Синтез многокомпонентных металлооксидных пленок различного состава $(SnO_2)_x(ZnO)_{1-x}$ (x = 1-0.5)

© С.И. Рембеза[¶], Н.Н. Кошелева, Е.С. Рембеза, Т.В. Свистова, Е.Ю. Плотникова, E. Suvaci*, E. Özel*, G. Tuncolu*, C. Açiksari*

Воронежский государственный технический университет, 394026 Воронеж, Россия * Anadolu University, 26480 Eskişehir, Turkey

(Получена 11 декабря 2013 г. Принята к печати 23 декабря 2013 г.)

Использованы высокочистые порошки SnO₂ и ZnO, полученные из растворов солей соответствующих металлов методом низкотемпературного гидротермального синтеза. Методом сухого прессования изготовлены фрагменты керамических мишеней SnO₂ и ZnO в виде брусков размером 1×8 см, которые использованы в качестве составных мишеней для ионно-лучевого распыления и изготовления пленок переменного состава (SnO₂)_x(ZnO)_{1-x}, x = 1-0.5, пригодных для создания устройств газовой сенсорики или прозрачной электроники. Исследованы оптические и электрические параметры прозрачных пленок переменного состава.

1. Введение

Широкозонные металлооксидные полупроводники SnO₂ и ZnO, а также их смеси широко используются в газовой сенсорике [1] и в устройствах прозрачной электроники [2]. Для практического применения металлооксидов, например в приборах прозрачной электроники, требуется создание материалов с определенными физическими свойствами. Так, в тонкопленочном прозрачном транзисторе металлооксидная пленка должна обладать высокой прозрачностью и низким электрическим сопротивлением, если используется в качестве контактов к затвору или в виде истока и стока [2]. Канал транзистора должен обладать высокой подвижностью носителей заряда [3], а подзатворный диэлектрик, как правило, характеризуется достаточно высокой удельной емкостью [4]. Обычно для этих целей используются несколько различных металлооксидов.

Цель данной работы — на основе известных оксидов SnO₂ и ZnO синтезировать оксиды переменного состава $(SnO_2)_x(ZnO)_{1-x}$, x = 1-0.5, пригодные для использования в качестве элементов конструкции тонкопленочных транзисторов, устройств прозрачной электроники или сенсорных слоев датчиков газов. Для достижения поставленной цели необходимо синтезировать высокочистые порошки SnO2 и ZnO с известными параметрами зерен (форма, средний размер, распределение зерен по размерам и др.), контролируемым фазовым составом. Затем методом сухого прессования изготовить керамические мишени для ионно-лучевого распыления, получить набор образцов пленок $(SnO_2)_x(ZnO)_{1-x}$ переменного состава, x = 1 - 0.5, исследовать их электрофизические свойства и оценить возможности их применения в газовой сенсорике и в прозрачной электронике.

2. Методика эксперимента и образцы

В качестве материалов для изготовления керамических мишеней использовались специально очищенные коммерческие порошки SnO₂ и ZnO чистоты выше 99.9 и такой же чистоты порошки SnO₂ и ZnO, синтезированные гидротермальным методом. Исходные коммерческие порошки марки XЧ (99.88) содержали в основном примеси Fe₂O₃, Na₂O и SiO₂ (по данным рентгеновского анализа). Однако после многократных промывок порошков в дистиллированной воде при температуре 90°C удалось избавиться практически от всех оксидов, кроме оксида железа, понизив его массовое содержание до величины < 0.02%, и повысить чистоту порошков на один порядок (до 99.98).

Гидротермальный синтез [5] представляет собой процесс реакций водных растворов солей олова и цинка, происходящих при температурах $100-200^{\circ}$ С и повышенном давлении (> $100 \, \kappa \Pi a$) в течение нескольких часов [6]. В результате порошок SnO₂, изготовленный гидротермальным синтезом, имеет, по данным рентгенофлуоресцентного анализа (Rigaku ZSX Primus), чистоту 99.97 и свободен от примеси оксида железа в отличие от очищенного коммерческого порошка SnO₂. Примечательно, что средний размер зерен коммерческих порошков SnO₂, оцененный из рентгеновских дифракционных спектров (Rigaku Rint 2200) по формуле Шерера, составляет ~ 46.7 нм (рис. 1, верхний спектр), а средний размер зерен синтезированного порошка SnO₂ составляет ~ 7.7 нм (рис. 1, нижний спектр).

Таким образом, гидротермальный синтез позволяет изготавливать порошки SnO_2 с размерами зерен < 10 нм. В действительности в синтезированном порошке SnO_2 имеется большое количество зерен размером 3–5 нм, что подтверждается данными просвечивающей электронной микроскопии (Jeol JEM 2100F) (рис. 2). Оценка величины межплоскостных расстояний

[¶] E-mail: rembeza@yandex.ru

в пределах дифракционной картины одного зерна дает величину ~ 0.311 нм, что близко к значениям межплоскостных расстояний вдоль оси C кристаллической решетки рутила, в которой кристаллизуется SnO₂.

В результате гидротермального синтеза из солей цинка были изготовлены порошки ZnO, имеющие такие же параметры по степени чистоты (99.97) и размерам зерен порошка, как и специально очищенные коммерческие порошки ZnO (99.96). Кристаллы ZnO после синтеза имели форму стержней длиной 0.5–1 мкм при

Рис. 1. Результаты рентгеновской дифракции коммерческого порошка SnO₂ (верхний спектр) и синтезированного гидротермальным методом порошка SnO₂ (нижний спектр).

Рис. 2. Электронно-микроскопическое изображение на просвет порошка SnO₂, синтезированного гидротермальным методом при 200°C из 1M Sn(OH)₄ при давлении $\sim 20\,000$ кПа, длительность процесса 12 ч.

Рис. 3. Влияние прекурсора $Zn(NO_3)_2 \cdot 6H_2O$ на морфологию порошка ZnO после гидротермального синтеза при условиях: 100°C, pH = 8.4, давление 140 кПа, длительность процесса 12 ч.

использовании прекурсора ZnCl₂, либо форму "цветов" (рис. 3) размером 5-10 мкм, если использовался прекурсор Zn(NO₃)₂ · 6H₂O.

Керамические мишени для ионно-лучевого распыления на переменном токе изготавливались методом сухого прессования порошков SnO₂ и ZnO с использованием в качестве связки полиэтиленгликоля и поливинилового спирта. Составная мишень длиной 28 см состояла из 23 фрагментов (1×8 см) SnO₂ и 5 фрагментов ZnO такого же размера, расположенных с переменным шагом, чтобы в одном режиме напыления можно было изготовить образцы SnO₂ с различным содержанием ZnO. Процесс распыления мишени на холодную подложку осуществляется на переменном токе в атмосфере аргона на оригинальной установке, изготовленной на базе вакуумного поста УBH-2M [7].

В качестве подложек для пленок $(SnO_2)_x(ZnO)_{1-x}$ использовалось предметное стекло толщиной 1 мм (ГОСТ 92884-75) и монокристаллические полоски кремния ориентации (100). Элементный состав напыленных образцов контролировался через каждые 2.5 см вдоль подложки с помощью рентгеновского микроанализатора Jeol JXA-840. Оптические свойства синтезированных пленок измерялись с помощью спектрометра Shimadzu BioSpec-Mini. Толщина изготовленных пленок определялась интерференционным методом на микроскопе МИИ-4.

Кристаллизация аморфных пленок осуществлялась путем длительного отжига на воздухе при температуре $T_a = 500^{\circ}$ С. Степень кристаллизации образцов контролировалась рентгеновским методом (XRD) и по

стабилизации электросопротивления пленок. Морфология поверхности исследовалась методом сканирующей зондовой микроскопии (СЗМ) в режиме атомно-силовой микроскопии (АСМ, Solver P47 Pro).

Электросопротивление пленок контролировалось четырехзондовым методом (ЦИУС-1) и методом Ван-дер-Пау. Концентрация и подвижность носителей заряда измерялись с помощью эффекта Холла по методу Вандер-Пау в магнитном поле с индукцией 0.63 Тл.

3. Экспериментальные результаты и их обсуждение

При распылении керамической мишени SnO_2 с 5 навесками ZnO, расположенными на разных расстояниях вдоль мишени, были изготовлены пленки SnO_2 толщиной 3–4 мкм, содержащие Zn от 0.2 до 14 ат% (по данным рентгеновского микроанализа) (табл. 1). Из таблицы следует, что состав напыленных пленок характеризуется значительными отклонениями от стехиометрии, в частности неравномерным распределением расчетных значений кислорода в образцах вдоль подложки.

При напылении на холодную подложку металлооксидные пленки имеют в основном аморфную структуру. В результате длительного отжига на воздухе происходит кристаллизация пленок и дальнейшее окисление. В результате длительного (> 10 ч) отжига образцов на воздухе ($T_a = 500^{\circ}$ C) стабилизировалось электросопротивление, цвет пленок изменился от темно-коричневого на более светлый оранжевый, затем пленки стали прозрачными.

Морфология поверхности отожженных пленок исследовалась с помощью атомно-силовой микроскопии. Установлено, что шероховатость поверхности, которая коррелирует с размерами зерен поликристалла, состав-

Элементный состав 10 образцов пленок $(SnO_2)_x(ZnO)_{1-x}$, расположенных на расстоянии *l* вдоль составной мишени SnO_2 с пятью вставками ZnO. Концентрация кислорода — расчетные значения.

Номер образца	<i>l</i> , см	Sn	Zn	0
	1.5	43.51	14.06	41.6
1	4	42.61	13.58	43.09
2	6.5	39.66	10.9	48.74
3	9	38.15	8.16	52.78
4	11.5	46.94	7.79	44.15
5	14	43.38	6.36	49.45
6	16.5	35.39	3.68	60.29
7	19	22.73	1.27	75.41
8	21.5	20.85	0.7	78.23
9	24	18.16	0.55	81
10	26.5	11.34	0.2	88.29

Примечание. Приведено содержание элементов в ат%.

Рис. 4. Спектры пропускания подложки (1) и образцов 3 (2), 8 (3) и 10 (4).

ляет величину 15–20 нм, что типично для температуры отжига $T_a = 500^{\circ}$ C.

На рис. 4 приведены спектры пропускания стеклянной подложки (кривая 1) и 3 пленок, содержащих в составе SnO₂ добавки Zn в количестве 0.2, 0.7 и 8 ат% (образцы 10, 8, 3 соответственно). Как следует из рис. 4, все синтезированные пленки имеют высокую прозрачность (50-80%) в видимом диапазоне длин волн и могут использоваться в устройствах прозрачной электроники. Из интерференционного спектра вблизи края полосы пропускания можно рассчитать величины коэффициента преломления пленок [8], если известна их толщина. Толщина пленок имеет величину от 3 до 4 мкм для разных образцов. Расчетные значения коэффициента преломления для 3 описываемых образцов 10, 8, 3 составили n = 2.32, 2.72, 3.10 соответственно. Так как исследуемые пленки не обладают магнитными свойствами, коэффициент оптического преломления *n* и диэлектрическая проницаемость ε связаны соотношением $\varepsilon = n^2$, и для образцов 10, 8, 3 ε = 5.4, 7.4, 9.7 соответственно. Этот результат согласуется со значениями диэлектрической проницаемости, рассчитанными из измерений вольтфарадных характеристик на частоте 1 МГц для пленок такого же состава на кремниевых подложках, напыленных в течение 10 минут, толщиной 100 нм.

На основе экспериментальных данных об оптической прозрачности образцов была построена спектральная зависимость коэффициента поглощения α пленок (SnO₂)_x(ZnO)_{1-x}, x = 0.5 - 1. Спектр поглощения металлооксидных пленок, построенный в координатах $\alpha^2 = f(h\nu)$, где $h\nu$ — энергия фотона, следует линейному закону, что соответствует прямозонным переходам и позволяет определить ширину запрещенной зоны полупроводника. Спектры поглощения тех же образцов в координатах $\alpha^{1/2} = f(h\nu)$, используемых для непрямых оптических переходов при определении ширины запрещенной зоны, спрямляются хуже, что свидетельствует об основном вкладе в фундаментальное поглощение прямых межзонных переходов. Из расчетов следует, что

Рис. 5. Концентрация свободных носителей N(1) и их подвижность $\mu(2)$ в образцах $(SnO_2)_x(ZnO)_{1-x}$ разного элементного состава.

ширина запрещенной зоны для прямых переходов исследованных образцов изменяется от $3.52 \ \text{эB}$ в образцах с наибольшим содержанием SnO_2 (38 ат%) до 2.73 эВ в образцах с наименьшим содержанием SnO_2 (11 ат%). Так как оксидные пленки синтезированы распылением керамических мишеней в атмосфере аргона, уменьшение ширины запрещенной зоны пленок относительно общепринятых значений для SnO_2 и ZnO [9] может быть следствием отклонения состава от стехиометрии за счет дефицита кислорода.

Результаты электрических измерений пленок SnO₂ в зависимости от содержания в них примеси Zn приведены на рис. 5. Методом Ван-дер-Пау измерялось удельное сопротивление пленок, из измерений эффекта Холла по методу Ван-дер-Пау определялись концентрация носителей заряда и их подвижность. Как видно из рис. 5, наличие в пленках SnO₂ оксида ZnO с содержанием Zn > 3.7 ат% (образцы 2-6) мало влияет на концентрацию и подвижность носителей зарядов в системе $(SnO_2)_x(ZnO)_{1-x}$. Наиболее интересна область составов пленок, содержащих < 3.7 ат% примеси цинка (образцы 7-10). В этой области наличие Zn в решетке SnO₂ приводит к уменьшению концентрации носителей заряда и к увеличению удельного сопротивления пленки. Такое изменение электрических параметров пленок SnO₂ можно объяснить, если предположить, что в малых концентрациях примесь двухвалентного цинка замещает атомы четырехвалентного олова в кристаллической решетке SnO₂ и выступает в качестве акцепторов, уменьшая концентрацию электронов. Однако растворимость атомов Zn в решетке SnO2 может быть ограниченной из-за различия атомных радиусов Zn (1.32 Å) и Sn (1.58 Å) [10]. Например, известно [11], что при синтезе пленок In₂O₃:SnO₂ (ITO) предел растворимости атомов Sn в решетке In_2O_3 составляет ~ 6 ат%. Поэтому увеличение концентрации Sn в пленках In₂O₃ от 0 до 6 ат% как донора при замещении атома индия атомом олова в решетке In₂O₃ ведет к увеличению концентрации носителей зарядов. Однако введение Sn в концентрациях, превышающих предел растворимости олова в решетке In_2O_3 , приводит, по данным рентгеновского анализа, к появлению в $(SnO_2)_x(In_2O_3)_{1-x}$ смеси отдельных фаз In_2O_3 и SnO₂ [12].

В интервале концентраций цинка от 3.7 ДО 14.0 ат% концентрация свободных носителей заряда в $(SnO_2)_x(ZnO)_{1-x}$ изменяется в интервале (3-7) · 10¹⁷ см⁻³, а подвижность носителей в пределах $40-50 \,\mathrm{cm^2/B \cdot c}$, что соответствует удельным сопротивлениям 0.4-0.8 Ом · см. Таким образом, нами синтезированы прозрачные, электропроводящие слои составов $(SnO_2)_x(ZnO)_{1-x}$, x = 0.5-1, которые могут быть использованы в прозрачной электронике, хотя по величине электропроводности они уступают пленкам ITO (до 6 ат% Sn). Однако синтезированные нами пленки не содержат в своем составе дорогостоящего оксида индия.

В области малых концентраций Zn (от 3.7 до 0.2 ат%) электросопротивление образцов изменяется от десятков до тысяч Ом \cdot см, а концентрация носителей зарядов от 10¹⁵ до 10¹⁴ см⁻³. Такие высокоомные пленки являются привлекательным объектом для газовой сенсорики.

Газовая чувствительность *S* пленок $(\text{SnO}_2)_x(\text{ZnO})_{1-x}$ измерялась по общепринятой методике [13] как отношение сопротивления образца на воздухе (R_a) к сопротивлению этого же образца в смеси воздуха с газом (R_g), $S = R_a/R_g$, в широком интервале температур. Действительно, измерение газовой чувствительности образца 9 с содержанием 0.55 ат% Zn показало (рис. 6), что температура максимальной газовой чувствительности к парам этилового спирта с концентрацией 3000 ppm составила 200°C, при этом значение газовой чувствительности $S = R_a/R_g$ имело величину 2.5. Таким образом, значение сопротивления пленки в парах этилового спирта изменилось не на 30–50%, что характерно для сенсоров с удовлетворительной газовой чувствительностью, а в

Рис. 6. Температурная зависимость газовой чувствительности *S* образца 9 с содержанием Zn 0.55 at% в пленке $(SnO_2)_x(ZnO)_{1-x}$.

Физика и техника полупроводников, 2014, том 48, вып. 8

2.5 раза по сравнению со значением сопротивления пленки на воздухе. Этот результат показывает, что пленки $(SnO_2)_x(ZnO)_{1-x}$ с содержанием Zn < 3.7 ат% являются перспективным материалом для создания высокочувствительных сенсоров газов.

4. Заключение

В результате выполненных исследований:

— методом гидротермального синтеза изготовлены высокочистые (99.98) порошки SnO_2 и ZnO, из которых по технологии сухого прессования изготовлены керамические мишени SnO_2 и ZnO;

— ионно-лучевым распылением на переменном токе с использованием наборных мишеней из брусков SnO₂ и ZnO изготовлены тонкие пленки переменного состава $(SnO_2)_x(ZnO)_{1-x}$, x = 0.5-1; с помощью рентгеновского микроанализа определен элементный состав пленок: содержание Zn составило от 0.2 до 14 ат%;

 из спектров пропускания и поглощения определена степень прозрачности пленок и их ширина запрещенной зоны в зависимости от элементного состава;

 из измерений эффекта Холла по методу Ван-дер-Пау определены концентрация и подвижность носителей зарядов в пленках различного состава;

— показана возможность применения многокомпонентных металлооксидных пленок на основе SnO₂ в качестве сенсорных слоев датчиков газов, а также в качестве материала для изготовления элементной базы прозрачной электроники.

Авторы благодарят Б.Л. Агапова и А.В. Ситникова за помощь в изготовлении и анализе тонкопленочных образцов.

Работа выполнена при финансовой поддержке совместного российско-турецкого гранта РФФИ-TUBITAK 12-02-91373_CT_а.

Список литературы

- И.А. Мясников, В.Я. Сухарев, Л.Ю. Куприянов, С.А. Завьялов. Полупроводниковые сенсоры в физико-химических исследованиях (М., Наука, 1991).
- [2] J.F. Wager. Science, 300, 1245 (2003).
- [3] H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler. Appl. Phys. Lett., 86, 013 503 (2005).
- [4] T. Riedl, P. Görrn, W. Kowalsky. J. Display Technol., 5 (12), 501 (2009).
- [5] W.L. Suchanek, R.E. Riman. Adv. Sci. Technol., **45**, 184 (2006).
- [6] J.H. Adair, E. Suvaci. In: *Encyclopedia of Materials* (Elsevier, Science Publisher, 2001).
- [7] И.В. Золотухин, Ю.Е. Калинин, О.В. Стогней. *Новые* направления физического материаловедения (Воронеж, ВГТУ, 2000).
- [8] В.В. Батавин, Ю.А. Концевой, Ю.В. Федорович. Измерения параметров полупроводниковых материалов и структур (М., Радио и связь, 1985).

- [9] K.L. Chopra, S. Major, D.K. Pandya. Thin Sol. Films, 102, 1 (1983).
- [10] Физико-химические свойства окислов. Справочник, под ред. Г.В. Самсонова (М., Металлургия, 1969).
- [11] G. Frank, H. Kostlin. Phys. Status. Solidi A, 52, 231 (1979).
- [12] П.Е. Воронов. Автореф. канд. дис. (Ставрополь, СевКавГТУ, 2009).
- [13] J. Watson, K. Ihokura, G.S.V. Coles. Meas. Sci. Technol., 4, 717 (1993).

Редактор Л.В. Шаронова

Synthesis of multicomponent metal oxide films of different composition $(SnO_2)_x(ZnO)_{1-x}$ (x = 1-0.5)

S.I. Rembeza, N.N. Kosheleva, E.S. Rembeza, T.V. Svistova, E.Yu. Plotnikova, E. Suvaci*, E. Özel*, G. Tuncolu*, C. Açiksari*

Voronezh State Technical University, 394026 Voronezh, Russia * Anadolu University, 26480 Eskiehir, Turkey

Abstract High purity powders SnO_2 and ZnO prepared from solt solvents of metals by method of low temperature hydrothermal synthesis were used in this work. Parts of ceramic targets SnO_2 and ZnO as bars with size 1×8 cm were prepared by dry pressing method. The bars were used as composite targets for ion-beam sputtering and deposition of films with variable composition $(\text{SnO}_2)_x(\text{ZnO})_{1-x}$, x = 1-0.5, useful for gas sensors or transparent electronic devices. Optical and electrical parameters of transparent films with variable composition were investigated.