05

Структура и магнитные свойства слоистых кристаллов InSe, интеркалированных кобальтом

© В.Б. Боледзюк,¹ З.Д. Ковалюк,¹ З.Р. Кудринський,¹ О.С. Литвин,² А.Д. Шевченко³

 Черновицкое отделение Института проблем материаловедения НАН Украины, 58001 Черновцы, Украина e-mail: chimsp@ukrpost.ua
Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, 03028 Киев, Украина
Институт металлофизики им. Г.В. Курдюмова НАН Украины, 03680 Киев, Украина
(Поступило в Редакцию 29 января 2014 г.)

> Исследованы структура и магнитные свойства слоистых кристаллов Co_xInSe, электрохимически интеркалированных кобальтом в постоянном магнитном поле. Установлено, что в исследуемых интеркалатах на ван-дер-ваальсовских плоскостях межслоевого пространства происходит формирование кластеров примеси, которые состоят из наночастиц кобальта ГЦК-структуры. В интеркалатах Co_{0.1}InSe, полученных внедрением в магнитном поле, происходит изменение магнитных свойств: зависимость магнитного момента от напряженности магнитного поля имеет вид петли гистерезиса, что свойственно ферромагнитным материалам.

Введение

Слоистые кристаллы составляют группу материалов со значительной анизотропией сил химической связи. Вакантные узлы между соседними слоями являются местами, которые могут заполняться с помощью интеркалирования чужеродными атомами, ионами или молекулами, количество которых может быть сравнимо или даже превышать число молекул основного вещества [1,2]. Это создает возможность проводить дозированное внедрение интеркалянтов, реализовывать на молекулярном уровне различного рода примесные слои, контролировано изменять параметры исходных соединений и получать новые композиционные материалы. Дальнейшее расширение числа интеркалянтов и их всестороннее изучение имеют общенаучный интерес и развивают представление о характере электронноионных процессов в кристаллах с развитой внутренней поверхностью. Кроме того, в последнее время интерес к слоистым полупроводникам увеличился в связи с их использованием в качестве базовых соединений для разбавленных полумагнитных полупроводников [3–5], а также исследованием наноструктур на их основе [6,7].

Слоистые полупроводники, интеркалированные атомами 3*d*-металлов, дают возможность формировать структуры с чередующимися слоями магнитоактивного интеркалянта и немагнитного полупроводника, причем полупроводниковые слои основного соединения обеспечивают надежную изоляцию металлических прослоек. Такие гибридные структуры рассматриваются как перспективные материалы для элементов спиновой электроники [8]. Взаимодействие внедренных атомов с атомами кристаллической решетки может приводить к деформации последней, изменению электропроводности, возникновению различных магнитных состояний и уменьшению магнитного момента примесных атомов. В настоящее время наиболее изученными слоистыми соединениями, интеркалированными 3*d*-металлами, являются дихалькогениды переходных металлов с общей формулой TX_2 (T — Ti, Mo, W; X — Se, S) [9–11]. В большинстве случаев их получают методом отжига при высоких температурах смеси микронных порошков интеркалянта и слоистого соединения. В этом случае существует вероятность образования неконтролированных посторонних фаз интеркалянта и исходных поликристаллических материалов, а внедрение примеси может происходить не только в межслоевое пространство, но и в структуру слоистого пакета. Кроме того, слоистые кристаллы очень чувствительны к различного рода деформациям [12].

Одним из методов, который можно использовать для создания магнитных низкоразмерных систем, есть метод электрохимического интеркалирования магнитоактивных примесей в межслоевое пространство кристаллов со слоистой структурой [2]. При электрохимическом внедрении используют монокристаллические образцы, а сам процесс проводится при комнатных температурах, что уменьшает вероятность химических реакций между ван-дер-ваальсовской поверхностью межсоевого пространства и интеркалянтом.

Методика эксперимента

Слоистые полупроводниковые кристаллы InSe принадлежат к бинарным соединениям $A^{III}B^{VI}$, которые характеризируются наличием двух типов химической связи: сильной ковалентной внутри слоев и слабой ван-дер-ваальсовской между слоями [13,14]. Монокристаллы InSe (пространственная группа C_{3V}^5), которые использовали для экспериментов, выращивали методом Бриджмена из расплава нестехиометрического состава. Электрохимическое интеркалирование осуществляли методом "тянущего" электрического поля [15]. В качестве электролита использовался насыщенный водный раствор CoSO₄. Соотношение ширины межслоевого пространства InSe ($d_{vdV} = 4.168$ Å [16]) и ионного радиуса кобальта ($r_{Co} = 0.885$ Å [17]) дает возможность внедрить ионы Co²⁺ в межслоевое пространство InSe.

Для реализации процесса интеркалирования была изготовлена специальная трехэлектродная электрохимическая ячейка, в которой для создания постоянного магнитного поля на границе раздела фаз использовали неодимовые магниты от HDD. В этих магнитах вдоль поверхности существует значительный градиент напряженности магнитного поля. Использование магнитной системы, состоящей из двух магнитов, размещенных друг напротив друга, позволяет увеличить напряженность магнитного поля H, а соответственно и силу, с которой данное поле действует на магнитоактивные ионы интеркалянта. Совмещение образцов с электролитом происходило в месте максимального воздействия магнитного поля, напряженность магнитного поля в месте расположения образцов составляла 4 kOe.

Структура ван-дер-ваальсовских поверхностей слоистых кристаллов InSe, интеркалированных кобальтом, исследовалась методом атомно-силовой микроскопии (ACM) с использованием микроскопа "Nanoscope IIIa Dimension 3000SPM". Радиус зонда не превышал 10 nm, а все измерения проводили на воздухе. Магнитные характеристики интеркалатов Co_{0.1}InSe исследовались методом магнитометрии на магнитометре "Vibrating Magnetometer 7404 VSM" в магнитных полях напряженностью до 3000 Ое. Чувствительность магнитометра составляет $\sim 10^{-7}\,\mathrm{emu},$ что позволяет проводить измерения магнитного момента на образцах массой несколько миллиграмм. Масса образцов определялась с помощью электронных микровесов AB135-S/FACT с автокомпенсацией (чувствительность 10⁻⁵ g). Измерения магнитного момента выполнены вдоль и поперек оси с кристалла.

Результаты и обсуждение

Контроль структуры исходных образцов InSe и интеркалатов $Co_{0.1}$ InSe проводили рентгенографическим методом на установке ДРОН-2.0 в CuK-излучении. Внедрение ионов Co^{2+} в кристаллическую структуру InSe подтверждается уширением пиков дифракционных отражений для инеркалатов $Co_{0.1}$ InSe и сопровождается появлением дополнительных пиков, которые очевидно обусловлены кобальтом, локализированным в межслоевом пространстве. Следует отметить, что наблюдаемые изменения характерны для интеркалатов, полученных обоими способами: в магнитном поле и без магнитного поля.

Измеренные параметры элементарной ячейки монокристаллов Co_{0.1}InSe составляли a = 4.0020, c = 24.9501 Å. Как видим, внедрение Co в InSe, несмотря на деформацию кристаллической решетки, не приводит к изменениям постоянных решетки как в направлении кристаллографической оси с, так и в плоскости слоев (\perp c). Подобный эффект наблюдается при интеркалировании различных слоистых полупроводников примесями 3*d*-переходных металлов [11,18–20]. Постоянство кристаллографических параметров кобальтовых интеркалатов InSe обусловлено гибридизацией *p*-состояний Se, который находится на грани двухслойного пакета Se-In-In-Se с 3*d*-орбиталями атомов интеркалянта (Со) и, как следствие, образование межслойных связей Se-Co-Se. Данные связи проявляют стягивающее действие на кристаллические слои решетки-матрицы и являются конкурирующим фактором к электронэлектронному отталкиванию атомов Se, которое возникает вследствие сближения слоев InSe. Равнозначность двух факторов (сближения и отталкивания) и определяет постоянство параметра с.

Для слоистых кристаллов характерно наличие вакансий халькогена в базисных плоскостях анионов. Такие точечные и поверхностные дефекты в виде нанополостей наблюдались при атомно-силовой и сканирующей туннельной микроскопии ван-дер-ваальсовских поверхностей монокристаллов InSe [21]. На дефектных поверхностях межслоевого пространства слоистых кристаллов с помощью процесса интеркалирования могут быть сформированы различные по морфологии наноразмерные структуры интеркалянта [22,23]. В ходе процесса внедрения атомы интеркалянта под действием электрического поля движутся в межслоевом пространстве InSe. Сталкиваясь при этом с местом вакансии Se, они прилипают к нему, формируя нановключения примеси. На рис. 1 представлены АСМ-изображения поверхности слоев кобальтовых интеркалатов InSe, полученных в магнитном поле. Как видно из полученных изображений, на вандер-ваальсовских поверхностях интеркалатов Co_{0.1}InSe наблюдаются как отдельные нанообразования кобальта пирамидальной формы высотой примерно 10 nm, так и наноразмерные скопления Со вытянутой прямоугольной формы высотой 0.7 nm, что срастаются и образуют кластеры металлического кобальта длиной до 100 nm (рис. 2). Данные кластеры разделены между собой промежутками шириной ~ 0.2 µm. По нашему мнению, этим протяженным кластерам Со свойственна доменная структура, а их формирование происходит в местах локализации дислокаций на атомарно-гладких ван-дерваальсовских поверхностях InSe, а отдельных наноразмерных образований — в нанопустотах на поверхности слоев. В обоих случаях структуры формируются в результате самоорганизации атомов интеркалянта на вандер-ваальсовских плоскостях слоев InSe, при которой существенную роль играет обменное магнитное взаимодействие между атомами кобальта [24]. Дальнейшее увеличение количества интеркалянта в межслоевом пространстве, вероятно, может приводить к увеличению как количества кластеров, так и их размеров в плоскости слоев. Это позволяет рассматривать интеркалаты Co_xInSe как нанокомпозитный материал, состоящий из

Рис. 1. Двухмерное АСМ-изображение ван-дер-ваальсовской поверхности InSe, интеркалированного кобальтом в магнитном поле: *I* — скопление наночастиц Со (кластер), *2* — нанопустота, *3* — отдельное нанообразование кобальта.

Рис. 2. Трехмерное ACM-изображение кластаров Со на ван-дер-ваальсовской поверхности интеркалатов Co_{0.1}InSe, интеркалированных в постоянном магнитном поле.

слоистой матрицы и нанокристаллов Со, сформированных на ван-дер-ваальсовских поверхностях слоистого кристалла.

Слоистый полупроводник InSe является парамагнетиком. Появление благодаря электрохимическому внедрению кобальта в межслоевом пространстве InSe обусловливает изменение его магнитных свойств. На рис. 3 представлены зависимости удельного магнитного момента от напряженности магнитного поля для интеркалатов $Co_{0.1}$ InSe, полученных при T = 300 К. На кривых намагничивания кристаллов InSe, интеркалированных кобальтом в магнитном поле, наблюдается гистерезис. Следует отметить, что для образцов InSe и Co_{0 1}InSe, интеркалированных без применения магнитного поля, гистерезис не наблюдался. Из рисунка видно, что кривые m = f(H)зависят от направления магнитного поля относительно плоскости слоев кристалла. Значения коэрцитивной силы Н_с, определенные с рис. 3, составляют 116.68 и 221.05 G соответственно для направления магнитного поля вдоль и поперек плоскости слоев кристалла, что

характерно для магнитотвердых ферромагнитных материалов.

Различия в зависимостях m = f(H) при различных направлениях внешнего магнитного поля для интеркалатов Co_{0.1}InSe (рис. 3) можно объяснить следующим образом. При электрохимическом интеркалировании InSe кобальтом интеркалянт локализируется в ван-дер-ваальсовских щелях Se-Se, а структура ковалентной слоя Se-In-In-Se остается неизменной. Как показано в [25], использование магнитного поля при интеркалировании слоистых полупроводников кобальтом способствует формированию кластеров Со, имеющих характерную для кубической гранецентрированной кристаллической структуры пирамидальную равновесную форму и высоту порядка 10 nm. Известно [26], что в магнитном веществе, которое внесено в внешнее магнитное поле, возникают магнитные заряды, что вызывает появление размагничивающего поля, которое характеризуется размагничивающим фактором. Величина последнего зависит от направления внешнего магнитного поля. Если интеркалянт образует в ван-дер-

Рис. 3. Зависимости удельного магнитного момента от напряженности магнитного поля для интералатов Co_{0.1}InSe, инеркалированных в постоянном магнитном поле.

ваальсовском пространстве совокупность кластеров, а внешнее магнитное поле направлено вдоль плоскости слоев, в этом случае размагничивающие поле мало, поскольку возникающие магнитные заряды оказываются удаленными друг от друга на значительное расстояние. В случае, когда внешнее магнитное поле направлено поперек слоев, а взаимодействие между нанокластерами интеркалянта ограничивается ковалентными слоями исходной кристаллической матрицы InSe, размагничивающие поле совершает более существенное влияние на зависимость m = f(H).

Заключение

В работе показано, что электрохимическое интеркалирование слоистых кристаллов InSe кобальтом в магнитном поле приводит к формированию кластеров примеси с доменной структурой в межслоевом пространстве InSe. Это позволяет рассматривать соединения Co_xInSe как нанокомпозитные материалы, состоящие из чередующихся слоев исходного кристалла и внедряемой примеси. Методами ACM показано, что сформированные во время интеркалирования на вандер-ваальсовских поверхностях InSe кластеры кобальта состоят из нанокристаллов Co, имеющих равновесную пирамидальную форму ГЦК-структуры. Полученные кобальтовые интеркалаты InSe обладают при комнатной температуре магнитными свойствами, характерными для магнитотвердых ферромагнитных материалов.

Список литературы

- [1] Levy F.A. (ed.), Intercalated Layered Materials. Dordrecht. Reidel, 1979. 572 p.
- [2] Shollhorn R. // Physica B. 1980. Vol. 99. № 1-3. P. 89-99.
- [3] El-Sayed Karimat, Heiba Z.K., Sedeek K., Hantour H.H. // J. of Alloys and Compounds. 2012. Vol. 530. P. 102–106.
- Журнал технической физики, 2014, том 84, вып. 10

- [4] Лашкарев Г.В., Сичковский В.И., Радченко М.В., Карпина В.А., Буторин П.Е., Дмитриев А.И., Лазоренко В.И., Слинько Е.И., Литвин П.Н., Якела Р., Кнофф В., Стори Т., Алешкевич П. // Физика низких температур. 2009. Т. 35. Вып. 1. С. 81–91.
- [5] Pekarek T.M., Arenas D.J., Miotkowski I., Ramdas A.K. // J. Appl. Phys. 2005. Vol 97. P. 10M106.
- [6] Jiajia Ning, Guanjun Xiao, Chunzhong Wang, Bingbing Liu, Guangtian Zou, Bo Zou // Cryst. Eng. Comm. 2013. Vol. 15. P. 3734–3738.
- [7] Darwish A.A.A., El-Nahass M.M., Bahlol M.H. // Appl. Surf. Sci. 2013. Vol. 276. P. 210–216.
- [8] Захарченя Б.П., Коренев В.Л. // УФН. 2005. Т. 175. Вып. 6. С. 629–635.
- [9] Maksimov V.I., Baranov N.V., Pleschov V.G., Inoue K. // J. of Alloys and Compounds. 2004. № 384. P. 33–38.
- Martinez H., Tison Y., Baraille I., Loudet M., Gonbeau D. // J. of Electron Spectroscopy and Related Phenomena. 2002. № 125. P. 181–196.
- [11] Магнетизм наносистем на основе редкоземельных и 3d-переходных металлов / Под ред. В.О. Васьковского. Екатеринбург; ИОНЦ, 2007. 265 с.
- [12] Беленький Г.Л., Салаев Э.Ю., Сулейманов Р.А. // УФН. 1988. Т.155. Вып. 1. С. 89–127.
- [13] Товстюк К.Д. Полупроводниковое материаловедение. Киев: Наукова думка, 1984. 264 с.
- [14] Balkanski M., Fisher R.W. Semiconductor physics and applications. Oxford: Univ. Press, 2000. 493 p.
- [15] Григорчак И.И., Ковалюк З.Д., Юрценюк С.П. // Изв. АН СССР. Сер. Неорган. матер. 1981. Т. 17. Вып. 3. С. 412– 415.
- [16] Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology (ed. O. Madelung). Springer Verlag, 1982. Vol. 17.
- [17] Enghag P. Encyclopedia of the Elements. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2004. 1243 p.
- [18] Стахира И.М., Товстюк Н.К., Фоменко В.Л., Цмоць В.М., Щупляк А.Н. // ФТП. 2011. Т. 45. Вып. 10. С. 1308–1313.
- [19] Ковалюк З.Д., Боледзюк В.Б., Шевчик В.В., Каминский В.М., Шевченко А.Д. // ФТП. 2012. Т. 46. № 8. С. 995– 998.
- [20] Куранов А.В. Плещев В.Г., Титов А.Н., Баранов Н.В., Красавин Л.С. // ФТТ. 2000. Т. 42. Вып. 11. С. 2029–2032.
- [21] Дмитриев А.И., Вишняк В.В., Лашкарев Г.В., Карбовский В.Л., Ковалюк З.Д., Бахтинов А.П. // ФТТ. 2011. Т. 53. Вып. 3. С. 579–589.
- [22] Бахтинов А.П., Кудринский З.Р., Литвин О.С. // ФТТ. 2011. Т. 53. Вып. 10, С. 2045–2050.
- [23] Бахтинов А.П., Водопьянов В.Н., Нетяга В.В., Кудринский З.Р., Литвин О.С. // ФТП. 2012. Т. 46. Вып. 3. С. 356– 366.
- [24] Bedanta S., Kleemann W. // J. Phys. D Appl. Phys. 2009. Vol. 42. P. 013 001.
- [25] Бахтинов А.П., Боледзюк В.Б., Ковалюк З.Д., Кудринский З.Р., Литвин О.С., Шевченко А.Д. // ФТТ. 2013. Т. 55. Вып. 6, С. 1063–1070.
- [26] Тикадзуми С. Физика ферромагнетизма. М.: Мир, 1983. 304 с.