ — диффузионное поле, L_D — диффузионная длина электронов, $\tau_M = \epsilon_0 \epsilon / \sigma_0$ — время

Рис. 3. Частотные зависимости амплитуды нестационарной фотоэдс, измеренные при интенсивностях света $I_0 = 110, 210, 540, 1100, 2200 \text{ mW/cm}^2$ для SiC-17 ($K = 0.36 \,\mu\text{m}^{-1}$) и SiC-18 ($K = 0.22 \,\mu\text{m}^{-1}$).

максвелловской релаксации [2]. Однако для кристалла SiC-18 более точное описание экспериментальных зависимостей достигается при использовании модифицированного выражения, учитывающего сильное поглощение света [16]:

$$J^{\omega} \propto -i \, \frac{\omega}{\omega_1(0)} \ln \left[1 - i \, \frac{\omega_1(0)}{\omega} \right], \tag{5}$$

где $\omega_1(0)$ — значение частоты среза на поверхности кристалла. Рост сигнала в области низких частот является важным проявлением адаптивности процесса формирования объемного заряда в фотопроводящих материалах. В этой области частот сигнал мал вследствие того, что решетка поля пространственного заряда и решетка свободных носителей (решетка фотопроводимости) отслеживают движения интерференционной картины. Пространственный сдвиг между решетками поддерживается примерно равным $\pi/2$, что и приводит к малой величине сигнала. При более высоких частотах решетка с бо́льшим временем релаксации становится практически неподвижной, периодические пространственные сдвиги участок).

Частотная зависимость сигнала в SiC-17 имеет более сложный вид. При наличии спадающего участка передаточную характеристику обычно описывают следующим выражением [5]:

$$j^{\omega} = \frac{-(m^2 \Delta/2) \sigma_0 E_D i \omega \tau_M}{1 - \omega^2 \tau \tau_M + i \omega [\tau + \tau_M (1 + K^2 L_D^2)]}.$$
 (6)

Аппроксимация с использованием этого выражения оказалась, однако, не очень удачной (рис. 3, пунктирные линии). Описание с помощью двухуровневой модели полупроводника дает лучший результат (рис. 3, сплошные линии). Для этого мы использовали выражение (6) с эффективным временем жизни τ , зависящим от частоты [39], аналогично тому, как это было сделано в случае с откликом фотопроводимости. Так как на частотных зависимостях наблюдался один спадающий участок, выражение для $\tau(\omega)$ может быть упрощено

$$\tau(\omega) = \frac{\tau_D \tau_T^{-1} B^{-1}}{1 + i\omega B^{-1}}.$$
(7)

При таком описании частотных зависимостей, измеренных при малых K, подгоночными параметрами являются величины τ_M , τ_D/τ_T и B.

Частотная зависимость с двумя частотно-независимыми участками наблюдалась ранее в кристалле CdTe:Ge [13]. В качестве возможной причины такого поведения также указывался сложный характер релаксации зарядовых распределений из-за присутствия двух типов фотоактивных центров.

Рассмотрим поведение сигнала нестационарной фотоэдс в зависимости от уровня освещенности (рис. 4). Для кристалла SiC-18 эта зависимость оказалась довольно простой: амплитуда сигнала в максимуме частотной характеристики и частота среза прямо пропорциональны интенсивности света: J^{ω} , $\omega_1 \propto I_0$. Это однозначно указывает на линейность фотопроводимости в данном материале. Величина фотопроводимости в выбранном диапазоне интенсивностей света составила $\sigma_0 = (0.11-1.8) \cdot 10^{-9} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$. В кристалле SiC-17 также присутствует линейная зависимость амплитуды сигнала: $J^{\omega} \propto I_0$. Однако для частоты среза, определяемой по спаду сигнала в $\sqrt{2}$ раз, наблюдается сублинейная зависимость: $\omega_1 \propto I_0^{0.50}$. Данная нелинейность может быть обусловлена соответствующей нелинейность сбольшим временем релаксации проводимости частота среза определяется комбинацией времен τ и τ_M [5,39]. Кроме того, на начальном участке зависимости.

Следует отметить, что феноменологическое описание с помощью частоты среза ω_1 является недостаточно информативным для кристалла SiC-17 с его нетривиальным поведением фотопроводимости. Как уже отмечалось выше, частотные зависимости сигнала аппроксимируются с использованием двухуровневой модели кристалла и набора параметров τ_M , τ_D/τ_T и *B*. Зависимости этих параметров от интенсивности света представлены на рис. 5. Зависимость $au_M \propto I_0^{-0.51}$ свидетельствует о нелинейности фотопроводимости в SiC-17. Соответствующая величина фотопроводимости составляет $\sigma_0 = (2.1 - 26) \cdot 10^{-9} \, \Omega^{-1} \cdot \mathrm{cm}^{-1}$. Параметр τ_D / τ_T слабо зависит от уровня освещения: $\tau_D / \tau_T \propto I_0^{-0.41}$. Вместе с тем для параметра В была получена ожидаемая зависимость $B(I_0) = \beta + S_T I_0$ со скоростью тепловой генерации $\beta = 8.0 \cdot 10^4 \, \mathrm{s}^{-1}$ и сечением ионизации $S_T = 6.6 \cdot 10^5 \, \mathrm{J}^{-1} \cdot \mathrm{cm}^2.$

Рис. 4. Зависимости амплитуды сигнала и первой частоты среза от средней интенсивности света.

Рис. 5. Зависимости параметров τ_M , τ_D/τ_T и *B* от интенсивности света. SiC-17, $K = 0.36 \, \mu \text{m}^{-1}$.

Рис. 6. Зависимости амплитуды сигнала и первой частоты среза от пространственной частоты интерференционной картины.

Зависимость амплитуды сигнала от пространственной частоты интерференционной картины является еще одной характеристикой, обычно измеряемой в экспериментах с нестационарной фотоэдс (рис. 6). Поведение сигнала объясняется следующим образом: увеличение сигнала в области малых K происходит вследствие роста амплитуды решетки поля пространственного заряда, пропорциональной диффузионному полю E_D [2]. Спад сигнала при больших K является следствием диффузионного "размывания" решетки фотопроводимости. Выражение для описания зависимости известно из классической

теории нестационарной фотоэдс [4,5]

$$j^{\omega}(K) \propto \frac{K}{1 + K^2 L_D^2}.$$
(8)

По положению максимума на этой зависимости определяется диффузионная длина электронов в SiC-17: $L_D = 150 - 160$ nm. На рис. 6 также представлены зависимости частот среза от пространственной частоты экспериментальные и рассчитанные в соответствии с выражением (4) с $L_D = 52-58 \text{ nm}$ (SiC-17). Диффузионная длина электронов в SiC-18 мала настолько, что не может быть определена методом нестационарной фотоэдс. Следует отметить, что при $K > 20 \, \mu m^{-1}$ на процессе возбуждения нестационарной фотоэдс может сказываться уменьшение интенсивности света внутри кристалла, возникающее из-за увеличения коэффициента отражения света при больших углах падения. С этим, видимо, связана большая погрешность в оценках диффузионной длины, полученных из зависимостей $J^{\omega}(K)$ и ω₁(K).

4.2. $E_0 \neq 0$. Один из способов увеличения сигнала нестационарной фотоэдс заключается в подаче на кристалл высокочастотного переменного напряжения [33,34]. В настоящей работе мы использовали нерезонансное усиление сигнала, возникающее в ситуации, когда частота фазовой модуляции мала по сравнению с частотой внешнего поля, т.е. $\omega \ll \Omega$ [33]. Частотные передаточные характеристики сигнала нестационарной фотоэдс, возбуждаемой в SiC-17 при различных эффективных значениях внешнего поля, представлены на рис. 7. Рост амплитуды сигнала происходит из-за увеличения эффективности перераспределения электронов между светлыми и темными полосами интерференционной картины и соответствующего увеличения амплитуды стационарной решетки пространственного заряда [40]. Рост амплитуды должен сопровождаться уменьшением

Рис. 7. Частотные зависимости амплитуды нестационарной фотоэдс, возбуждаемой во внешнем переменном электрическом поле $E_0 = 0, 1.6, 3.6 \text{ kV/cm}$. SiC-17, $I_0 = 2400 \text{ mW/cm}^2$, $K = 2.6 \,\mu\text{m}^{-1}$.

Рис. 8. Зависимости амплитуды сигнала и первой частоты среза от эффективной величины внешнего электрического поля. SiC-17, $I_0 = 2400 \text{ mW/cm}^2$, $K = 2.6 \, \mu \text{m}^{-1}$.

частоты среза, при этом частотная характеристика должна сохранять вид, типичный для диффузионного режима возбуждения [33]:

$$j^{\omega} = \frac{m^2 \Delta}{2} \,\sigma_0 E_D \, \frac{-i\omega \tau_M (1 + E_0^2 / E_L^2)}{1 + i\omega \tau_M (1 + E_0^2 / E_M^2)},\tag{9}$$

$$\omega_1 = [\tau_M (1 + E_0^2 / E_M^2)]^{-1}.$$
 (10)

Здесь E_0 — эффективное значение приложенного электрического поля, а $E_L = k_B T/eL_D$ и $E_M = (K\mu\tau)^{-1}$ — некоторые характерные значения этого поля, μ — подвижность электронов. Для кристалла SiC-17 описанное поведение наблюдается в области частот 3–50 kHz. В области $\omega/2\pi < 3$ kHz на частотной зависимости появляется максимум, происхождение которого не объясняется в рамках существующей теории.

На рис. 8 представлены зависимости амплитуды сигнала, измеренной при $\omega > \omega_1$, и частоты среза от эффективного значения приложенного поля. Аппроксимация экспериментальных кривых с помощью выражений (9) и (10) позволила оценить диффузионную длину электронов: $L_D = 150-230$ nm.

5. Обсуждение результатов

В кристалле SiC-18 наблюдается стандартное поведение сигнала нестационарной фотоэдс: частотные зависимости описываются в рамках одноуровневой модели полупроводника, зависимости от интенсивности света и пространственной частоты также имеют стандартный вид. Исходя из полученных данных можно утверждать, что фотопроводимость линейно зависит от уровня освещенности, а соотношение между характерными временами имеет вид $\tau \ll \tau_M$. Значения удельной фотопроводимость пости, определенные в экспериментах с нестационарной фотоэдс и откликом на амплитудно-модулированный

свет, достаточно хорошо соответствуют друг другу (с точностью $\sim 30\%$).

Гораздо более сложное поведение фотоиндуцированных явлений обнаружено в кристалле SiC-17. Частотные зависимости отклика фотопроводимости и нестационарной фотоэдс не описываются в рамках одноуровневой модели полупроводника. Использование двухуровневой модели позволяет частично устранить это расхождение. Вместе с тем из-за ограниченного диапазона изменения частоты ω и недостаточно выраженных особенностей передаточных характеристик возникает несоответствие полученных параметров. Так, например, значение фотопроводимости кристалла в эксперименте с откликом на амплитудно-модулированный свет более чем на порядок превосходит значение этого параметра в эксперименте с нестационарной фотоэдс.

Сигнал нестационарной фотоэдс в SiC-17, помещенном во внешнее поле, также продемонстрировал неожиданные особенности: в области низких частот вместо монотонного роста появился максимум. Сравнивая рис. 2 и 7, можно предположить, что появление этого максимума связано со сложным характером релаксации фотопроводимости в этом частотном диапазоне. На это также указывает сильная "зашумленность" сигнала, спадающая к частотам порядка 1 kHz: спектральная плотность генерационно-рекомбинационного шума уменьшается начиная с частоты, определяемой временем релаксации фотопроводимости [17].

Полученные в работе результаты подтверждают общий характер изменения электрофизических свойств SiC в ходе радиационного легирования [28,30]. Относительно высокую проводимость исходных необлученных кристаллов принято связывать с присутствием донорной примеси азота, образующей уровни вблизи дна зоны проводимости. Облучение различными высокоэнергетическими частицами, в том числе реакторными нейтронами, создает целый набор компенсирующих акцепторных центров и приводит к соответствующему увеличению скорости рекомбинации, уменьшению времени жизни носителей и проводимости кристалла. В наших экспериментах радиационное воздействие на кристаллы проявилось в виде уменьшения амплитуды сигнала нестационарной фотоэдс и сдвига частот среза. Увеличение коэффициента поглощения света в области $\lambda = 400 - 1000$ nm с одновременным уменьшением поглощения в области $\lambda = 1600 - 2000 \,\text{nm}$ также указывает на перераспределение электронов между мелкими донорами и глубокими акцепторами.

6. Заключение

В работе продемонстрированы возможности метода нестационарной фотоэдс при исследовании свойств полуизолирующих кристаллов SiC, подвергнутых облучению реакторными нейтронами. В кристалле с дозой облучения 10^{17} cm⁻² обнаружены необычные частотные зависимости сигнала, для объяснения которых была привлечена двухуровневая модель полупроводника. В кристалле с дозой облучения 10^{18} cm⁻², напротив, поведение сигнала является достаточно стандартным, и такой кристалл вполне может найти применение в качестве материала для изготовления адаптивных фотоприемников оптических фазо- и частотно-модулированных сигналов [15–21,41,42].

Список литературы

- N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, V.L. Vinetskii. Ferroelectrics 21, 949 (1978).
- [2] М.П. Петров, С.И. Степанов, А.В. Хоменко. Фоторефрактивные кристаллы в когерентной оптике. Наука, СПб. (1992). 320 с.
- [3] Г.С. Трофимов, С.И. Степанов. ФТТ **28**, 2785 (1986).
- [4] M.P. Petrov, I.A. Sokolov, S.I. Stepanov, G.S. Trofimov. J. Appl. Phys. 68, 2216 (1990).
- [5] I.A. Sokolov, S.I. Stepanov. J. Opt. Soc. Am. B 10, 1483 (1993).
- [6] М.А. Брюшинин, И.А. Соколов. Письма в ЖТФ 25, 9, 63 (1999).
- [7] М.А. Брюшинин, Г.Б. Дубровский, А.А. Петров, И.А. Соколов, N.A. Vainos, С. Kalpouzos. ФТТ 44, 1203 (2002).
- [8] I.A. Sokolov, M.A. Bryushinin, S.V. Ordin, V.V. Kulikov, A.A. Petrov. J. Phys. D 39, 1063 (2006).
- [9] M. Bryushinin, V. Golubev, Yu. Kumzerov, D. Kurdyukov, I. Sokolov. Physica B 404, 1251 (2009).
- [10] M. Bryushinin, V. Golubev, Y. Kumzerov, D. Kurdyukov, I. Sokolov. Appl. Phys. B 95, 489 (2009).
- [11] M. Bryushinin, V. Kulikov, E. Mokhov, S. Nagalyuk, I. Sokolov. Phys. Rev. B 86, 085 209 (2012).
- [12] M.C. Gather, S. Mansurova, K. Meerholz. Phys. Rev. B 75, 165 203 (2007).
- [13] T.O. dos Santos, J. Frejlich, K. Shcherbin. Appl. Phys. B 99, 701 (2010).
- [14] S.I. Stepanov, I.A. Sokolov, G.S. Trofimov, V.I. Vlad, D. Popa, I. Apostol. Opt. Lett. 15, 1239 (1990).
- [15] I.A. Sokolov, P. Hess, M.A. Bryushinin, V.V. Kulikov, S.H. Khan, K.T.V. Grattan. In: Interferometry in speckle light, Theory and applications / Ed. P. Jacquot, J.-M. Fournier. Springer, Berlin–Heidelberg (2000). P. 187.
- [16] М.А. Брюшинин, В.В. Куликов, И.А. Соколов. ЖТФ 72, 10, 79 (2002).
- [17] M.A. Bryushinin, K.T.V. Grattan, V.V. Kulikov, I.A. Sokolov. J. Mod. Opt. 53, 857 (2006).
- [18] I.A. Sokolov, M.A. Bryushinin, A.A. Petrov, Yu.V. Zhilyaev. Nucl. Instr. Meth. Phys. Res. A 571, 366 (2007).
- [19] I.A. Sokolov, M.A. Bryushinin, V.V. Kulikov, A.S. Abyzov, L.N. Davydov, V.E. Kutny, A.V. Rybka, V.V. Slezov. Nucl. Instr. Meth. Phys. Res. A 610, 298 (2009).
- [20] T.O. dos Santos, J. Frejlich, J.C. Launay, K. Shcherbin. Appl. Phys. B 95, 627 (2009).
- [21] I.A. Sokolov, M.A. Bryushinin, V.V. Kulikov, S.H. Khan, K.T.V. Grattan. Int. J. Lifecycle Perform. Eng. 1, 270 (2013).
- [22] J.W. Palmour, J.A. Edmond, H.S. Kong, C.H. Carter, Jr. Physica B 185, 461 (1993).

- [23] H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns. J. Appl. Phys. 76, 1363 (1994).
- [24] J.B. Casady, R.W. Johnson. Solid State Electron. 39, 1409 (1996).
- [25] C. Brylinski. Diam. Relat. Mater. 6, 1405 (1997).
- [26] С.А. Кукушкин, А.В. Осипов, С.Г. Жуков, Е.Е. Заварин, В.В. Лундин, М.А. Синицын, М.М. Рожавская, А.Ф. Цацульников, С.И. Трошков, Н.А. Феоктистов. Письма в ЖТФ 38, 6, 90 (2012).
- [27] M. Rogalla, K. Runge, A. Söldner-Rembold. Nucl. Phys. B Proc. Suppl. 78, 516 (1999).
- [28] А.А. Лебедев, А.М. Иванов, Н.Б. Строкан. ФТП 38, 129 (2004).
- [29] А.М. Иванов, А.А. Лебедев, Н.Б. Строкан. ФТП 40, 886 (2006).
- [30] Е.В. Калинина. ФТП 41, 769 (2007).
- [31] M.P. Petrov, V.V. Bryksin, A.A. Lebedev, M. Lemmer, M. Imlau. J. Appl. Phys. 98, 083 706 (2005).
- [32] M. Lemmer, B. Hilling, M. Wöhlecke, M. Imlau, A.A. Lebedev, V.V. Bryksin, M.P. Petrov. Eur. Phys. J. B 60, 9 (2007).
- [33] M. Bryushinin, V. Kulikov, I. Sokolov. Phys. Rev. B 65, 245 204 (2002).
- [34] M. Bryushinin, V. Kulikov, I. Sokolov. Phys. Rev. B 67, 075 202 (2003).
- [35] С.М. Рывкин. Фотоэлектрические явления в полупроводниках. Физматгиз, М. (1963). 496 с.
- [36] Ю.А. Водаков, Е.Н. Мохов. Авторское свидетельство СССР. № 403275 (1970).
- [37] Г.Б. Дубровский, Е.И. Радованова. ФТТ 11, 680 (1969).
- [38] И.С. Горбань, А.П. Крохмаль. ФТП 35, 1299 (2001).
- [39] M.A. Bryushinin, I.A. Sokolov. Phys. Rev. B 62, 7186 (2000).
- [40] S.I. Stepanov, M.P. Petrov. Opt. Commun. 53, 292 (1985).
- [41] M. Bryushinin, V. Kulikov, I. Sokolov, P. Delaye, G. Pauliat. Europhys. Lett. 105, 64 003 (2014).
- [42] M. Bryushinin, V. Kulikov, I. Sokolov, P. Delaye, G. Pauliat. J. Opt. Soc. Am. B 31, 723 (2014).