03;04

Получение синтез-газа конверсией метана в плазме водяного пара и диоксида углерода

© Ф.Г. Рутберг, А.Н. Братцев, В.А. Кузнецов, Г.В. Наконечный, А.В. Никонов, В.Е. Попов, С.Д. Попов, Е.О. Серба, Д.И. Субботин, А.В. Суров

Институт электрофизики и электроэнергетики РАН, Санкт-Петербург E-mail: rc@iperas.nw.ru

Поступило в Редакцию 13 апреля 2014 г.

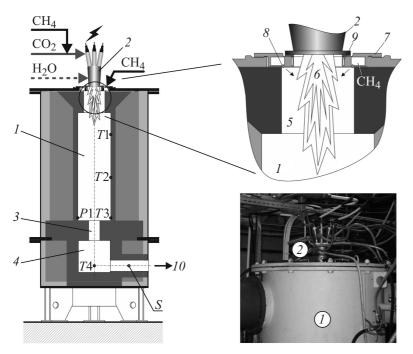
Приведены краткое описание экспериментальной установки и полученные результаты по конверсии метана в плазме водяного пара и диоксида углерода. При массовом расходе $H_2O\sim3$ g/s и $CO_2\sim3$ g/s расход CH_4 изменялся от 2.5 до 3.7 g/s. Энергозатраты составляли 29–42 MJ на 1 kg CH_4 . Соотношение H_2/CO в получаемом синтез-газе составляло 2.2–2.4. Степень превращения CH_4 составляла 90.8–99.8%. Содержание H_2 и CO в синтез-газе составляло \sim 95%.

Процесс конверсии метана в синтез-газ обладает огромным практическим значением. Причиной этому служат проблемы хранения и транспортировки газового топлива [1], а также сложившийся дисбаланс цен на природный газ и жидкое топливо. Кроме того, при добыче нефти на малых скважинах существует проблема переработки попутного газа [2].

На данный момент распространение в химической промышленности получили каталитические методы конверсии метана в присутствии водяного пара [3], а также парциальное окисление кислородом [4]. В результате получают синтез-газ (смесь СО и H₂), который используется в

1 1

процессах синтеза жидких органических веществ на катализаторах. Наивысшие требования к качеству синтез-газа предъявляются в процессах синтеза Фишера—Тропша и метанола.


Одним из перспективных методов получения синтез-газа с заданным соотношением H_2/CO может стать использование плазмы, которая позволяет достигать более высоких степеней конверсии метана при меньших затратах энергии [5]. Авторами ранее исследовался процесс конверсии метана паровой плазмой для производства водорода [6], однако синтез жидких топлив из попутного газа на удаленных нефтяных месторождениях имеет большее практическое значение. Данная работа посвящена конверсии метана плазмой смеси водяного пара и диоксида углерода.

Для процесса Фишера—Тропша на кобальтовых катализаторах стехиометрическое соотношение H_2/CO в синтез-газе должно быть ~ 2.1 . Тогда при стехиометрической конверсии брутто-реакцию можно записать в следующем виде:

$$0.775 \, \text{CH}_4 + 0.55 \, \text{H}_2 \text{O} + 0.225 \, \text{CO}_2 + 168.8 \, \text{kJ} = 2.1 \, \text{H}_2 + \text{CO}.$$

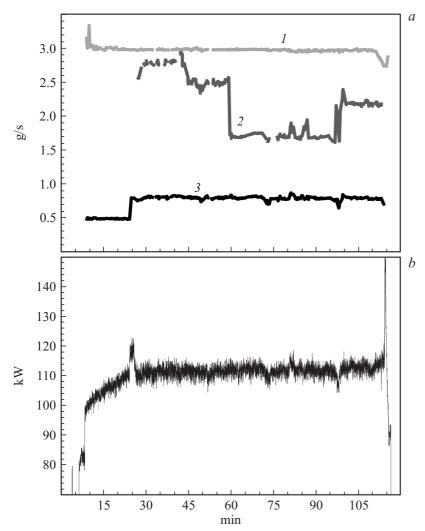
Минимально возможная величина затрат энергии при стандартном атмосферном давлении составила бы $\sim 13.58\,\mathrm{MJ}$ на 1 kg метана. Согласно термодинамическому равновесию указанной выше системы, чтобы предотвратить образование углерода, необходимо затратить не менее $\sim 20.2\,\mathrm{MJ/kg}$, что соответствует теплосодержанию плазмы $\sim 12.7\,\mathrm{MJ/kg}$ ($\sim 3209\,\mathrm{K}$). Однако кинетические оценки показывают, что при таком расходе энергии в диапазоне промышленных скоростей конверсии $\sim 20\,200-76\,400\,\mathrm{h^{-1}}$ глубина превращения метана составляет $\sim 87.3-85.7\%$, а селективности по водороду и монооксиду углерода составляют всего $\sim 76.5-74.4$ и $\sim 35.8-34.1\%$ соответственно.

Больший уровень конверсии достигается при более высоких затратах энергии, температурах и удельных расходах окислителя. Так, при теплосодержании пароуглекислотной плазмы $\sim15\,\text{MJ/kg}$ ($\sim3332\,\text{K}$), пропорциях реагентов $\text{CH}_4:\text{H}_2\text{O}:\text{CO}_2=0.775:0.605:0.2475}$ и объемной скорости $\sim22\,600-66\,900\,\text{h}^{-1}$ степень конверсии метана составляет $\sim97-96.3\%$, а селективности по H_2 и $\text{CO}\sim97.1-94.8}$ и $\sim89.0-80.8\%$ соответственно. Средняя по объему температура процесса $1984-1946\,\text{K}$. Цель описанных ниже экспериментов по плазменной конверсии метана — показать, что такие параметры достижимы.

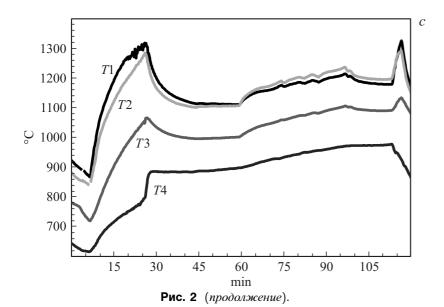
Рис. 1. Общий вид экспериментальной установки: I — проточный реактор; 2 — генератор плазмы; 3 — аэродинамический пережим; 4 — нижняя камера; 5 — камера смешения; 6 — струя плазмы; 7 — устройство распределенного ввода метана; 8 — отверстие подачи метана; 9 — рубашка охлаждения; 10 — выход синтез-газа. P — место измерения давления; T — место измерения температуры; S — место отбора пробы газа для анализа состава.

Эксперименты проводились на проточном реакторе (рис. 1). Использовался трехфазный высоковольтный генератор плазмы мощностью $80-120\,\mathrm{kW}$ [7–9]. Плазмообразующая среда — смесь перегретого водяного пара ($200^{\circ}\mathrm{C}$) и углекислого газа. Углекислый газ подавался тангенциально в приэлектродную зону. Дополнительно к потоку углекислого газа ($\sim 3\,\mathrm{g/s}$) подмешивался метан (до $1\,\mathrm{g/s}$). Водяной пар подавался тангенциально в зоны горения дуг и обеспечивал их осевую стабилизацию. При изменении расхода метана от 0 до $1\,\mathrm{g/s}$ тепловой

КПД плазмотрона составлял 93.8—95.9%, мощность 86.6—117.2 kW, падение напряжения на дуге 990—1360 V, а ток дуги \sim 50 A.

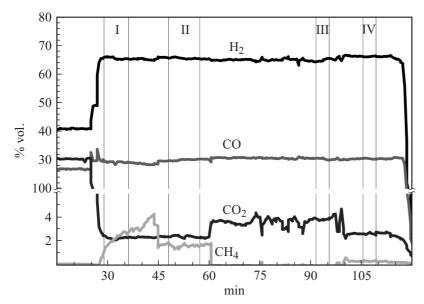

Поток плазмы от генератора плазмы 2 поступал в камеру смешения 5 диаметром и высотой $0.2\,\mathrm{m}$, откуда попадал в проточный реактор I, представляющий собой вертикальную цилиндрическую камеру диаметром $0.3\,\mathrm{m}$ и высотой $1\,\mathrm{m}$, заканчивающуюся аэродинамическим пережимом 3 диаметром $0.1\,\mathrm{m}$.

Начальным этапом эксперимента являлся прогрев реакционного пространства воздушными генераторами плазмы (на рис. 1 не показаны) до температур, близких к 1000°C, после чего подача воздушной плазмы прекращалась и осуществлялся запуск плазмотрона 2. На первом этапе он работал на смеси диоксида углерода и водяного пара, расходы которых составляли по ~ 3 g/s. При этом мощность плазмотрона была $\sim 80\,\mathrm{kW}$, что позволяло поднять температуры в реакторе до $\sim 1300^\circ\mathrm{C}$. После этого начиналась подача метана. Метан подавался двумя способами: первый — путем подмешивания к потоку плазмообразующего диоксида углерода с расходом 0.5-0.8 g/s, второй — путем подачи в струю плазмы через устройство распределенного ввода 7 с расходом 1.7-2.9 g/s. В ходе экспериментов варьировались соотношения между расходами метана, подаваемыми в плазмотрон и в струю плазмы, контролировались температуры и давления, расходы сред, электрические параметры плазмотрона. Давление Р1 поддерживалось в диапазоне -0.2-0 kPa.


Перегретый водяной пар поступал от парогенератора с постоянным расходом, поддерживаемым при помощи калиброванной расходной шайбы. Диоксид углерода (объемная доля основного вещества $\geqslant 99.8\%$) и метан ($\geqslant 96.5\%$) подавались из баллонов, а их расходы измерялись поплавковыми ротаметрами с местными показаниями.

Для определения состава синтез-газа применялись квадрупольный масс-спектрометр MKS Cirrus 300 с детектором Фарадея и ИК-фурьеспектрометр Nicolet 380 с однопроходной газовой кюветой с оптической длиной пути 10 cm.

Данные по расходам подаваемых сред, мощности плазмотрона и по температурам в реакторе представлены на рис. 2, а данные по составу получаемого синтез-газа — на рис. 3. В таблице представлены экспериментальные и расчетные данные основных параметров протекающего процесса на разных режимах.


Рис. 2. Изменение параметров в ходе экспериментов по плазменной конверсии метана: a — расходы подаваемых сред (I — CO_2 ; 2 — CH_4 в камеру смешения, 3 — CH_4 в плазмотрон); b — мощность плазмотрона; c — температуры в реакторе.

В ходе испытаний расходы водяного пара, углекислого газа и метана поддерживались в 4 различных соотношениях. Часть метана ($\sim 22.6-31.9\%$ от общего расхода) подавалась в плазмотрон и подвергалась разложению еще в ходе генерации плазмы. Температура на выходе плазмотрона составляла $\sim 3375~\rm K$ при теплосодержании плазмы $\sim 16.11~\rm MJ/kg$. Вместе с избыточным содержанием окислителей это создает условия для практически полной конверсии подаваемого метана ($\sim 0.82 \pm 0.02~\rm g/s$). Величина характерного пика метана (m/z=15), фиксируемая масс-спектрометром на этом режиме, по величине близка к шумовому сигналу.

При подаче дополнительного метана (режимы I, II и IV) уровень конверсии снижается, что видно по составу синтез-газа (см. рис. 3). На режиме III характерный пик метана также приближается к уровню шумового сигнала.

Характерной особенностью наблюдаемого процесса является наличие метана в продуктах реакции и практически полное отсутствие ацетилена. Содержание ацетилена измерялось ИК-фурье-спектрометром

Рис. 3. Изменение расходов материальных потоков на входе в плазмохимический реактор и состава синтез-газа на выходе из него в ходе экспериментов по плазменной конверсии метана.

и на всех режимах в среднем не превышало $\sim 0.01\%$ (максимум $\sim 0.1\%).$

Объемная скорость процесса для режима I составляет $\sim 248\,h^{-1}$. Средняя по объему температура для этой скорости и стехиометрии окисления составляет $\sim 1560^{\circ}$ С, что по меньшей мере на $\sim 460^{\circ}$ С выше температур, наблюдаемых во второй камере установки. На остальных режимах объемная скорость еще ниже, избыток окислителя выше (при постоянном теплосодержании плазмы) и соответственно средние по объему температуры процесса выше. В целом это позволяет предположить, что основная часть реакций происходила в зоне смешения потоков плазмы и метана — до поступления смеси во вторую камеру, где разложение термостабильных углеводородов существенно замедлялось из-за снижения температуры. Поэтому оценки объемной скорости сделаны по объему камеры смешения.

Основные параметры эксперимента

Параметр		Единицы	Режим			
		измерения	I	II	III	IV
Расходы	H ₂ O	g/s	2.90 ± 0.10	2.90 ± 0.10	2.90 ± 0.10	2.90 ± 0.10
	CO_2		2.97 ± 0.01	2.97 ± 0.01	2.96 ± 0.01	2.97 ± 0.01
	CH ₄		3.70 ± 0.03	3.37 ± 0.06	2.56 ± 0.03	3.08 ± 0.04
Энергозатраты		MJ/kg	29.0	31.8	42.0	35.3
Выход синтез-газа		m ³ /kg	5.66	5.75	6.13	5.98
Состав	CH ₄	% vol.	2.31	1.66	0.05	0.42
	H_2		65.35	65.28	64.92	65.86
	CO_2		2.31	2.44	3.85	2.67
	CO		29.32	30.07	30.62	30.52
	N_2		0.52	0.51	0.48	0.49
	O_2		0.17	0.03	0.07	0.03
Низшая теплота		MJ/m ³	10.61	10.47	9.98	10.18
сгорания синтез-газа						
Степень конверсии СН ₄		%	90.81	93.31	99.78	98.22
Объемная скорость		h^{-1}	2950	2683	2044	2454

Концентрация азота в синтез-газе по данным масс-спектрометрии существенно колебалась и в основном была ниже значений, соответствующих балансу элементов. Это было вызвано в первую очередь влиянием на пик m/z=14 метана и внутренних шумов прибора. Наиболее сильно это проявилось на I, II и IV режимах, а на режиме III измеренные значения были близки к полученным по балансу.

Среднемассовая плотность плазмы, истекающей из плазмотрона, составляла $\sim 0.05\,{\rm kg/m^3}$, а плотность метана, вводимого в камеру смешения, $\sim 0.68\,{\rm kg/m^3}$. Отношение объемного потока плазмы ($\sim 131.2\,{\rm l/s}$) к потоку метана составляет $\sim 31.1-50.8\,{\rm g}$ зависимости от режима. Учитывая это и большую разность температур плазмы и метана (подается при комнатной температуре), можно ожидать высокой ско-

рости смешения потоков. По оценкам на режиме I в таких условиях синтез-газ должен содержать $CH_4 \sim 0.33\%$, $C_2H_2 \sim 0.88\%$. Однако из-за недостаточной теплоизоляции в камере смешения потери тепла могут быть значительными, что объясняет повышенное содержание CH_4 .

Полученные данные свидетельствуют о возможности повышения объемной скорости процесса без снижения его эффективности (в том числе за счет введения большего количества метана в плазмотрон).

В результате экспериментов в длительном режиме впервые достигнута высокая степень конверсии метана в синтез-газ (90.8-99.8%) на режимах, близких к стехиометрическому, при низком уровне затрат энергии ($29-42\,\mathrm{MJ/kg}$), что существенно лучше аналогичных показателей известных плазменных процессов. Полученный синтез-газ состоял более чем на 95% vol. из CO и $\mathrm{H_2}$ с мольным соотношением $\mathrm{H_2/CO}$ 2.2–2.4. Производительность установки по метану составляла $9.2-13.3\,\mathrm{kg/h}$, а по синтез-газу — $56.4-75.3\,\mathrm{m}^3/\mathrm{h}$.

Основным преимуществом этого плазменного процесса является возможность управления составом продуктов и получения синтезгаза, практически не содержащего балластных примесей, с различными соотношениями H_2/CO . Относительная простота этой плазменной технологии уже на данном этапе позволяет прогнозировать ее широкомасштабное внедрение для получения в оптимальных режимах широкого спектра жидких органических веществ, включая моторные топлива.

Список литературы

- [1] Beronich E.L., Abdi M.A., Hawboldt K.A. // J. Natural Gas Science and Engineering. 2009. V. 1. Iss. 1–2. P. 31–38.
- [2] Asibor E., Marongiu-Porsu M., Economides M.J. // J. Natural Gas Science and Engineering. 2013. V. 15. P. 59–68.
- [3] Wilhelm D.J., Simbeck D.R., Karp A.D., Dickenson R.L. // Processing Technology. 2001. V. 71. Iss. 1–3. P. 139–148.
- [4] Enger B.C., Lødeng R., Holmen A. // Appl. Catal. A. 2008. V. 346. Iss. 1–2. P. 1–27.
- [5] Tao X., Bai M., Li X., Long H., Shang S., Yin Y., Dai X. // Prog. Energy Combust. Sci. 2011. V. 37. Iss. 2. P. 113–124.
- [6] Bratsev A.N., Kuznetsov V.A., Popov V.T., Ufimtsev A.A., Shtengel S.V. // High Temp. Mater. Processes. 2009. V. 13. Iss. 2. P. 241–246.

- [7] Рутберг Ф.Г., Кузнецов В.А., Серба Е.Щ., Наконечный Г.В., Никонов А.В., Попов С.Д., Суров А.В. // ТВТ. 2013. Т. 51. № 5. С. 677. (Rutberg P.G., Kuznetsov V.A., Serba E.O., Nakonechnyi G.V., Nikonov A.V., Popov S.D., Surov A.V. // High Temperature. 2013. V. 51(5). P. 608–614.)
- [8] Rutberg Ph.G., Kuznetsov V.A., Serba E.O., Popov S.D., Surov A.V., Nakonechny G.V., Nikonov A.V. // Appl. Energy. 2013. V. 108. P. 505–514.
- [9] *Rutberg Ph.* Physics and Technology of High-Current Discharges in Dense Gas Media and Flows. N.Y.: Nova Science Publishers, Inc., 2009. 214 p.